• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Individual aircraft life monitoring:An engineering approach for fatigue damage evaluation

    2018-04-21 06:02:13RuiJIAOXiofnHEYuhiLI
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Rui JIAO,Xiofn HE,*,Yuhi LI

    aSchool of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    bAviation Industry Corporation of China,Beijng 100022,China

    1.Introduction

    When an aircraft fleet is put into service,realistic loads experienced by each aircraft vary significantly with different operational environment such as weather conditions,runway quality and skill of pilots.Different operational load histories lead to variations in fatigue damage accumulated in each aircraft structure.1If the difference between realistic load history and that previously stated is neglected,two problems may arise:

    (1)Structural safety may be adversely affected.If the realistic load spectrum is more severe than the designed one,cracks may occur earlier than the repair point of critical locations,thus leading to structural fatigue failure.

    (2)The economy of aircraft may also be compromised.If the realistic load spectrum is mild and the management of fleet still follows an average damage estimation,the aircraft may be retired prior to its life span.

    To ensure the safety and economy of aircraft,it is thus necessary to implement individual aircraft monitoring when a fleet is put into service.With operational data collected,fatigue life expended and remaining life of aircraft structures can be estimated.2

    Fatigue monitoring of individual aircraft involves operational data collection,load spectrum development,damage estimation,fatigue life prediction and management.3The existing literature on it is extensive2,4,5and plenty of methods have thus far been developed for operational data collection and fatigue life management.6–10Generally realistic load history can be accurately monitored using flight parameter-based method or strain gauges at critical points,complemented by fatigue test calibration and data processing.11,12Pertinent approaches regarding fatigue damage analysis fall into two categories:fatigue analysis-based method and crack growth analysis-based method;13however,there are limitations in application of both methods.For fatigue analysis-based method,14–16empirical parameters are often used to determine the fatigue quality of structure details,which may result in low accuracy since those parameters fail to reflect real structural status.Although crack growth analysis-based methods can improve accuracy,this method is complex to be applied and the analysis results remain to be validated by fatigue tests as those models cannot appropriately account for load interaction.17–19

    Accurate fatigue damage evaluation for critical structures in service is the core of fatigue monitoring.To solve the existing problems,a strain-based fatigue crack initiation model is proposed in Ref.20to calculate fatigue damage accumulated on wing root under individual spectra.Test-analysis correlations show that this model is suitable for tension dominated load spectra,but the case with significant compressive loading remains to be refined.Besides,the strip-yield model was applied to calculate the total life in Ref.20,with pertinent parameters obtained from test results.However,in the implementation of this model,empirical adjustments are needed when different long spectrum histories are considered.Although the flight-by-flight approach proposed in Ref.21incorporates load sequence and load interaction effects,further development and evaluation are required to assess its applicability in predicting fatigue crack growth under untested spectra for different materials.Therefore,an accurate,efficient and practical approach is required for damage estimation and fatigue life prediction in fatigue monitoring.In this paper,firstly the fatigue analysis model is developed using full-scale fatigue test data.Then,fatigue test and data analysis are conducted to verify the applicability of this approach.Finally,an application of the proposed approach is illustrated.

    2.Requirements for fatigue monitoring of individual aircraft

    Several requirements are needed to conduct fatigue monitoring for individual aircraft:

    (1)Mechanical properties of related materials are obtained,including the elasticity modulus,yield strength,tensile strength,S-Ncurve,etc.

    (2)The load spectra for full-scale fatigue tests are definitely determined.During the aircraft structural development stage,the load spectra for full-scale fatigue tests are compiled based on relevant theories and experience,and the load spectrum for each critical structure can therefore be obtained.

    (3)Regarding the fatigue life of aircraft structures,full-scale fatigue test data are complete and comprehensive.During the final stage of aircraft structural design,full-scale fatigue tests are conducted under the predetermined load spectrum to identify critical locations and obtain pertinent crack growth information.

    (4)Realistic load spectra for individual aircraft can be developed based on the operational data.

    3.Engineering approach for fatigue damage evaluation

    Since reliable load spectra of critical structures can be obtained through fatigue monitoring,a stress-based fatigue analysis model is developed for damage estimation and fatigue life prediction.

    3.1.Issues in traditional nominal stress method

    3.1.1.Analysis procedure

    For the traditional nominal stress method,nominal stress traces are rain flow cycle counted,in which peaks and valleys are paired into cycles.For cycles with non-zero mean stresses,equivalent fully-reversed stress amplitudes are then determined using the constant life curve.The damage for each cycle is calculated with materialS-Ncurve,and the total fatigue damage is accumulated with Miner’s rule.In addition,safe life can be calculated by the quotient of fatigue life and fatigue scatter factor.The analysis procedures22are shown in Fig.1.

    3.1.2.Issues in traditional method

    Factors significantly affecting the accuracy of damage estimation are as follows:

    (1)S-Ncurve parameters of structural details.Based on a series of materialS-Ncurve,the interpolating method is used to obtain theS-Ncurve for realistic structural details,considering material status,loading condition and surface quality as correction factors.However,those factors are generally acquired from experience,which may fail to reasonably reflect the real fatigue properties of structural details.

    (2)Limitation of current cumulative damage theories.

    Fig.1 Analysis procedure for traditional nominal stress method.

    Plenty of theories and experimental researches23,24show that linear cumulative damage theory fails to account for the load interaction in random load spectra,resulting in inaccurate damage estimation.Besides,current nonlinear cumulative damage theories25,26remain to be improved.

    (3)Fatigue scatter factor.A scatter factor of 4 is usually adopted for a fleet accounting for the variation in load spectra and structural properties.When the aircraft in a fleet is monitored individually,a scatter factor less than 4 may be adopted,as the load-time histories of the aircraft in service are clear.

    3.2.Stress-based fatigue analysis model

    As discussed,the determination ofS-Ncurve parameters for realistic structural details is significant to improve the accuracy of life prediction approach.To achieve this purpose,we first obtain the fatigue life of critical locations via full-scale fatigue tests under the reference load spectrum.Next,the nominal stress method is applied to back calculate theS-Ncurve parameters for realistic structural details using fatigue test data.Finally,fatigue life of critical locations under individual load spectra is predicted using the determinedS-Ncurve.

    Procedures of the engineering approach are brief l y described in Fig.2,with details below:

    (1)By using the reference load spectrum,full-scale fatigue tests are conducted to obtain fatigue life of critical structures.

    (2)The nominal stress-based method is adopted to back calculate theS-Ncurve parameters to reflect fatigue properties of realistic structural details.

    (3)The determinedS-Ncurve and stress-based method are used to evaluate fatigue damage and predict the fatigue life for critical locations under individual load spectrum.

    (4)Given the variation of the structural fatigue property,scatter factors need to be determined to obtain the fatigue damage with certain reliability.

    (5)Fatigue life expended index is calculated and remaining life is estimated.

    3.3.Determination of S-N curve

    TheS-Ncurve22can be represented by

    whereCis the fatigue limit,and α andAare shape parameters.

    There are three parameters inS-Ncurve,i.e.C,α andA.More samples will be required if more parameters need to be determined,which is often accompanied by less robust computation results.Therefore,theS-Ncurve parameters should be appropriately restrained according to the influence of each single parameter in fatigue life calculation.However,it is difficult to theoretically discuss the influence since the relationship between those parameters and fatigue life is nonlinear.We therefore intend to numerically analyze the influence by assuming each parameter inS-Ncurve respectively varies±5%and calculating corresponding variation of fatigue life.As greater change of fatigue life indicates more sensitivity of fatigue life to the parameter,the most sensitive parameter can be determined.

    3.3.1.Sensitivity analysis of 7B04-T74 aluminum alloy

    The fatigue life prediction for 7B04-T74 aluminum alloy specimens under Spectrum 1 with a lower stress level in Section 4.1 will be illustrated as an instance,with sensitivity of each parameter analyzed.

    (1)Sensitivity analysis of α

    Calculate the fatigue life withAandCfixed and α varying±5%,and the results are shown in Table 1.

    (2)Sensitivity analysis ofA

    Calculate the fatigue life with α andCfixed andAvarying±5%,and the results are shown in Table 2.

    (3)Sensitivity analysis ofC

    Calculate the fatigue life with α andAfixed andCvarying±5%,and the results are shown in Table 3.

    3.3.2.Sensitivity analysis of TA15M titanium alloy

    The sensitivity analysis of TA15M titanium alloy is the same as that of 7B04-T74 aluminum alloy in Section 3.3.1,and the results are shown in Tables 4–6.

    3.3.3.Determination of S-N curve

    As can be seen from Tables 1–6,the most sensitive parameter is α,followed byCandA.From Eq.(1),we find that α indicates the variation rate of fatigue life with the changes of stress level,the rate generally being the same under different stress levels.Besides,Cis the fatigue limit of details,andAis the intercept ofS-Ncurve whenCis determined.The main difference between realistic details and material lies in fatigue property,which is related withCandAdirectly.Compared withA,Cis more sensitive and should be determined to reflect the realistic structural status.

    Fig.2 Procedure of fatigue damage evaluation.

    Table 1 Analysis results of α of 7B04-T74 aluminum alloy.

    Table 2 Analysis results of A of 7B04-T74 aluminum alloy.

    Table 3 Analysis results of C of 7B04-T74 aluminum alloy.

    Table 4 Analysis results of α of TA15M titanium alloy.

    Table 5 Analysis results of A of TA15M titanium alloy.

    Table 6 Analysis results of C of TA15M titanium alloy.

    To determine the parameters inS-Ncurve,α andAare first surveyed.Typical values27of α andAof different materials are shown in Table 7.

    As shown in Table 7,the values of α andAare somewhat robust,indicating that stress ratio has insignificant influence under a certain stress concentration factorKt.In addition,based on the information of previous fatigue tests,the values of α andAare basically constant for similar materials with different surface qualities.As a result,α andAof realistic structures are taken the same as that of corresponding materials with the similarKt.

    To determine the value ofC,back-calculation method is implemented.We select an initial value ofC,change it with a certain interval,and calculate corresponding fatigue life of critical structures under the reference load spectrum.The valueofCis determined once the calculated life is equal to the life experimentally obtained.The analysis details are shown in Fig.3.In this case,theS-Ncurve not only reflects fatigue property of realistic structures,but also eliminates the calculation error of Miner’s rule.

    Table 7 Typical values27of α and A.

    3.4.Fatigue scatter factor

    Fatigue scatter factors1are used to determine the structural safe life and ensure the predefined reliability of the aircraft.The fatigue scatter factor1can be defined as

    Fig.3 Procedure of determination of C.

    wheretPis the service life with a certain reliability level.

    In fleet management28,variations of load spectra and structural properties are considered when the fatigue life scatter factor is determined.But in fatigue monitoring,only the variation of structural properties will be considered since the load-time history of each aircraft can be obtained,which will lead to a lower scatter factor.

    Assuming that fatigue life follows the lognormal distribution,we have the following relationship:28

    whereupis thepth percentile of the standard normal distribution and σ0the standard deviation of logarithmic life.

    The reliability level in Eq.(3)corresponds to a survival ratepequal to 99.9%and confidence level equal to 0.5,with the influence of specimen number neglected.Regarding the standard deviation for logarithmic life σ0,the US navy28suggested 0.1 based on statistical analysis of fatigue test data,from which we can obtain a scatter factor of 2.

    3.5.Fatigue analysis procedure

    The fatigue analysis procedure22adopted in this paper can be brief l y described as follows:

    (1)Obtain corresponding stress spectra for critical locations,based on the load spectrum of an individual aircraft

    (2)Determine fatigue property for realistic structures

    The three-parameter formula shown in Eq.(1)is used to describe theS-Ncurve.

    The constant life curve is described as

    where σais the stress amplitude,σa0the peak value of fluctuating stress, σmthe mean stress,and σsthe yield stress of material.

    (3)Cycle-by-cycle fatigue life calculation

    Each stress cycle can be expressed as (σai,σmi)or (σmaxi,Ri),where σmaxiis the peak stress,andRithe stress ratio,and the latter is usually used in engineering.There in after,σmaxiwill be referred to σi.

    According to Eq.(4),upon converting (σi,Ri)into

    whereR*is the stress ratio with the same fatigue life of(σi,Ri),andthe corresponding peak stress.

    Substituting Eq.(5)into Eq.(1),we have the fatigue life as

    (4)Fatigue damage evaluation

    According to Miner’s rule,fatigue damage for a load spectrum block can be given by

    wherekrepresents the loading series,nithe number of Loadiin one block,andNithe corresponding mean fatigue life,which can be obtained by Eq.(6).

    (5)Fatigue life calculation

    Mean fatigue life can be obtained using the following expression:

    wheret0is the flight hour corresponding to one spectrum block(per base life period).

    (6)Safe life calculation

    With the scatter factor of SF,we have structural safe life as

    (7)Remaining fatigue life estimation

    Fatigue Life Expended Index(FLEI)can be used to illustrate the fatigue life consumption at any timete,which is denoted as FLEI(te)and can be obtained by

    whereD(te)is the total damage accumulated in service.

    The remaining fatigue life can be calculated by

    whered(F)is the predicted mean damage rate in subsequent service for critical structures,which is determined by predicted individual spectrum.

    4.Verification of proposed approach

    4.1.Fatigue tests

    4.1.1.Specimens

    Specimens are designed and fabricated to simulate structural details in a critical location of the wing in terms of material,geometry and processing quality.The specimens are made of 7B04-T74 aluminum alloy and TA15M titanium alloy,with material properties listed in Tables 8–11.The specimen geometry is shown in Fig.4.

    4.1.2.Load spectra

    Two individual load spectra(Spectrum 1 and Spectrum 2)are used in the fatigue tests.Fig.5 shows corresponding acceleration exceedance curves and Fig.6 shows a fraction of each load spectrum.

    Table 8 Chemical composition and mass fraction of 7B04-T74 aluminum alloy.

    Table 9 Mechanical properties of 7B04-T74 aluminum alloy.

    Table 10 Chemical composition and mass fraction of TA15M titanium alloy.

    Table 11 Mechanical properties of TA15M titanium alloy.

    Fig.4 Geometry of specimen.

    Fig.5 Cumulative number of exceedance vs acceleration for two load spectra.

    4.1.3.Test results

    Fatigue tests are conducted on a closed-loop servo-hydraulic controlled testing machine(MTS 880)at room temperature.Axial loads in the form of sinusoidal wave are applied to specimens with a frequency of 8 Hz.The fatigue tests are conducted under two individual load spectra with different stress levels,and further details can be found in Table 12.

    Fig.7 shows the typical fracture surfaces with clear marker bands.An optical microscope with a grating scale is used to measure the position of each marker band,with the error controlled within 0.01 mm.The number of load cycles corresponding to each marker band is back-extrapolated from that of the last marker band.When cracks appear on both sides of the hole,the earlier initiated one is taken as the lead crack,29corresponding to a longer critical crack size.Therefore,the crack growth data along the radical direction are obtained for the lead crack in each specimen and plotted in the semi-log coordinate(see Fig.8).

    Fig.6 Fractions of load spectra.

    Table 12 Details of fatigue tests.

    Three-point Lagrange interpolation is adopted to estimate the fatigue life respectively corresponding to specif i ed crack depth 0.2,0.4,0.6,0.8 and 1.0 mm.Assuming that crack initiation life follows the lognormal distribution,ln(μ,σ2),we can estimate the median life and the standard deviation as follows:

    Fig.7 Typical fracture surfaces.

    Fig.8 Crack growth(a,t)data for lead cracks.

    wheretis the fatigue life,nthe number of specimen,μ the estimated log-mean life used to determine the median lifet50,and σ the standard deviation of lg(t).

    The distribution parameters estimated using Eq.(12)are shown in Table 13,where also shows the mean fatigue life corresponding to the specific crack depth.

    4.2.Validation of proposed approach

    The stress concentration factorKtof test specimen is 2.682 derived via finite element analysis.Then the materialS-Ncurve withKtbeing 3 is selected,with relevant parameters27beingA=98.739,α=0.404(stress ratioR=0.06)for 7B04-T74 test specimens andA=2700.868,α=0.834(R=0.06)for TA15M test specimens.

    When fatigue life corresponds to a specif i ed crack length under Spectrum 1 with 53 MPa for 7B04-T74 and 118 MPa for TA15M,we can respectively obtain the value ofCusing back-calculation method.The pertinent parameters are listed in Table 14.Analysis results are shown in Tables15 and 16,indicating a good fit between the experimental results and the analysis ones,with all errors being less than 15% for7B04-T74and TA15M test specimens.

    Table 13 Statistic results of test life.

    Table 14 Value of pertinent parameters.

    Table 15 Analysis results of fatigue life for 7B04-T74.

    Table 16 Analysis results of fatigue life for TA15M.

    Table 17 Crack growth(a,t)data for lead cracks of critical structure.

    5.Application for monitoring a critical structure

    After full-scale fatigue test,a teardown inspection of aluminum alloy structural details simulated above is performed.Then,crack length in the locations can be determined using quantitative fractography.The crack growth data are listed in Table 17,with corresponding stress spectrum(reference stress spectrum)shown in Fig.9(a).The individual aircraft stress spectrum of this structural detail is compiled based on operational data and finite element modeling(Fig.9(b)).

    Fig.10 Status of fatigue life expended.

    The approach presented in this paper enables the calculation of FLEI and crack size in critical structures to be conducted at any specif i ed time.Calculation results are shown in Figs.10 and 11.Fig.10 also shows the FLEI of this location from the full-scale fatigue test,in which scattered points located beyond the reference line are proofs of severe realistic usage,suggesting that missions with benign damage should be assigned to ensure flight safety.On the other hand,those scattered points located below the reference line show mild realistic usage,thus allowing assignment of missions with severe dam-age,which is aimed at improving the fleet economy.Besides,the estimated crack length at specif i ed time can provide a reference for repair.

    Fig.9 Relative stress spectrum.

    Fig.11 Crack length vs time history.

    6.Conclusions

    This paper proposes an engineering approach for fatigue damage evaluation and fatigue life prediction of critical structures based on traditional nominal stress method.With the fatigue property of realistic structural details and the calculation error of Miner’s rule taken into account,the full-scale fatigue test data are used to determine theS-Ncurve parameters.Then,theS-Ncurve and Miner’s rule are used in fatigue life prediction of the same critical locations under individual load spectra.Fatigue tests are conducted for 7B04-T74 aluminum alloy specimens and TA15M titanium alloy specimens under two load spectra,and the analysis results well correlate with the experimental ones.Besides,the relationship between crack length and fatigue life can also be obtained with this approach.The proposed approach has been proved to have high accuracy,justifying its applicability in fatigue monitoring of individual aircraft.

    Acknowledgements

    The authors gratefully acknowledge the support from National Natural Science Foundation of China (No.11772027),National Key Research and Development Program of China(No.2017YFB1104003)and Aeronautical Science Foundation of China(No.28163701002).

    1.Liu WT,Wang Z,Sui FC.Individual aircraft life monitoring technique guide.Beijing:National Defense Industry Press;2010.p.7–10;72–6[Chinese].

    2.Molent L,Aktepe B.Review of fatigue monitoring of agile military aircraft.Fatigue FractEngMater Struct2000;23(9):767–85.

    3.Hoffman Paul C.Fleet management issues and technology needs.Int J Fatigue2009;31(11):1631–7.

    4.Neumair M.Requirements on Future Structural Health Monitoring Systems.RTO AVT specialists meeting on exploitation of structural loads/health data for reduced life cycle costs;1998 May 11–12;Brussels,Belgium.Ottobrunn:RTO MP-7;1998.p.1-1-9.

    5.Molent L,Barter S,Foster W.Veri fication of an individual aircraft fatigue monitoring system.Int J Fatigue2012;43:128–33.

    6.Bond R,Underwood S,Adams Douglas E,Cummins Joshua J.Structural health monitoring-based methodologies for managing uncertainty in aircraft structural life assessment.Struct Heal Monit2014;13(6):621–8.

    7.Leski A,Klimaszewski S,Kurdelski M.The fatigue life assessment of PZL-130 Orlik structures based on historical usage data.Fatigue Aircr Struct2009;2009(1):131–9.

    8.Branco DDC,Bussamra FLDS.Fatigue life monitoring system for aircraft to flexibilize operations and maintenance planning.J Aircr2016;53(5):1298–304.

    9.Boller C,Buderath M.Fatigue in aerostructures—Where structural health monitoring can contribute to a complex subject.Philos Trans R Soc A Math Phys Eng Sci1851;2007(365):561–87.

    10.Wang YW,Gogu C,Binaud N,Bes C,Haftka RT,Kim NH.A cost driven predictive maintenance policy for structural airframe maintenance.Chin J Aeronaut2017;30(3):1242–57.

    11.Aktepe B,Molent L.Management of airframe fatigue through individual aircraft loads monitoring programs.International aerospace congress;1999 Sep;Adelaide,Australia.Paris,France:International Astronautical Federation(IAF);1999.p.1–14.

    12.Molent L.A unified approach to fatigue usage monitoring of if ghter aircraft based on F/A-18 experience.Proceedings of 21st congress of the international council of aeronautical science;1998 Sep 13–18;Melbourne,Australia.1998.p.1–11.

    13.Santecchia E,Hamouda AMS,Musharavati F,Zalnezhad E,Cabibbo M,El Mehtedi M,et al.A review on fatigue life prediction methods for metals.Adv Mater Sci Eng2016;2016:1–26.

    14.Li Y,Wang Z,Chen YL,Zhang Y,Sun WS.Research on compiling fatigue load spectrum of individual aircraft and analysis of fatigue life based on flight data.Proc IEEE 2012 Progn Syst Heal Manag Conf PHM-2012;2012 May 23–25;Beijing,China.Piscataway:IEEE Press;2012.p.1–5.

    15.Theil N.Fatigue life prediction method for the practical engineering use taking in account the effect of the overload blocks.Int J Fatigue2016;90:23–35.

    16.Ma SJ,Hu BR,Liu JZ,Wang LF.Empirical equation of fatigue limit for metal material.J Mech Strength2010;32(6):993–6[Chinese].

    17.Alves ASF,Sampayo LMCMV,Correia JAFO,De Jesus AMP,Moreira PMGP,Tavares PJS.Fatigue life prediction based on crack growth analysis using an equivalent initial flaw size model:application to a notched geometry.Procedia Eng2015;114:730–7.

    18.Zhuang W,Molent L.Analytical study of fatigue crack growth in AA7050 notched specimens under spectrum loading.Eng Fract Mech2010;77(11):1884–95.

    19.Correia JAFO,Blaso′n S,De JesusP,Canteli AF,Moreira PMGP,Tavares Paulo J.Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model.Eng Failure Anal2016;69:15–28.

    20.Iyyer N,Sarkar S,Merrill R,Phan N.Aircraft life management using crack initiation and crack growth models—P-3C aircraft experience.Int J Fatigue2007;29(9–11):1584–607.

    21.Zhuang W,Barter S,Molent L.Flight-by- flight fatigue crack growth life assessment.Int J Fatigue2007;29(9–11):1647–57.

    22.Liu WT.Design handbook for structural reliability.Beijing:National Defense Industry Press;2008.p.590–620[Chinese].

    23.Gao H,Huang HZ,Zhu SP,Li YF,Yuan R.A modified nonlinear damage accumulation model for fatigue life prediction considering load interaction effects.Sci World J2014;2014(1):164378.

    24.Aid A,Amrouche A,Bachir Bouiadjra B,Benguediab M,Mesmacque G.Fatigue life prediction under variable loading based on a new damage model.Mater Des2011;32(1):183–91.

    25.Huffman PJ,Beckman SP.A non-linear damage accumulation fatigue model for predicting strain life at variable amplitude loadings based on constant amplitude fatigue data.Int J Fatigue2013;48(3):165–9.

    26.Lv ZQ,Huang HZ,Zhu SP,Gao HY,Zuo FJ.A modified nonlinear fatigue damage accumulation model.Int J Damage Mech2015;24(2):168–81.

    27.Wu XR.Handbook of mechanical properties of aircraft structural metals:Vol.1:Static strength fatigue/durability.Beijing:Aviation Industry Press;1997.p.67–293[Chinese].

    28.Hoffman Margery E,Hoffman Paul C.Corrosion and fatigue research—Structural issues and relevance to naval aviation.Int J Fatigue1997;23(1):1–10.

    29.Molent L,Barter S,Wanhill R.The lead crack fatigue lif i ng framework.Int J Fatigue2011;33(3):323–31.

    亚洲精品在线美女| 亚洲免费av在线视频| 亚洲欧美一区二区三区久久| 交换朋友夫妻互换小说| 超碰97精品在线观看| 女人精品久久久久毛片| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 肉色欧美久久久久久久蜜桃| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 美女午夜性视频免费| 高清欧美精品videossex| 欧美日韩视频精品一区| h视频一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 在线观看免费日韩欧美大片| 91成人精品电影| 一二三四中文在线观看免费高清| 在线观看免费午夜福利视频| a级片在线免费高清观看视频| 一边摸一边抽搐一进一出视频| 国产熟女午夜一区二区三区| 深夜精品福利| 国产亚洲av高清不卡| 丰满乱子伦码专区| 大香蕉久久成人网| 国产av一区二区精品久久| 国产乱来视频区| 久久午夜综合久久蜜桃| a级毛片在线看网站| 成年动漫av网址| 一级a爱视频在线免费观看| 国产男女内射视频| 欧美日韩成人在线一区二区| 人妻一区二区av| 久久久久久久大尺度免费视频| 我的亚洲天堂| 免费不卡黄色视频| 国产成人精品无人区| 国产在线视频一区二区| videos熟女内射| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 91精品国产国语对白视频| 波多野结衣一区麻豆| 国产成人精品福利久久| 亚洲图色成人| av电影中文网址| 国产精品 欧美亚洲| 汤姆久久久久久久影院中文字幕| 不卡视频在线观看欧美| 伊人久久国产一区二区| 婷婷色综合www| 中文字幕最新亚洲高清| 操出白浆在线播放| 这个男人来自地球电影免费观看 | 哪个播放器可以免费观看大片| 高清黄色对白视频在线免费看| kizo精华| 美女午夜性视频免费| 亚洲专区中文字幕在线 | 99精国产麻豆久久婷婷| 免费在线观看完整版高清| av在线老鸭窝| 女人被躁到高潮嗷嗷叫费观| 777久久人妻少妇嫩草av网站| 久久青草综合色| 一二三四中文在线观看免费高清| 男女边吃奶边做爰视频| 欧美日韩一级在线毛片| 满18在线观看网站| 国产有黄有色有爽视频| 精品人妻熟女毛片av久久网站| 国产淫语在线视频| 国产乱人偷精品视频| 亚洲欧美激情在线| 成人漫画全彩无遮挡| 精品国产乱码久久久久久小说| 欧美xxⅹ黑人| 大香蕉久久网| 久久精品aⅴ一区二区三区四区| 亚洲av在线观看美女高潮| 亚洲成人一二三区av| 天天躁日日躁夜夜躁夜夜| 亚洲av电影在线观看一区二区三区| 精品久久久久久电影网| 欧美精品人与动牲交sv欧美| 亚洲成人av在线免费| 国产精品二区激情视频| 日韩视频在线欧美| 国产爽快片一区二区三区| 亚洲精品国产区一区二| 国产精品99久久99久久久不卡 | 亚洲精品一二三| 国产午夜精品一二区理论片| 免费少妇av软件| 人妻 亚洲 视频| 亚洲第一青青草原| a级片在线免费高清观看视频| 欧美老熟妇乱子伦牲交| 久久亚洲国产成人精品v| 亚洲成人国产一区在线观看 | 晚上一个人看的免费电影| 亚洲精品第二区| 九色亚洲精品在线播放| 女人爽到高潮嗷嗷叫在线视频| 嫩草影院入口| 国产成人av激情在线播放| 男女国产视频网站| 一级毛片电影观看| 亚洲伊人久久精品综合| 国产成人欧美在线观看 | 免费少妇av软件| 国产亚洲av片在线观看秒播厂| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o | 两个人免费观看高清视频| 久久国产精品男人的天堂亚洲| 久久久国产欧美日韩av| 国产成人欧美| 国产深夜福利视频在线观看| 免费黄网站久久成人精品| 天堂俺去俺来也www色官网| 久久精品国产综合久久久| 亚洲欧美中文字幕日韩二区| 性色av一级| 中文字幕制服av| 国产精品久久久久久精品古装| 最近的中文字幕免费完整| 无限看片的www在线观看| 日本欧美国产在线视频| 一边摸一边抽搐一进一出视频| 亚洲国产精品成人久久小说| 在线 av 中文字幕| 最近手机中文字幕大全| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区久久| 女性被躁到高潮视频| 青春草国产在线视频| 黄色 视频免费看| 超碰97精品在线观看| 三上悠亚av全集在线观看| 亚洲成人一二三区av| 久久久久久免费高清国产稀缺| 国产一级毛片在线| 巨乳人妻的诱惑在线观看| 亚洲国产精品999| 欧美日韩综合久久久久久| 免费高清在线观看日韩| 黄色一级大片看看| 国产成人精品福利久久| 女人久久www免费人成看片| 国产精品二区激情视频| 亚洲精品美女久久av网站| 色网站视频免费| 亚洲av日韩在线播放| 男女下面插进去视频免费观看| 美女大奶头黄色视频| 一区在线观看完整版| 国产一区二区三区av在线| 在线观看免费午夜福利视频| 国产成人91sexporn| 成人国产av品久久久| 国产深夜福利视频在线观看| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 国产黄频视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲伊人久久精品综合| 少妇人妻久久综合中文| 国产97色在线日韩免费| 亚洲欧洲精品一区二区精品久久久 | 久久久亚洲精品成人影院| 色精品久久人妻99蜜桃| av免费观看日本| 国产欧美日韩综合在线一区二区| 亚洲av男天堂| 一本色道久久久久久精品综合| 精品久久久久久电影网| 精品一区二区三区四区五区乱码 | 热99久久久久精品小说推荐| 人妻 亚洲 视频| 蜜桃在线观看..| 国产欧美亚洲国产| 黑丝袜美女国产一区| 日韩av不卡免费在线播放| 国产精品偷伦视频观看了| 国产精品无大码| 哪个播放器可以免费观看大片| 2018国产大陆天天弄谢| 男女边吃奶边做爰视频| 久久97久久精品| 久久精品亚洲熟妇少妇任你| 少妇 在线观看| 国产一级毛片在线| 成年av动漫网址| 免费黄频网站在线观看国产| 无遮挡黄片免费观看| 无遮挡黄片免费观看| 国产色婷婷99| 亚洲男人天堂网一区| 国产成人精品福利久久| 免费观看人在逋| 美女脱内裤让男人舔精品视频| 男女下面插进去视频免费观看| 黄片无遮挡物在线观看| 观看av在线不卡| 一本—道久久a久久精品蜜桃钙片| 国产精品欧美亚洲77777| 日韩成人av中文字幕在线观看| 亚洲,一卡二卡三卡| 高清欧美精品videossex| 国产黄色视频一区二区在线观看| 久久精品久久久久久久性| 亚洲精品一区蜜桃| 宅男免费午夜| 国产免费现黄频在线看| 亚洲精品视频女| 国产一区二区在线观看av| 午夜久久久在线观看| 中文字幕av电影在线播放| 亚洲一区中文字幕在线| 在线亚洲精品国产二区图片欧美| 看免费成人av毛片| 中文欧美无线码| 男女边吃奶边做爰视频| 女性被躁到高潮视频| 亚洲第一av免费看| 永久免费av网站大全| 男女国产视频网站| 国产成人欧美| 99国产综合亚洲精品| 国产激情久久老熟女| 国产片特级美女逼逼视频| 免费少妇av软件| 男女之事视频高清在线观看 | 最近中文字幕2019免费版| 视频区图区小说| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 国产色婷婷99| 天天操日日干夜夜撸| 国产成人啪精品午夜网站| 美女国产高潮福利片在线看| 日韩精品免费视频一区二区三区| 人成视频在线观看免费观看| 日韩av免费高清视频| 高清欧美精品videossex| 男女午夜视频在线观看| 五月开心婷婷网| 中文字幕人妻熟女乱码| 久久久久久久久免费视频了| 国产成人欧美| 九草在线视频观看| 欧美日韩一级在线毛片| 亚洲婷婷狠狠爱综合网| 国产野战对白在线观看| 精品免费久久久久久久清纯 | 伦理电影大哥的女人| 99久久精品国产亚洲精品| 午夜福利影视在线免费观看| tube8黄色片| 大话2 男鬼变身卡| 久久久精品94久久精品| 自线自在国产av| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 成年美女黄网站色视频大全免费| 亚洲国产最新在线播放| 亚洲av日韩精品久久久久久密 | 热re99久久国产66热| 亚洲,欧美精品.| xxx大片免费视频| 国产爽快片一区二区三区| 亚洲人成电影观看| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 亚洲精品久久午夜乱码| 欧美黄色片欧美黄色片| 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 高清av免费在线| 国产成人欧美| 国产精品成人在线| 免费黄色在线免费观看| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 大陆偷拍与自拍| 高清不卡的av网站| 黄色视频不卡| 免费观看性生交大片5| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 99久久人妻综合| 亚洲熟女精品中文字幕| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 老司机在亚洲福利影院| av网站免费在线观看视频| 精品久久久精品久久久| 99国产综合亚洲精品| 一二三四中文在线观看免费高清| 国产在线免费精品| 久久 成人 亚洲| 久久亚洲国产成人精品v| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 日日撸夜夜添| 精品亚洲成国产av| 99久久精品国产亚洲精品| 三上悠亚av全集在线观看| 中文欧美无线码| 一级黄片播放器| 国产成人精品无人区| 婷婷色综合www| 90打野战视频偷拍视频| 精品卡一卡二卡四卡免费| 岛国毛片在线播放| 国产免费视频播放在线视频| 国产在线视频一区二区| av在线播放精品| 男女床上黄色一级片免费看| 午夜免费鲁丝| 成年人免费黄色播放视频| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 制服人妻中文乱码| 久久av网站| www.熟女人妻精品国产| 亚洲人成网站在线观看播放| 国产片内射在线| 一区二区日韩欧美中文字幕| 亚洲欧洲日产国产| 久久久精品免费免费高清| 大片电影免费在线观看免费| 精品一区二区三卡| 2018国产大陆天天弄谢| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 日本91视频免费播放| 99热网站在线观看| 十八禁高潮呻吟视频| 成人国产麻豆网| 飞空精品影院首页| 波多野结衣一区麻豆| 免费看av在线观看网站| 观看av在线不卡| 丝袜在线中文字幕| 国产极品粉嫩免费观看在线| 99久久人妻综合| 日韩不卡一区二区三区视频在线| 人人妻,人人澡人人爽秒播 | 国产精品欧美亚洲77777| 日韩电影二区| 精品一区在线观看国产| 午夜福利,免费看| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 日韩伦理黄色片| 丝袜脚勾引网站| 在线精品无人区一区二区三| 国产男人的电影天堂91| 青春草国产在线视频| 免费高清在线观看日韩| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美| 伦理电影大哥的女人| 国产欧美日韩综合在线一区二区| 日韩成人av中文字幕在线观看| 久久久久精品性色| 欧美精品高潮呻吟av久久| av.在线天堂| 中国三级夫妇交换| av女优亚洲男人天堂| 成年动漫av网址| 成年美女黄网站色视频大全免费| 午夜av观看不卡| 亚洲色图综合在线观看| 国产在线一区二区三区精| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 国产又爽黄色视频| a级毛片在线看网站| 亚洲,一卡二卡三卡| 亚洲专区中文字幕在线 | 久久热在线av| 久久久久久人妻| 亚洲av中文av极速乱| 亚洲综合精品二区| 亚洲精品美女久久av网站| 亚洲欧洲日产国产| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| 国产精品久久久久成人av| 捣出白浆h1v1| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 午夜激情av网站| 人体艺术视频欧美日本| 综合色丁香网| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 一区二区三区激情视频| 久久99一区二区三区| 黄色怎么调成土黄色| 99久久人妻综合| 欧美激情高清一区二区三区 | 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 丰满乱子伦码专区| 国产一级毛片在线| 国产精品av久久久久免费| 日韩中文字幕视频在线看片| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 久久精品国产综合久久久| 亚洲第一青青草原| 各种免费的搞黄视频| 乱人伦中国视频| 国产精品 国内视频| 大片免费播放器 马上看| 欧美黑人精品巨大| 国产 一区精品| 日韩欧美精品免费久久| 亚洲成人国产一区在线观看 | 老鸭窝网址在线观看| 观看美女的网站| h视频一区二区三区| 日韩精品有码人妻一区| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 亚洲精品久久午夜乱码| 久久婷婷青草| 成人国产麻豆网| 国产精品久久久久久精品电影小说| 大香蕉久久网| 国产亚洲最大av| 亚洲欧美色中文字幕在线| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 成年女人毛片免费观看观看9 | 国产国语露脸激情在线看| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| 99国产综合亚洲精品| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密 | 免费av中文字幕在线| 美女中出高潮动态图| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 国产 一区精品| 亚洲精品国产区一区二| 大香蕉久久成人网| 一边摸一边做爽爽视频免费| 母亲3免费完整高清在线观看| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 人妻人人澡人人爽人人| 久久鲁丝午夜福利片| 色吧在线观看| 亚洲三区欧美一区| 欧美精品一区二区大全| 观看美女的网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产 一区精品| a级毛片黄视频| 性高湖久久久久久久久免费观看| 美女扒开内裤让男人捅视频| 亚洲av在线观看美女高潮| 久久精品亚洲av国产电影网| 中文乱码字字幕精品一区二区三区| 99国产综合亚洲精品| 久久综合国产亚洲精品| 美女中出高潮动态图| 成人国语在线视频| 丝瓜视频免费看黄片| av在线观看视频网站免费| 曰老女人黄片| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 十八禁高潮呻吟视频| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 看十八女毛片水多多多| 国产人伦9x9x在线观看| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 久久久久网色| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 欧美人与性动交α欧美精品济南到| 老司机影院成人| 看十八女毛片水多多多| 国产精品亚洲av一区麻豆 | av.在线天堂| 免费观看性生交大片5| 日韩欧美一区视频在线观看| 99久久精品国产亚洲精品| 亚洲精品在线美女| 久久久久久久久久久久大奶| 精品久久久精品久久久| 国产一区二区三区综合在线观看| 一边亲一边摸免费视频| 亚洲成人免费av在线播放| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 欧美另类一区| 欧美av亚洲av综合av国产av | 亚洲欧美精品综合一区二区三区| 亚洲成人av在线免费| 日本爱情动作片www.在线观看| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 亚洲国产看品久久| 午夜久久久在线观看| 欧美av亚洲av综合av国产av | 久久人人爽人人片av| 亚洲精品美女久久久久99蜜臀 | 最新的欧美精品一区二区| 亚洲欧美一区二区三区黑人| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版| 国产成人91sexporn| √禁漫天堂资源中文www| 高清欧美精品videossex| 亚洲第一av免费看| 午夜av观看不卡| 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 精品国产乱码久久久久久男人| 国产精品欧美亚洲77777| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区 | 在线观看免费视频网站a站| 一区在线观看完整版| 咕卡用的链子| 午夜免费男女啪啪视频观看| 精品一区二区三区四区五区乱码 | 亚洲成av片中文字幕在线观看| 99九九在线精品视频| 男的添女的下面高潮视频| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| 亚洲久久久国产精品| 亚洲国产最新在线播放| 日韩大码丰满熟妇| 国产深夜福利视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 十八禁高潮呻吟视频| 久久久国产一区二区| 老汉色av国产亚洲站长工具| 中文字幕精品免费在线观看视频| 亚洲精品久久久久久婷婷小说| 国产深夜福利视频在线观看| 亚洲欧洲精品一区二区精品久久久 | av免费观看日本| 日本欧美视频一区| 人人澡人人妻人| 黄频高清免费视频| 亚洲成人一二三区av| 成年女人毛片免费观看观看9 | 国产精品av久久久久免费| 亚洲欧美日韩另类电影网站| 日韩制服骚丝袜av| kizo精华| 婷婷色综合www| 久久精品亚洲av国产电影网| 久久久国产欧美日韩av| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 国产无遮挡羞羞视频在线观看| 各种免费的搞黄视频| 精品少妇黑人巨大在线播放| 在现免费观看毛片| 中文字幕人妻熟女乱码| 久久精品aⅴ一区二区三区四区| 国产免费视频播放在线视频| 老鸭窝网址在线观看| 成年av动漫网址| 国产视频首页在线观看| 国产av精品麻豆| 一区二区三区激情视频| 各种免费的搞黄视频| 国产欧美亚洲国产| 国产精品一区二区精品视频观看| 久久这里只有精品19| 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 国产精品无大码| 美女午夜性视频免费| 少妇猛男粗大的猛烈进出视频| 久久免费观看电影| 少妇 在线观看| 波野结衣二区三区在线| 亚洲欧美一区二区三区黑人| 女人精品久久久久毛片| 国产日韩欧美视频二区| 最近最新中文字幕大全免费视频 | 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 国产精品嫩草影院av在线观看| 久久精品人人爽人人爽视色| 久久青草综合色|