• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle simulation of grid system for krypton ion thrusters

    2018-04-21 06:02:08MolinCHENAnngSUNChongCHENGungqingXIA
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Molin CHEN,Anng SUN,Chong CHEN,Gungqing XIA

    aScience and Technology on Combustion,Internal Flow and Thermo-Structure Laboratory,Northwestern Polytechnical University,Xi’an 710072,China

    bState Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China

    cState Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China

    1.Introduction

    In the last decade,ion thrusters have been widely used for various space missions,1–3in which xenon(Xe)is frequently used as the propellant.However,Xe is typically expensive and a cost-effective propellant is highly demanded,from the economy point of review.Recently,krypton(Kr)attracts more attentions as an alternative propellant for different electric thrusters,for example,Hall thrusters4and ion thrusters.5

    The performance of an ion thruster mainly depends on the acceleration process of the propellant in the grid system.Besides experimental diagnostics,numerical simulation provides a supplementary tool to investigate the transport process of the plasma in the grid system,and to estimate the performance and lifetime of the thruster.In the past,many simulations on the transport process of Xe plasmas in grid systems have been performed to explore the following aspects:the electric field distribution in a grid system,the motion trajectory of ion beam,the erosion on the grids,back-streaming,cut-off current and the ion extraction process.For instance,Wang et al.used a three-dimensional Particle In Cell(PIC)method to simulate the transport process of the Xe ion-beam in a single grid gate aperture.6Using particle methods,Peng et al.7and Sun et al.8examined the grid erosion and the effect of the deceleration grid for two-grid and three-grid systems,respectively.Wheelock et al.investigated the neutralization process in ion beam using PIC method.9Liu et al.investigated the characteristics of Charge EXchange(CEX)ions in ion thruster optical system with a two-dimensional axisymmetric numerical model.10,11Cao et al.conducted an in-depth study on the transport process of Xe ions in the grid system by combining PIC with the Immersed Finite Element(IFE)method.12Jia et al.analyzed the grid system performance of LIPS Xe ion thrusters.13However,most of the aforementioned simulations use Xe as the propellant(hereinafter referred to as Xe ion thrusters or Xe thrusters).In this paper,Kr is chosen as a novel propellant for ion thrusters(hereinafter referred to as Kr ion thrusters or Kr thrusters).The transport processes of Kr ions in the grid system at different acceleration voltages were simulated with PIC method.By analyzing the variations of the screen grid transparency,the accelerator grid current ratio and the divergence loss,the effects of acceleration voltage on the performance of Kr ion thruster were identified to guide the design of the grid system prototype of Kr ion thrusters.The results were also compared with Xe ion thrusters for the analyses of the advantage and disadvantage of different propellant choices.

    The paper is organized as follows.In Section 2,the physical model and simulation method are introduced.Simulation results including the screen grid transparency,accelerator grid current ratio,and divergence loss are described and discussed in Section 3.Finally,we summarize our results and draw main conclusions.

    2.Calculation model

    2.1.Physical model and simulation domain

    To avoid short-circuit induced by the grid system’s thermal deformation,the grid system in the classical NSTAR-30 ion thruster was used for the preliminary design and evaluations.

    Table.1 lists the specific structural parameters of this kind of grid structure.6

    Due to the symmetry of the grid structure,only a quarter of grid aperture was selected as the computational domain.14Asshown in Fig.1,(a)presents 3D structure of a complete grid aperture,(b)is the left view of grid aperture,(c)is the left view of the simulation domain,and(d)is the top view of the grid aperture.

    Table 1 Parameters of grid system.

    An equidistant grid was used on the computational region.Considering that the density of the plasma in the discharge chamber ranges from 1016m-3to 1017m-3,the spatial grid size was set as 5×10-5m and the grid number in calculation was set as 23×39×115,while the time step was set as 1.0×10-10s.

    2.2.PIC/MCC model

    PIC method is a kinetic method of simulating low temperature plasmas with the aim of tracking the motion of particles and the self-consistent electric field in a coupled way.15,16Monte Carlo Collision(MCC)method has been widely used for treating collisions between charged ions and neutral gas.17,18

    In general,the PIC code consists of a cycle in every time step as follows15:(A)weighting the charge of the ions and electrons to the mesh nodes;(B)calculating the electric potential and the electric field of the calculation domain;(C)weighting the electrostatic field back to the ions;(D)moving the ions according to the second Newton law method with the electric field forces obtained above.The flowchart of PIC simulation can be seen in Ref.11.

    In the model,the velocity and position of ions are calculated by the Newton-Lorentz law according to

    Fig.1 Illustration of computational domain.

    in whichmidenotes the mass of ion;edenotes the unit charge(since the ion considered in the model is monovalent,the carried charge is an element charge);v and x denote the velocity vector and position vector of ion respectively;E and B denote the electric field intensity and magnetic induction intensity respectively;tdenotes time.The magnetic field was neglected in calculations since it is very weak in grid system.Only the electric potential in the grid system was updated by solving the Poisson’s equation:

    where ε0is the permittivity of vacuum,and φ,niandnedenote the electric potential,ion number density and electron number density respectively.To accelerate the convergence of the calculation,the successive over-relaxation method is used to solve the Poisson’s equation.

    The number of ions injected into the simulation domain for each time step is decided by the ion number densitynat the inlet boundary.For the pre-sheath is set as the inlet boundary,the ion number densitynat the inlet boundary can calculated with equation:n=0.61n0,wheren0denotes the plasma number density in the discharge chamber and is varied with the beam current needs of different operation modes.

    The initial axial velocity of ions injected into the simulation domain is set as the Bohm velocity9:wherekis the Boltzmann constant,andTeis the electron temperature and set as 5.0 eV.6

    In the model,electrons are regarded as a fluid and their number density follows the Boltzmann distribution9:

    wherene,ref,φrefandTe.refdenote the number density,potential and electron temperature of the plasma at the reference point respectively.In the model,the reference point was set as the discharge chamber in the upstream of accelerator grid,and as the neutral plane of plume downstream in the downstream of accelerator grid.9

    The collisions between ions and background particles(Kr or Xe atoms)are described by MCC method.The background particles are assumed as a uniform distribution,with a temperature close to the discharge chamber wall(≈500 K),6and a number density equal to the neutral density upstream of the screen grid(≈1.5 × 1018m3).6Within a time step of Δt,the collision probability between the target particle and the background particle can be expressed as

    in whichntdenotes the number density of the background gas,vincdenotes the velocity of the target particle,σT(εinc)denotes the collision cross section between particles,and εincdenotes the energy of the target particle.The collision cross section data of Xe are taken from Ref.9,and the collision cross section data of Kr are taken from Ref.19.

    3.Simulation results and discussion

    3.1.Screen grid transparency

    The screen grid transparency ηsc=Ib/Ii,defined as the ratio of beam current,Ib,to the total ion current,Ii,from the discharge chamber that approaches the screen grid,1is an important parameter in assessing the efficiency of the grid system.Using the present model,the screen grid transparency corresponding to various beam currents was calculated under different acceleration voltagesVT.1Acceleration voltage means total voltage across accelerator gap,which is defined asVT=Vsc+|Vacc|and named total voltage too.Here,VscandVaccdenote the voltage of screen grid and accelerator grid respectively.In this paper,Vscwas set to different values,such as 600 V,800 V,1074 V,1400 V and 1800 V,butVaccwas set to a constant value of-180 V.So,different acceleration voltagesVTmean different screen grid voltagesVsc.

    The variation of the screen grid transparency as a function of beam current is presented in Fig.2.For comparison,simulations with Xe as a propellant were also performed,while the distribution of ion number density and electric potential for both Kr ion thrusters and Xe ion thrusters are presented.Fig.3 presents the distribution of ion number density under the conditions ofJb=0.16 mA(Jb=nivaxialAapertureis the single-aperture beam current, whereAaperturedenotes the single-aperture area of screen grid,andvaxialdenotes the average axial velocity of ions)with different acceleration voltages,and Fig.4 presents the distribution of electric potential under the same operation conditions.

    Fig.2 Screen grid transparency with beam current of Kr ion thrusters and Xe ion thrusters.

    Fig.3 Distribution of ion number densities under different acceleration voltages.

    In Fig.2,for both Kr ion thrusters and Xe ion thrusters,the curve of the screen grid transparency can divided into a smooth section and a fast descent section.The smooth section becomes larger at a higher acceleration voltage,and the screen grid transparency is higher too.The knee point of the curve represents the current threshold and corresponds to the extreme transparency when the grid structure and acceleration voltage are fixed.When the single-aperture beam currentJbis less than the current threshold,the screen grid transparency remains almost unchanged.WhenJbis greater than the threshold,the increasing plasma density compresses and weakens the sheath range and focusing effect,and some ions cannot be focused to enter into the screen grid aperture,leading to the decrease of the axial current intensity.

    On the other hand,at the same acceleration voltage,the screen grid transparency ηscof Kr ion thrusters is slightly greater than Xe ion thrusters.This is due to the fact that Kr+is smaller in mass.The smaller mass means Kr+has a larger axial velocityvaxialthan Xe+with the same acceleration voltage.When the single-aperture beam currentJbis fixed,the ion number densityniof Kr ion thrusters is obviously smaller than Xe ion thrusters in the sheath on the upper of screen grid,which can be seen in Fig.3.The ion number density at the inlet is equal to that of Kr ion thrusters and Xe ion thrusters,but near the screen grid,Kr+number density is smaller than Xe+number density.In other words,Kr ion thrusters have a greater variation in ion number density from pre-sheath to screen grid.This different ion number density distribution leads to different electric potential distribution and results in different sheath structure.At the same acceleration voltage,the greater ion number density results in larger sheath area in Kr ion thrusters,as shown in Fig.4.

    3.2.Analysis of accelerator grid current ratio

    During the ion thruster operating process,some ions deviate from the main beam and impact into the surface of the accelerator grid and form an electric current.This current is then referred to as the accelerator grid current,which can reflect the lifetime of the grid system.The greater the accelerator grid current is,the more erosion on the grid occurs and the shorter lifetime the grid system has.

    The accelerator grid currentJaand the beam current in the upstream of the accelerator gridJwere calculated.The ratio between these two factors is defined as the accelerator grid current ratio ηa,i.e.,ηa=Ja/J.Fig.5 presents the variation of ηawith differentJbat different acceleration voltages.

    Fig.4 Distribution of electric potential under different acceleration voltages.

    Fig.5 Variation of accelerator grid current ratio ηawith single-aperture beam current Jbof Kr ion thrusters and Xe ion thrusters.

    In Fig.5,for both Kr ion thrusters and Xe ion thrusters,as the single-aperture beam current increases,the accelerator grid current ratio first changes slowly and then rises rapidly.The abscissa value of the curve’s infection point is the cutoff current threshold of the grid system,which has limited the operating beam current range of ion thrusters.The acceleration grid also affects the operating beam current range.By comparing the accelerator grid current ratios ηaat different acceleration voltages,one can observe that,at a high acceleration voltage,the curve of the accelerator grid current ratio has a long smooth segment,i.e.,the cutoff current threshold of the grid system increases and ion thrusters can operate within a larger beam current range.For example,for Kr ion thrusters,the maximum beam current of the single grid aperture increases from 0.28 mA to 0.65 mA,if the screen grid voltage increases from 1074 V to 1800 V.

    On the other hand,the accelerator grid current ratio curve of Kr ion thrusters is significantly lower than that of Xe ion thrusters,and has a long smooth segment,at the same acceleration voltage.This is because the CEX collision cross section of Kr+smaller than Xe+,i.e.,fewer CEX ions were produced when Kr was used as the propellant,and low-energy CEX ions were the primary source of the accelerator grid current.The CEX collision rate,also called the CEX ion generating rate,was calculated in the model,and the distribution of CEX collision rate and current density on accelerator grid,under the conditions ofJb=0.16 mA andVsc=1074 V,are presented in Fig.6.In Fig.6,the CEX collision ratekCEXand current density on accelerator gridIerosionof Kr ion thruster are obviously smaller than Xe ion thruster.

    3.3.Divergence loss

    The momentum-weighted average plume divergence is defined in Eq.(6)as the ratio of the measured thrust component directed along the centerline of ion thrusters to the theoretical thrust achieved when all ions are traveling parallel to the centerline of ion thrusters.20in which θ denotes the divergence angle,˙mdenotes the ion mass flow rate,ˉvdenotes the average velocity of ions in plume,Iaxialdenotes the axial current,andIbeamdenotes the total current of plume.

    Fig.6 Distribution of CEX collision rate and current density on accelerator grid by CEX ion impact.

    So,the momentum losses associated with plume divergence,called divergence loss,may be calculated with knowledge of the input mass flow,measured thrust,and the mass-weighted average velocity,which is defined in Eq.(7).

    Fig.7 presents the variation of the thruster’s divergence loss withJbat different acceleration voltages.At different acceleration voltages,the beam’s focusing varies due to the variation of the ions’motion trajectories.

    Compared with the curves of the Xe ion thrusters,the curves of the divergence loss of the Kr ion thrusters have a right shift.This indicates that,when the same grid structures and acceleration voltages are given,greater operating beam currents are required to achieve the grid system’s focusing for Kr ion thrusters.The mass difference between Kr+and Xe+is the reason of such shifting.Kr+respond easily to the radial electric field due to its smaller mass,aggregate towards the axis and make the focus point shift towards the left side of the screen grid,giving rise to the appearance of over-focusing.To ensure that the focusing position is reasonable,greater operating beam current and ion number density are required to enhance the potential along the axis of grid aperture,and then to reduce the deviation of the ions in the downstream of accelerator grid.

    By combing the analyses of screen grid transparency,the accelerator grid current ratio and the divergence loss of Kr ion thrusters and Xe ion thrusters under different acceleration voltages,we can conclude that Kr ion thrusters have a larger operating beam current range and Kr is a suitable propellant for ion thrusters.

    Fig.7 Variation of divergence losses with Jbat different acceleration voltages of Kr ion thrusters and Xe ion thrusters.

    4.Conclusions

    Using a 3D PIC method,the plasma transport processes in the grid system of a Kr ion thruster at different acceleration voltages were investigated,and the results,including screen grid transparency,accelerator grid current ratio and divergence loss,were compared with those of Xe ion thrusters.Main conclusions are addressed as follows:

    (1)As the result of Xe ion thrusters,the screen grid transparency of Kr ion thrusters also decreases with the increase of acceleration voltage.But the screen grid transparency of Kr ion thrusters is slightly higher than that of Xe ion thrusters,which means a better propellant efficiency for ion thrusters.

    (2)At the same acceleration voltage,the accelerator grid current ratio curve of Kr ion thrusters is far below the curve of Xe ion thrusters.This means that fewer ions will impact the accelerator grid and the grid system will have a long lifetime.On the other hand,the cutoff current threshold of Kr ion thrusters is larger than that of Xe ion thrusters,which provides the advantage of a large operating current or a high operating power for ion thrusters.

    (3)Kr ion thrusters have a better divergence loss characteristic than Xe ion thrusters for the divergence loss curve shift,which means that Kr ion thruster can operate with a large beam current left at the same acceleration voltage.

    (4)Kr ion thrusters have a larger operating beam current range and Kr is a suitable propellant for the design of high power ion thrusters.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.11675040)and the Fundamental Research Funds for the Central Universities of China(Nos.3102014KYJD005 and 1191329723).

    1.Goebel DM,Katz I.Fundamentals of electric propulsion:ion and hall thrusters.New Jersey:John Wiley&Sons Inc;2008.

    2.Patterson MJ,Sovey JS.History of electric propulsion at NASA Glenn Research Center:1956 to present.Aerospace Eng2013;26(2):300–16.

    3.Yamamoto N,Tomita K,Yamasaki N,Tsuru T,Ezaki T,Kotni Y,et al.Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique.PlasmaSourcSciTechnol2010;19(4):45009–15.

    4.Hause ML,Prince BD,Bemish RJ.Krypton charge exchange cross sections for Hall effect thruster models.Appl Phys2013;133(16):113–40.

    5.Rawlin VK,Williams J,Pin?ero LR,Roman RF.Status of ion engine development for high power,high specific impulse missions.Pasadena,USA;2001.Report No.:IEPC-01-096.

    6.Wang J,Polk J,Brophy J.Three-dimensional particle simulations of ion-optics plasma flow and grid erosion.Reston:AIAA;2002.Report No.:AIAA-2002-2193.

    7.Peng X,Ruyten WM,Friedly VJ,Keefer D.Particle simulation of ion optics and grid erosion for two-grid and three-grid systems.Rev Sci Instrum1994;65(6):1770–3.

    8.Sun AB,Mao GW,Yang J,Xia GQ,Chen ML,Huo C.Particle simulation of three-grid ECR ion thruster optics and erosion prediction.Plasma Sci Technol2010;12(2):240–7.

    9.Wheelock A,Cooke DL,Gatsonis N.Investigation of ion beam neutralization processes with 2D and 3D PIC simulations.Comput Phys Commun2004;164(1):336–43.

    10.Liu C,Tang HB,Gu Z,Jiang HC.Particle simulation of ion thruster optical systems using single linked lists.High Power Laser Particle Beams2006;18(7):1193–8.

    11.Zhong LW,Liu Y,Li J,Gu Z,Jiang HC,Wang HX,et al.Numerical simulation of characteristics of CEX ions in ion thrust eroptical system.ChinJAeronaut2010;13(1):15–21.

    12.Wang EM,Chu YC,Cao Y,Juan L.Numerical simulation of erosion mechanism for ion thruster accelerator grid aperture walls based on IFE-PIC and MCC methods.High Voltage Eng2013;39(7):1763–71[Chinese].

    13.Jia YH,Li ZM,Zhang TP,Li J.Effect analysis of plasma density on ion beam extracted by grid system.Chin Space Sci Technol2012;32(3):72–7.

    14.Chen ML,Xia GQ,Mao GW.Three-dimensional particle in cell simulation of multi-mode ion thruster optics system.Acta Phys Sin2014;63:182901[Chinese].

    15.Birdsall CK,Landon AB.Plasma physics via computer simulation.New York:McGraw-Hill;1985.p.11–3.

    16.Miyake Y,Usui H.Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements.Radio Sci2017;51(12):1905–22.

    17.Birdsall CK.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC.Plasma Sci IEEE Trans Plasma Sci1991;19(2):65–85.

    18.Sarikaya CK,Rafatov I,Kudryavtsev AA.PIC/MCC analysis of a photoresonance plasma sustained in a sodium vapor.Phys Plasmas2017;24(8):535–54.

    19.Johnson RE.Charge transger and f i ne structure transitions in Kr+(2Pj)+Kr and Xr+(2Pj)+Xe collision.Phys Soc Jpn1972;32(6):1612–4.

    20.Brown DL,Larson CW,Beal BE,Gallimore AD.Methodology and historical perspective of a hall thruster efficiency analysis.J Propul Power2009;25(6):1163–77.

    大片免费播放器 马上看| 水蜜桃什么品种好| 午夜福利在线在线| 大又大粗又爽又黄少妇毛片口| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区视频9| 国内精品一区二区在线观看| 久久草成人影院| 狂野欧美激情性xxxx在线观看| 亚洲熟女精品中文字幕| 久久精品国产亚洲av涩爱| 高清毛片免费看| 国产精品久久视频播放| 久久久国产一区二区| 欧美日韩在线观看h| 1000部很黄的大片| 欧美日本视频| 欧美97在线视频| 亚洲av成人精品一区久久| 国产视频内射| 亚洲精品影视一区二区三区av| 亚洲欧洲国产日韩| 日韩一本色道免费dvd| 国内精品一区二区在线观看| 国产乱人偷精品视频| 午夜福利视频1000在线观看| 噜噜噜噜噜久久久久久91| 热99在线观看视频| 欧美精品一区二区大全| 搞女人的毛片| 精品一区二区三卡| 建设人人有责人人尽责人人享有的 | 可以在线观看毛片的网站| 禁无遮挡网站| 国产精品无大码| 免费看光身美女| 中文字幕制服av| 国产精品国产三级国产专区5o| 一个人免费在线观看电影| 国产精品一区二区三区四区久久| 国产高潮美女av| 午夜免费男女啪啪视频观看| 成人二区视频| 亚洲精品乱久久久久久| 七月丁香在线播放| 国产女主播在线喷水免费视频网站 | 国国产精品蜜臀av免费| 国内少妇人妻偷人精品xxx网站| 国产又色又爽无遮挡免| 99热这里只有精品一区| 亚洲最大成人手机在线| 淫秽高清视频在线观看| 汤姆久久久久久久影院中文字幕 | 日韩成人伦理影院| 亚洲一区高清亚洲精品| 午夜精品在线福利| 国产成人精品婷婷| 网址你懂的国产日韩在线| 亚洲最大成人中文| 久久久欧美国产精品| 老师上课跳d突然被开到最大视频| 男人和女人高潮做爰伦理| 久久国产乱子免费精品| 亚洲经典国产精华液单| 国产欧美日韩精品一区二区| 日本三级黄在线观看| 午夜福利视频精品| 亚洲内射少妇av| 国内少妇人妻偷人精品xxx网站| 99久久九九国产精品国产免费| 日韩视频在线欧美| 内地一区二区视频在线| 久久草成人影院| 午夜福利成人在线免费观看| 午夜老司机福利剧场| 最近视频中文字幕2019在线8| 国产精品福利在线免费观看| 国产高潮美女av| 国产男女超爽视频在线观看| 国产午夜精品一二区理论片| 欧美成人精品欧美一级黄| 国产av国产精品国产| 嫩草影院新地址| 亚洲内射少妇av| 亚洲熟女精品中文字幕| 国产一级毛片七仙女欲春2| 91狼人影院| 久久久久久久亚洲中文字幕| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲网站| 春色校园在线视频观看| 一夜夜www| 黄片wwwwww| 国产一区二区三区av在线| 日韩人妻高清精品专区| 国内精品一区二区在线观看| 校园人妻丝袜中文字幕| 视频中文字幕在线观看| 久久99精品国语久久久| 国产免费福利视频在线观看| 97超碰精品成人国产| 国产精品一二三区在线看| 一本一本综合久久| 一个人免费在线观看电影| 亚洲精品国产成人久久av| 黑人高潮一二区| 少妇被粗大猛烈的视频| 亚洲av成人精品一二三区| av在线观看视频网站免费| 大陆偷拍与自拍| 亚洲精华国产精华液的使用体验| 日本欧美国产在线视频| 2018国产大陆天天弄谢| 大话2 男鬼变身卡| 老司机影院毛片| 免费无遮挡裸体视频| 日韩在线高清观看一区二区三区| 久久精品国产鲁丝片午夜精品| 嘟嘟电影网在线观看| 午夜激情欧美在线| 久久国内精品自在自线图片| 亚洲精品影视一区二区三区av| 观看美女的网站| 国产亚洲午夜精品一区二区久久 | 亚洲一级一片aⅴ在线观看| 久久99热这里只有精品18| av免费在线看不卡| 丰满人妻一区二区三区视频av| 久久精品夜夜夜夜夜久久蜜豆| 日本午夜av视频| 在线观看av片永久免费下载| 日本黄大片高清| 边亲边吃奶的免费视频| 精品不卡国产一区二区三区| 99re6热这里在线精品视频| 国产午夜精品论理片| av在线老鸭窝| 中文字幕制服av| 欧美成人精品欧美一级黄| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 黄色一级大片看看| 日韩成人伦理影院| 国产精品99久久久久久久久| 久久这里有精品视频免费| 国产成人精品一,二区| 99热这里只有是精品50| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼水好多| 国产在线男女| a级一级毛片免费在线观看| 精品久久久久久久人妻蜜臀av| 九九爱精品视频在线观看| 国产乱人偷精品视频| 狠狠精品人妻久久久久久综合| 青春草国产在线视频| 亚洲一区高清亚洲精品| 久久久久久久国产电影| 又黄又爽又刺激的免费视频.| 秋霞在线观看毛片| 精品久久久精品久久久| 搡老妇女老女人老熟妇| av在线天堂中文字幕| 最近中文字幕高清免费大全6| 一本久久精品| 国产麻豆成人av免费视频| 亚洲欧美中文字幕日韩二区| 少妇猛男粗大的猛烈进出视频 | 91aial.com中文字幕在线观看| 国产不卡一卡二| 蜜臀久久99精品久久宅男| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 国产精品一及| 国产黄a三级三级三级人| 国产精品女同一区二区软件| 免费电影在线观看免费观看| 91午夜精品亚洲一区二区三区| 麻豆久久精品国产亚洲av| 午夜福利高清视频| 22中文网久久字幕| 边亲边吃奶的免费视频| 国产精品无大码| 国产爱豆传媒在线观看| 人人妻人人澡欧美一区二区| 精品国产三级普通话版| 男女国产视频网站| 午夜福利在线在线| 天堂中文最新版在线下载 | 午夜日本视频在线| 亚洲激情五月婷婷啪啪| 亚洲精品自拍成人| 寂寞人妻少妇视频99o| 男人舔奶头视频| av免费观看日本| 最近最新中文字幕免费大全7| 床上黄色一级片| 免费观看性生交大片5| 国产在视频线精品| 国产精品久久视频播放| 国产亚洲精品久久久com| 少妇人妻精品综合一区二区| 中文字幕亚洲精品专区| 成人一区二区视频在线观看| 少妇高潮的动态图| 精品熟女少妇av免费看| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 免费观看无遮挡的男女| 99热全是精品| 中文字幕人妻熟人妻熟丝袜美| 久久精品熟女亚洲av麻豆精品 | 久热这里只有精品99| 日韩,欧美,国产一区二区三区| 亚洲av电影在线进入| 国产精品成人在线| 久久久久精品久久久久真实原创| 欧美日韩亚洲国产一区二区在线观看 | 91久久精品国产一区二区三区| 国产一区二区三区综合在线观看| 老汉色av国产亚洲站长工具| 少妇的逼水好多| 热99久久久久精品小说推荐| h视频一区二区三区| av在线老鸭窝| 亚洲男人天堂网一区| 免费观看av网站的网址| 最新的欧美精品一区二区| 七月丁香在线播放| 在线观看国产h片| 久久午夜福利片| 国产片特级美女逼逼视频| 成人二区视频| 丝袜喷水一区| 熟女av电影| 亚洲av电影在线观看一区二区三区| 国产男女内射视频| 欧美另类一区| 国产男女内射视频| 一边亲一边摸免费视频| av在线播放精品| av卡一久久| 人妻少妇偷人精品九色| 五月天丁香电影| 国产精品久久久久久精品古装| 在线亚洲精品国产二区图片欧美| 亚洲图色成人| 秋霞伦理黄片| 女人久久www免费人成看片| 香蕉丝袜av| 成人亚洲欧美一区二区av| 寂寞人妻少妇视频99o| 18在线观看网站| 一区二区av电影网| 亚洲综合色惰| av一本久久久久| 免费日韩欧美在线观看| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 亚洲国产精品国产精品| 亚洲精品在线美女| 久久亚洲国产成人精品v| 亚洲国产精品一区二区三区在线| 免费在线观看黄色视频的| 久久久国产一区二区| 在线观看免费高清a一片| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看| 另类亚洲欧美激情| 熟女电影av网| 香蕉国产在线看| 中文字幕最新亚洲高清| 天堂8中文在线网| 五月天丁香电影| 美女视频免费永久观看网站| 日韩一区二区视频免费看| 80岁老熟妇乱子伦牲交| 美女脱内裤让男人舔精品视频| 免费人妻精品一区二区三区视频| www.精华液| 咕卡用的链子| 国产在线一区二区三区精| 免费观看av网站的网址| 欧美精品国产亚洲| 美女国产高潮福利片在线看| 国产在线一区二区三区精| 日韩,欧美,国产一区二区三区| 日本色播在线视频| 男女国产视频网站| 精品少妇内射三级| 国产成人欧美| 成人午夜精彩视频在线观看| 国产av码专区亚洲av| 日本色播在线视频| 国产人伦9x9x在线观看 | av在线播放精品| 咕卡用的链子| 妹子高潮喷水视频| 午夜免费观看性视频| 最近中文字幕2019免费版| 丝袜人妻中文字幕| 美女国产视频在线观看| 在线观看美女被高潮喷水网站| www日本在线高清视频| 国产精品蜜桃在线观看| 国产午夜精品一二区理论片| 午夜福利在线观看免费完整高清在| 成人国产麻豆网| 又黄又粗又硬又大视频| 日韩电影二区| 国产精品香港三级国产av潘金莲 | 五月天丁香电影| 亚洲国产欧美日韩在线播放| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 夫妻午夜视频| av女优亚洲男人天堂| 国产又爽黄色视频| 欧美xxⅹ黑人| 美女国产视频在线观看| 性色avwww在线观看| 久久久国产欧美日韩av| 高清黄色对白视频在线免费看| 桃花免费在线播放| 亚洲四区av| 日韩精品免费视频一区二区三区| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 久久影院123| 国产精品国产三级国产专区5o| 欧美激情 高清一区二区三区| 两性夫妻黄色片| 91精品国产国语对白视频| 精品99又大又爽又粗少妇毛片| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 咕卡用的链子| 国产精品久久久av美女十八| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 在线看a的网站| 涩涩av久久男人的天堂| 国产成人精品福利久久| 亚洲色图 男人天堂 中文字幕| 国产av国产精品国产| 欧美日韩亚洲高清精品| 亚洲成色77777| 中文字幕人妻熟女乱码| 国产成人免费无遮挡视频| 在线观看人妻少妇| 最近最新中文字幕大全免费视频 | 超碰97精品在线观看| 国产xxxxx性猛交| 男人添女人高潮全过程视频| 日本午夜av视频| av一本久久久久| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 亚洲精品,欧美精品| 精品少妇久久久久久888优播| 黄色 视频免费看| 国产在线免费精品| 亚洲天堂av无毛| 嫩草影院入口| 午夜影院在线不卡| 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 亚洲精品一二三| 香蕉国产在线看| 卡戴珊不雅视频在线播放| av在线app专区| 制服丝袜香蕉在线| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版| 天美传媒精品一区二区| av在线老鸭窝| 波多野结衣一区麻豆| 亚洲国产精品成人久久小说| 人妻一区二区av| 亚洲av男天堂| 国产日韩欧美视频二区| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 日韩三级伦理在线观看| 在线观看www视频免费| 大陆偷拍与自拍| av一本久久久久| 精品亚洲成a人片在线观看| 男女免费视频国产| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久 | 侵犯人妻中文字幕一二三四区| 免费看不卡的av| 日韩一卡2卡3卡4卡2021年| 人妻少妇偷人精品九色| 捣出白浆h1v1| 中国三级夫妇交换| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 欧美在线黄色| 日韩制服骚丝袜av| 免费黄色在线免费观看| 亚洲久久久国产精品| 日韩中字成人| videossex国产| 亚洲av在线观看美女高潮| 1024视频免费在线观看| 毛片一级片免费看久久久久| 欧美97在线视频| 日韩av不卡免费在线播放| videossex国产| 国产又色又爽无遮挡免| 一区二区av电影网| 热99国产精品久久久久久7| 亚洲国产日韩一区二区| 有码 亚洲区| 亚洲三区欧美一区| 成人亚洲精品一区在线观看| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 国产人伦9x9x在线观看 | 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 91在线精品国自产拍蜜月| 99久久人妻综合| 国产一区二区激情短视频 | 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 精品亚洲成国产av| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 久热这里只有精品99| 久久这里只有精品19| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 国产精品免费视频内射| 18禁观看日本| 亚洲激情五月婷婷啪啪| 卡戴珊不雅视频在线播放| 少妇 在线观看| 欧美精品高潮呻吟av久久| av福利片在线| 超碰97精品在线观看| 中文天堂在线官网| 伦精品一区二区三区| 人体艺术视频欧美日本| 人人澡人人妻人| 精品一区二区三卡| 极品人妻少妇av视频| 青春草国产在线视频| 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频| 一区福利在线观看| 亚洲国产av新网站| 一级黄片播放器| 亚洲第一区二区三区不卡| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 欧美bdsm另类| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 午夜免费观看性视频| 成人国产av品久久久| 国产精品av久久久久免费| www.熟女人妻精品国产| 九九爱精品视频在线观看| 亚洲一区二区三区欧美精品| 日韩欧美精品免费久久| 亚洲国产日韩一区二区| 夫妻午夜视频| 国产深夜福利视频在线观看| 男女啪啪激烈高潮av片| 精品国产国语对白av| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 精品99又大又爽又粗少妇毛片| 视频在线观看一区二区三区| 黄色视频在线播放观看不卡| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 国产xxxxx性猛交| 中文字幕人妻熟女乱码| 亚洲欧美日韩另类电影网站| 色网站视频免费| 在线观看美女被高潮喷水网站| 亚洲精品一二三| 国产精品 欧美亚洲| 97在线人人人人妻| 黄片无遮挡物在线观看| a级毛片黄视频| 免费高清在线观看日韩| 人人澡人人妻人| 成年动漫av网址| 日韩伦理黄色片| 亚洲成人一二三区av| 亚洲精品自拍成人| 成年人午夜在线观看视频| 国产精品av久久久久免费| 少妇猛男粗大的猛烈进出视频| 亚洲在久久综合| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀 | 熟女少妇亚洲综合色aaa.| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 中文字幕亚洲精品专区| 青草久久国产| 蜜桃国产av成人99| 91aial.com中文字幕在线观看| 国产精品国产三级国产专区5o| 一级,二级,三级黄色视频| 超碰成人久久| 叶爱在线成人免费视频播放| 中文字幕av电影在线播放| 伦精品一区二区三区| 黑人欧美特级aaaaaa片| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲国产日韩| 香蕉精品网在线| 两性夫妻黄色片| 亚洲精品在线美女| 69精品国产乱码久久久| 一区二区三区激情视频| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 女人久久www免费人成看片| 91精品伊人久久大香线蕉| 91精品三级在线观看| 欧美另类一区| 国产精品国产av在线观看| 国产精品欧美亚洲77777| 午夜福利一区二区在线看| 搡女人真爽免费视频火全软件| 如何舔出高潮| 两性夫妻黄色片| 久热久热在线精品观看| 国产欧美日韩综合在线一区二区| 婷婷色av中文字幕| 久久99蜜桃精品久久| 亚洲av综合色区一区| 久久精品亚洲av国产电影网| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| a级毛片黄视频| 国产精品 国内视频| 男人爽女人下面视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲四区av| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 搡女人真爽免费视频火全软件| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| tube8黄色片| 97在线视频观看| 亚洲第一青青草原| 免费观看性生交大片5| 色网站视频免费| xxx大片免费视频| 亚洲精品在线美女| 日本午夜av视频| 成年av动漫网址| 日本vs欧美在线观看视频| 国产野战对白在线观看| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 亚洲成国产人片在线观看| 日韩电影二区| 91久久精品国产一区二区三区| 免费在线观看完整版高清| 免费观看性生交大片5| videosex国产| 一本久久精品| 亚洲av欧美aⅴ国产| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 中文字幕制服av| 桃花免费在线播放| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 国产精品国产av在线观看| 精品第一国产精品| 国产欧美亚洲国产| 又黄又粗又硬又大视频| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区 | 亚洲欧美精品综合一区二区三区 | 校园人妻丝袜中文字幕| 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| 最新的欧美精品一区二区| 亚洲精品中文字幕在线视频| 精品国产一区二区久久|