• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of tube system and data correction for fluctuating pressure test in wind tunnel

    2018-04-21 06:02:03StteKeyLbortoryofAerodynmicsChinAerodynmicsReserchndDevelopmentCenterMinyng621000Chin
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Stte Key Lbortory of Aerodynmics,Chin Aerodynmics Reserch nd Development Center,Minyng 621000,Chin

    bLow Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China

    1.Introduction

    The fluctuating pressure test in wind tunnel is the main approach to gain the unsteady aerodynamic loads.In low speed wind tunnel tests,the dynamic pressure sensor sometimes cannot be placed on the model surface directly because of the size,especially for the thin model such as the control plane of the aircraft.In this situation,the sensor is commonly placed inside the model,and a tube system is used to connect the pressure measurement point and the sensor.1In this way of measurement,fluctuating pressure has been distorted while transferred to the sensor by the tube system,2which leads to a great reduction of data accuracy.To solve this problem,the first step is to analyze the relationship between fluctuating pressure and parameters of the tube system,such as length,inside diameter,curvature,deflection angle,thickness,and material.

    The effects of the tube system on fluctuating pressure can be described by the Frequency Response Function(FRF)of the tube system,3which is the ratio of the pressure at the inlet and outlet in frequency domain.Bergh and Tijdeman4derived the theoretical formulas of FRF.It can also be obtained by the experiment.The FRFs of different tube systems were analyzed5–16by the theoretical or experimental method,and the tube system design method was established based on the optimistic algorithm and restrictor.17–22According to the design method,the tube system is divided into several sections,and the length and inside diameter of every section are calculated by optimization algorithm.The short section with small inside diameter is always called restrictor.The designed tube system could remarkably improve the accuracy of magnitude of fluctuation pressure.

    In the engineering application,some shortcomings are found for the tube system optimization design method.First,in the FRF theoretical formulation and optimization design method mentioned above,only two parameters—tube length and inside diameter—can be considered.But in the practice of wind tunnel test,other tube parameters may dramatically affect fluctuating pressure,such as tube curvature,deflection angle,thickness,and material.Second,the optimization design method for the tube system may enlarge the error of phase,though it could improve the accuracy of magnitude.The reason is that the magnitude of FRF is chosen as the optimization objective but the phase is not concerned by the optimization design method.It will have no problem if every single channel of fluctuating pressure is analyzed independently.If the relativity between several channels is concerned,the phase error leads to an absolutely wrong result.23,24For example,when the dynamic load on the control plane is calculated through surface integral of fluctuating pressure,the accuracy of the result is greatly dependent on the phase of fluctuating pressure.Third,the optimization design method for the tube system could only be effective in a limit frequency range,and the range is proportional to the complexity of the tube system.Fourth,the tube system designed by the optimization method is always so complex that it is difficult to manufacture and a non-ignorable error may be induced between the ideal results and actual measurements.19

    In this paper,systematic study is conducted to investigate the effects of tube system parameters on fluctuating pressure by contradistinctive experimental method.The analyzed tube system parameters include tube length,inside diameter,curvature,deflection angle,thickness,material,restrictor length,restrictor inside diameter,and restrictor place.Then in order to eliminate the effects of the tube system and improve the data accuracy,test methods are presented for the fluctuating pressure measurement in low-speed wind tunnel.The results of the wind tunnel test are given to verify the effectiveness of the methods.

    2.Methods for contradistinctive experiment

    In order to analyze the difference between the pressure collected with and without the tube system,two Pressure Measurement Points(PMP)(denoted as PMP-1 and PMP-2)with the same pressure are set at first.PMP-1 is connected to a dynamic pressure sensor(denoted as Sensor-1)directly,while PMP-2 is connected to a dynamic pressure sensor(named Sensor-2)by a tube system.The difference between the signals collected by the two sensors may reflect the effect of the tube system on fluctuating pressure.

    In the experiment,the two small holes on the organic glass plate are used to form PMP-1 and PMP-2,which is verified by having the same pressure.The results of the verifying experiment are presented later in this paper.A loud speaker is used to create fluctuating pressure.The schematic diagram of the contradistinctive experiment is shown in Fig.1.Fluctuating pressure signals are collected and analyzed by ENDEVCO 8510B-1 dynamic pressure sensor and LDS-Dactron FoucsⅡdynamic analyzer.The main parameters of the 8510B-1 sensor are as follows:measuring range of 0–1 psi(1 psi=6894.76 Pa),sensitivity of 200 mV/psi,and resonance frequency of 55 kHz.

    The swept frequency excitation in range of 0–165 Hz is applied to generate fluctuating pressure.The signals of Sensor-1 and Sensor-2 are collected synchronously at sampling rate of 375 Hz for 4096 points.These two pressure signals collected by Sensor-1 and Sensor-2 are denoted asp1(t)andp2(t).Their Fourier transform are denoted asP1(f)andP2(f)correspondingly.In the symbols,trepresents time,andfrepresents frequency.

    The FRF of the tube system is provided as follows:

    Twenty time average is used to improve the smoothness of the FRF.The analyzing frequency is limited in range of 0–165 Hz.

    Fig.1 Schematic diagram of measurement system.

    Fig.2 Results of conformity checking experiment(frequency domain).

    The magnitude and phase of FRF can reflect the effects of the tube system on fluctuating pressure.If|H2,1(f)|(magnitude of FRF)is greater than 1,it means that the magnitude of fluctuating pressure has been amplified.On the contrary,the magnitude of fluctuating pressure has been minified.In theory, φ2,1(f)(phase of FRF)is less than 0 rad,which means that the pressure signal is delayed by the tube system.Absolute phase is denoted as|φ2,1(f)|.The effects of the tube system are small if|H2,1(f)|and φ2,1(f)are close to 1 and 0 rad correspondingly.On the contrary,the effects are great.

    PMP-1 and PMP-2 are desired to have the same pressure.The conformity is verified by the experiment,in which PMP-1 and PMP-2 are directly connected to Sensor-1 and Sensor-2 respectively without the tube system.The results of verifying experiment are given in Figs.2 and 3.Fig.2 shows|H2,1(f)|,φ2,1(f)and Coh2,1(f)(coherence function between the two pressure signals25).Fig.3 shows the comparison between signals collected by Sensor-1 and Sensor-2 in time domain.According to the results,|H2,1(f)|and Coh2,1(f)are very near to 1,and φ2,1(f)is very near to 0 rad.In conclusion,the conformity is perfect,and the two small holes on the organic glass plate can be used as PMP-1 and PMP-2 with the same pressure.

    3.Effects of various parameters on FRF

    3.1.Effects of tube length

    By the contradistinctive experiment method,FRFs are obtained for tubes with different length(denoted asL).The PolyVinyl Chloride(PVC)tube with 1.2 mm inside diameter and 2.2 mm outside diameter(denoted as 1.2×2.2)is used in the experiment.This type of tube is often used in the lowspeed wind tunnel for fluctuating pressure test.This type of tube is used as the default type later in this paper if not specially specif i ed.

    Fig.3 Results of conformity checking experiment(time domain).

    Fig.4 Magnitudes of FRFs for tubes with different length.

    For tubes with different length,the magnitude and phase of FRF are shown in Figs.4 and 5.According to the results,the length of tube has great effects on the magnitude and phase of FRF.As length increases,there are decreases in terms of the peak value and peak frequency of|H2,1(f)|,while increases can be seen in|φ2,1(f)|.For a certain length of tube,there is a frequencyf0.Asf>f0,the signal magnitude is amplified,while the signal magnitude is minified asf<f0.For example,under the condition ofL=500 mm andf=100 Hz,the magnitude is amplified to about 2.15,and the phase is about-60°.Under the condition ofL=1400 mm andf=100 Hz,the magnitude is minified to about 0.68,and the phase is about-190°.The modal frequencies(peak frequencies)of gas column can be qualitatively analyzed by using the one dimensional wave equation.26,27It reveals that the mode frequency is inversely proportional to the length,which is consistent with the results above.

    3.2.Effects of tube inside diameter

    Fig.5 Phase of FRFs for tubes with different length.

    Under the condition ofL=500 mm,FRFs of tubes with different inside diameters are analyzed.FRFs are gained for the inside diameters(d)of 0.8,1.0,1.2,and 1.5 mm,and their|H2,1(f)|and φ2,1(f)are shown in Figs.6 and 7.From the results,it can be found that effects of inside diameter of tube on FRF are remarkable.Increases in insider diameter raise the peak value and peak frequency of|H2,1(f)|obviously,but lead to decreases in|φ2,1(f)|.These may be caused by the tube damping for the flowing gas.The tube with larger inside diameter has smaller damping,and thus has a greater peak value and peak frequency.

    3.3.Effects of tube curvature

    Under the condition ofL=500 mm,FRFs of tubes with different curvature are analyzed.The curvature radius(r)includes 3,5,8,10,15,20,30,40,50,60,80 and∞mm,and their|H2,1(f)|and φ2,1(f)are displayed in Figs.8 and 9.These figures reflect that tube curvature has few effects on the magnitude and phase of FRF.

    Fig.7 Phase of FRFs for tubes with different inside diameters.

    3.4.Effects of tube deflection angle

    Under the condition ofL=500 mm and 8 mm curvature radius,FRFs of tubes with different deflection angles(δ)are analyzed.The definition of deflection angle is shown in Fig.10.The deflection angles of 0°,90°,180°,360°,720°and 1080°are analyzed,and their|H2,1(f)|and φ2,1(f)are given in Figs.11 and 12.The results show that the deflection angle of tube has a few effects on|H2,1(f)|and almost no effect on φ2,1(f).The peak value of|H2,1(f)|decreases when tube deflection angle increases.While deflection angle is less than 360°,the error of|H2,1(f)|is less than 1.5%,which can be ignored.So the results tell us that the tube system must be avoided to be twisted together in the wind tunnel test.

    3.5.Effects of tube thickness and material

    Under the condition ofL=500 mm and 1.5 mm inside diameter,FRFs of tubes with different tube thickness or material are analyzed.The types of analyzed tubes include 1.5×3.0 PVF tube,1.5×2.0 PVC tube,1.5×2.0 stainless steel tube,1.5×2.5 brass tube,1.5×2.0 heat shrink tube,1.5×3.0 silicone tube,1.5×2.5 silicone tube,and 1.5×2.0 silicone tube.Their|H2,1(f)|and φ2,1(f)are shown in Figs.13 and 14.It can be seen from the results that tube thickness and material have remarkable effects on FRF.In general,as the strength of tube increases,there are increases in terms of the peak value and peak frequency of|H2,1(f)|,while decreases can be seen in|φ2,1(f)|.These results indicate that the transmission of fluctuating pressure in the tube is a fluid-solid-interaction phenomenon,which is influenced by the material strength,surface smoothness,and so on.

    Fig.8 Magnitude of FRFs for tubes with different curvature radiuses.

    Fig.9 Phase of FRFs for tubes with different curvature radiuses.

    Fig.10 Schematic diagram of deflection angle.

    Fig.11 Magnitude of FRFs for tubes with different deflection angles.

    Fig.12 Phase of FRFs for tubes with different deflection angles.

    Fig.13 Magnitude of FRFs for tubes with different thickness or material.

    Fig.14 Phase of FRFs for tubes with different thickness or material.

    Fig.15 Magnitude of FRFs for tubes with different restrictors.

    3.6.Effects of restrictor

    Under the condition ofL=500 mm,FRFs of the tube systems with different types of restrictor are analyzed.The parameters of restrictors are given in Table 1.Restrictor is fixed 333 mm away from sensor.Their|H2,1(f)|and φ2,1(f)are illustrated in Figs.15 and 16.According to the results,FRF is remarkably affected by restrictor.Compared with the tube system without restrictor,|H2,1(f)|for the tube systems with restrictor has an obvious lower peak and is closer to 1 asf<f0.Butf0is reduced obviously,which results in|H2,1(f)|being apparentlyminified within high-frequency range.|φ2,1(f)|rises in a large frequency range.On the basis of the figures,as the length of restrictor increases,the peak value and peak frequency of|H2,1(f)|decrease notably,while there are increasesin|φ2,1(f)|.These results are consistent with the results given in Sections 3.1 and 3.2.

    Table 1 Restrictor parameters.

    Fig.16 Phase of FRFs for tubes with different restrictors.

    Fig.17 Magnitude of FRFs for tubes with different restrictor places.

    Fig.18 Phase of FRFs for tubes with different restrictor places.

    The effects of restrictor location on FRF are analyzed under the condition ofL=500 mm and restrictor R-4.The restrictor locations include 1/3L,2/5L,3/5Land 2/3L.Figs.17 and 18 demonstrate|H2,1(f)|and φ2,1(f).It can be seen that FRF depends strongly on the location of restrictor.The farther the restrictor is apart from the sensor,the smaller the peak value and peak frequency of|H2,1(f)|are.This can be qualitatively interpreted by one-dimensional wave equation and series tube system.28For a series tube system,if the total length is constant,the larger length for the free-free tube will result in a larger modal frequency for the series tube system.

    In conclusion,restrictor could improve the accuracy of|H2,1(f)|in a limited low-frequency range,but the error of phase is enlarged,and so does the error of|H2,1(f)|in the high-frequency range.

    4.Data correction scheme and examples

    4.1.Data correction scheme

    Because of the shortcomings mentioned in Section 1,the pressure distortion is corrected based on FRF by post-processing of data in the frequency domain in this paper.The data correction scheme is as follows:

    (1)FRF of the tube system is calibrated by the contradistinctive experiments presented in Section 2;

    (2)Pressure signal is collected by the calibrated tube system;

    (3)The corrected pressure signals in frequency and time domain are calculated by

    whereH2,1(f)is the calibrated FRF of the tube system,pc(t)the corrected fluctuating pressure,Pc(f)the Fourier transform ofpc(t)in frequency domain,FFT(·)the Fourier transform operation,and IFFT(·) the inverse Fourier trans form operation.

    4.2.Examples

    The data correction scheme is applied in the fluctuating pressure test for a radar dome of some airplane in 8 m×6 m wind tunnel.The test is run under the condition of dynamic pressureq=2800 Pa,β =0°,α =-9°,-6°,0°,6°,12°,16°,18°,20°,22°,24°,26°.α and β represent model angle of attack and side slip(see Fig.19).A tee joint is fixed at the pressure tap and one of the outlet is connected with 400 mm 1.2×2.2 PVC tube.The measurement scheme presented in Section 2 is used.p1(t)andp2(t)are collected synchronously at 2048 Hz for 10 s.

    Fig.19 Schematic diagram of model angle of attack and side slip.

    Fig.20 Comparison between signals in time domain with and without correction.

    Fig.21 Comparison of magnitude with and without correction.

    Fig.22 Comparison of phase with and without correction.

    When α =24°and β =0°,the fluctuating pressure before and after correction are compared in Fig.20.The comparison of their magnitude and phase is shown in Figs.21 and 22.For the sequence of α,Fig.23 gives the Root Mean Square Error(RMSE)of fluctuating pressure.According to the results,it can be found that the fluctuating pressurep2(t)is distorted seriously.Due to the effects of the tube system,the magnitude is remarkably enlarged in the range of 100–180 Hz and the phase is delayed greatly as frequency increases.The corrected fluctuating pressurepc(t)is consistent withp1(t)which is collected without any tube system,both in time and frequency domain.After data correction,the RMSE is decreased by at least 90%.These results verified the effectiveness of the data correction scheme.

    Fig.23 Comparison of RMSE with and without correction.

    5.Improvements for wind tunnel test

    In view of test accuracy and efficiency,some improvements should be adopted for fluctuating pressure test in wind tunnel when the tube system cannot be avoided.There are four aspects of improvements.

    5.1 Standby tube systems

    The precondition of the data correction methods mentioned in Section 4.1 is calibrating the FRF of the tube system.On the basis of the results given in Section 3,some tube parameters,such as length,diameter,thickness,and material,may obviously affect the FRF of tube.For every tube system with different parameters,the FRF needs to be calibrated by experiment.If the tube system is chosen casually,there will be a heavy calibration workload for engineering application in fluctuating pressure test in wind tunnel.It is an efficient method to prepare some standby tube systems.The FRFs of the standby tube systems are calibrated and saved in advance.Then these standby tube systems can be used in later wind tunnel test.Based on the saved FRFs,the distortions of fluctuating pressure,which are induced by tube systems,can be corrected by the methods presented in Section 4.1.

    The mixed tube system of rigid metal tube and flexible PVC tube are always used in the wind tunnel test.The rigid metal tube is fixed at model pressure tap,and the flexible PVC tube connects the rigid metal tube and the dynamic pressure sensor.In order to eliminate the effect of tube diameter,thickness and material,the standby tube system is restricted to assemblage of 1.5×2.0 brass tube and 1.2×2.2 PVC tube.This type of tube system is convenient to assemble and has good air tightness.

    Considering the requirements for different model sizes,25 types of standby tube systems are prepared.They are combinations of 100,200,300,400,500 mm 1.5×2.0 brass tube and 1.2×2.2 PVC tube.The 25 types of standby tube systems may fulfill the requirements of fluctuating pressure test in low-speed wind tunnel.

    5.2 Database for FRFs of standby tube systems

    Fig.24 Magnitude of FRFs for standby tube systems.

    Fig.25 Phase of FRFs for standby tube systems.

    The FRFs for the 25 types of standby tube systems are calibrated by the contradistinctive experimental method presented in Section 2.Their magnitude and phase of FRF are illustrated in Figs.24 and 25.They are f i t for polynomial,and the polynomial coefficients are saved in database for later applications.

    5.3 Installation of tube systems

    When tube systems are installed,there are some points that must be paid attention to.First,tube systems for every pressure tap should be chosen from the 25 types of standby tube systems.Second,the accuracy of tube length should be less than 5 mm.Third,according to the test results provided in Section 3.4,the effect of tube deflection angle may be nearly ignored if deflection angle is less than 360°,so tube systems must be prevented from twisting together.Fourth,the type numbers of the used tube systems should be recorded for every pressure tap.

    5.4 Data post-processing

    Following the type number of the tube system,the FRF is retrieved from the FRF database for the standby tube systems.The distortion of fluctuating pressure data is corrected using Eqs.(2)–(4).Then the fluctuating pressure data with high accuracy can be used to analyze the Root Mean Square(RMS),Power Spectral Density(PSD),and the model dynamic load.

    6.Conclusions

    (1)Systematic study is conducted to investigate the effects of tube system parameters on fluctuating pressure by contradistinctive experimental method.

    (2)The analyzed tube system parameters include tube length,inside diameter,curvature,deflection angle,thickness,material,restrictor length,restrictor inside diameter,and restrictor place.It is found that all the parameters mentioned above except curvature have non-negligible effects on the FRF of the tube system for fluctuating pressure measurement.The larger length,smaller inside diameter,smaller strength,longer restrictor,and farther distance between restrictor and sensor will result in a smaller peak value and peak frequency of|H2,1(f)|,and a larger value of|φ2,1(f)|.

    (3)Test methods were presented for the fluctuating pressure measurement in low-speed wind tunnel.They can obviously improve the data accuracy but not lose test efficiency.

    (4)The wind tunnel test verified the effectiveness of the

    proposed methods.

    Acknowledgement

    This study was supported by the Pre-research Fund of Vibration and Noise Control Technology(No.51334060101).

    1.Li ZF.Special wind tunnel test techniques.Beijing:Aviation Industry Press;2010.p.418–9[Chinese].

    2.Yoshida M,Kondo K,Suzuki M.Fluctuating wind pressure measured with tubing system.JWindEngIndAerod1992;42:987–98.

    3.Irwin HPAH,Cooper KR,Girard R.Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures.J Ind Aerodyn1979;5:93–107.

    4.Bergh H,Tijdeman H.Theoretical and experimental results for the dynamic response of pressure measuring systems.Amsterdam:National Aero and Astronautic Research Institute;1965(Report No.:NLR-TR F.238).

    5.Yang YJ,Chen QS,Cai F.Research on frequency response of tube pressure measurement system.J Exp Fluid Mech2006;20(2):85–9[Chinese].

    6.Xu YH,Huang DQ,Mu S.A simple method for determining the dynamic characteristics of pressure transducer terminated at a chamber.Shanghai J Mech1981;4:47–55[Chinese].

    7.Gumley SJ.Tubing systems for pneumatic averaging of fluctuating pressures.J Wind Eng Ind Aerod1983;12:189–228.

    8.Gumley SJ.A detailed design method for pneumatic tubing systems.J Wind Eng Ind Aerod1983;13:441–52.

    9.Holmes JD.Effect of frequency response on peak pressure measurements.J Wind Eng Ind Aerod1984;17:1–9.

    10.Gerstoft P.A new tubing system for the measurement of fluctuating pressures.J Wind Eng Ind Aerod1987;25:335–54.

    11.Su EH.Tubing system dynamic analysis and fluid numerical computation method.Harbin:Harbin Institute of Technology Press;1985.p.56–61[Chinese].

    12.Cai YG.Dynamics of fluid transmission pipeline.Hangzhou:Zhejiang University Press;1989.p.15–43[Chinese].

    13.Ueda H,Hibi K,Tamura Y,Fujii K.Multi-channel simultaneous fluctuating pressure measurement system and its applications.J Wind Eng Ind Aerod1994;51:93–104.

    14.Roger H,George B,Richard F,Veilchko N.Digital filter adaptation for tubing response correction at reduced sampling frequencies.J Wind Eng Ind Aerod2010;98:833–42.

    15.Yoshida A,Tamuraa Y,Kuritab T.Effects of bends in a tubing system for pressure measurement.J Wind Eng Ind Aerod2001;89:1701–16.

    16.Yang J,Wang YF,Li C.Dynamic modeling of pressure pipelines and signal reconstruction.Proceedings of the 2011 International Conference on Instrumentation,Measurement,Computer,Communication and Control;2011 October 21–23;Beijing,China.Piscataway,NJ:IEEE Press;2011.p.78–81.

    17.Holmes JD,Lewis RE.Optimization of dynamic-pressure-measurement systems.I.Single point measurements.J Wind Eng Ind Aerod1987;25:249–73.

    18.Holmes JD,Lewis RE.Optimization of dynamic-pressure-measurement systems.II.Parallel tube-manifold systems.J Wind Eng Ind Aerod1987;25:275–90.

    19.Zhou XY,Gu M.Optimization of dynamic pressure,easurement of s Single-channel tubing systems.JTongjiUniv2003;31(7):798–802[Chinese].

    20.Xie ZN,Ni ZH,Shi BQ.Dynamic characteristics of tubing systems for fluctuating wind pressure measurements.Chin J Appl Mech2002;19(1):5–9[Chinese].

    21.Xie ZN,Gu M.Optimal design for simultaneous wind pressure measurements.J Tongji Univ2002;30(2):157–63[Chinese].

    22.Ni ZH,Yao WJ,Xie ZN.Integral of instantaneous pressure for studying wind-induced vibration of high-rise buildings.J Vib Eng2000;13(4):544–51[Chinese].

    23.Guo MM,Xu YH,Huang DQ.Application of distorted signal correction in simultaneous pressure measurement.Chin Quart Mech2005;26(4):562–6[Chinese].

    24.Guo MM,Huang DQ,Mu SU,Lin C,Xu YH.A method for simultaneous multi-fluctuating pressure measurement.J Exp Mech2005;20(1):123–7[Chinese].

    25.Shaw JC.An introduction to the coherence function and its use in EEG signal analysis.J Med Eng Technol1981;5(6):279–88.

    26.Zhou H,Liu YS,Yue ZF.Calculation analyze of pressure pulsation in fluid flowing pipeline.Mech Sci Technol Aerospace Eng2011;30(9):1435–8[Chinese].

    27.Gudrun M.Modal analysis of hydraulic pipelines.J Sound Vib2013;332:3794–805.

    28.Liu ZY,Gao ML,Ji YF.Calculation method of the gas pole immanence frequency in the design of the pipelines of a reciprocating compressor.Chem Eng Mach2008;35(4):212–5[Chinese].

    人人妻人人添人人爽欧美一区卜| 啦啦啦视频在线资源免费观看| 国模一区二区三区四区视频| 18禁观看日本| 国产一区二区三区综合在线观看 | 七月丁香在线播放| 黄色毛片三级朝国网站| 中文字幕免费在线视频6| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| 97超视频在线观看视频| 2021少妇久久久久久久久久久| 亚洲精品456在线播放app| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 成人国语在线视频| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 色94色欧美一区二区| 美女主播在线视频| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 午夜福利,免费看| 婷婷色麻豆天堂久久| 国产精品免费大片| 2021少妇久久久久久久久久久| 丁香六月天网| 日本黄大片高清| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 国产 精品1| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 久久久久久伊人网av| 18禁在线无遮挡免费观看视频| 国产欧美日韩一区二区三区在线 | 亚洲综合精品二区| 中文字幕久久专区| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| 蜜桃国产av成人99| 久久久久久久久久久免费av| 黑人高潮一二区| 插阴视频在线观看视频| 乱码一卡2卡4卡精品| .国产精品久久| 精品久久久久久电影网| 久久国内精品自在自线图片| 91成人精品电影| 欧美日韩综合久久久久久| 精品一区二区免费观看| 国内精品宾馆在线| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 日韩强制内射视频| 久久人人爽人人片av| 热99久久久久精品小说推荐| 日本午夜av视频| xxxhd国产人妻xxx| 亚洲图色成人| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 伊人久久国产一区二区| 两个人的视频大全免费| 欧美另类一区| 丰满饥渴人妻一区二区三| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 大片免费播放器 马上看| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看av| 大片免费播放器 马上看| 乱人伦中国视频| 国产成人精品福利久久| 国产黄色免费在线视频| 欧美亚洲日本最大视频资源| 亚洲精品456在线播放app| 自线自在国产av| videos熟女内射| 十八禁网站网址无遮挡| 久久99一区二区三区| 国产女主播在线喷水免费视频网站| 22中文网久久字幕| 午夜日本视频在线| 在线观看免费日韩欧美大片 | 亚洲国产最新在线播放| 狂野欧美激情性bbbbbb| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 国产精品国产av在线观看| 精品人妻熟女毛片av久久网站| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| av在线播放精品| 狠狠精品人妻久久久久久综合| 国产成人精品在线电影| 免费久久久久久久精品成人欧美视频 | 国产成人精品婷婷| a级毛色黄片| 免费看光身美女| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 考比视频在线观看| 国产一区二区三区av在线| 黄色毛片三级朝国网站| 美女中出高潮动态图| 一级,二级,三级黄色视频| 亚洲国产精品一区三区| 99久久人妻综合| 成年美女黄网站色视频大全免费 | 国产欧美亚洲国产| 99久久中文字幕三级久久日本| 午夜福利影视在线免费观看| 赤兔流量卡办理| 午夜av观看不卡| 日本爱情动作片www.在线观看| 亚洲精品成人av观看孕妇| h视频一区二区三区| 人成视频在线观看免费观看| 黄色怎么调成土黄色| 内地一区二区视频在线| 欧美精品一区二区大全| 免费观看性生交大片5| 国产深夜福利视频在线观看| 满18在线观看网站| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av天美| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 18禁动态无遮挡网站| 人体艺术视频欧美日本| 成人影院久久| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 色哟哟·www| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 99久久中文字幕三级久久日本| 水蜜桃什么品种好| 国产免费现黄频在线看| 男女国产视频网站| 国产乱人偷精品视频| 我的老师免费观看完整版| 欧美性感艳星| 黄色欧美视频在线观看| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 不卡视频在线观看欧美| 久久久国产一区二区| 啦啦啦啦在线视频资源| 夫妻性生交免费视频一级片| 欧美性感艳星| 久久国产精品男人的天堂亚洲 | 久久影院123| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 另类亚洲欧美激情| 日日撸夜夜添| 飞空精品影院首页| 91久久精品电影网| 99九九在线精品视频| 亚洲三级黄色毛片| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 色94色欧美一区二区| 精品久久久久久久久av| 国产精品蜜桃在线观看| 久久热精品热| 国语对白做爰xxxⅹ性视频网站| 一区二区日韩欧美中文字幕 | 最近最新中文字幕免费大全7| 狂野欧美激情性bbbbbb| 在线天堂最新版资源| 伦理电影免费视频| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 免费黄频网站在线观看国产| 男人操女人黄网站| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 国产成人91sexporn| 少妇人妻精品综合一区二区| 色网站视频免费| 免费久久久久久久精品成人欧美视频 | av不卡在线播放| 乱人伦中国视频| av网站免费在线观看视频| 日日摸夜夜添夜夜爱| 免费少妇av软件| 国产 一区精品| 91精品国产国语对白视频| 18禁动态无遮挡网站| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 美女主播在线视频| 免费观看无遮挡的男女| 成人二区视频| 中国美白少妇内射xxxbb| 91久久精品电影网| 国产一区亚洲一区在线观看| 国产高清有码在线观看视频| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 色视频在线一区二区三区| 最近的中文字幕免费完整| 国产淫语在线视频| 欧美xxⅹ黑人| 国产成人精品婷婷| 精品一区二区三区视频在线| 欧美激情极品国产一区二区三区 | 热99国产精品久久久久久7| 在线精品无人区一区二区三| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 少妇高潮的动态图| 制服人妻中文乱码| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 国产精品一区www在线观看| 五月开心婷婷网| 国产高清国产精品国产三级| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 日本黄色片子视频| 高清黄色对白视频在线免费看| 美女福利国产在线| 精品人妻在线不人妻| 亚洲欧美成人综合另类久久久| 狂野欧美白嫩少妇大欣赏| 精品国产露脸久久av麻豆| 久久影院123| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| 简卡轻食公司| 肉色欧美久久久久久久蜜桃| 嫩草影院入口| 国产精品.久久久| 亚洲精品国产色婷婷电影| 久久久国产欧美日韩av| 日韩伦理黄色片| 亚洲五月色婷婷综合| 蜜桃在线观看..| 99热国产这里只有精品6| 九色亚洲精品在线播放| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| av有码第一页| 久久综合国产亚洲精品| 国产av一区二区精品久久| 草草在线视频免费看| 青春草国产在线视频| 日本-黄色视频高清免费观看| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看| 高清av免费在线| 新久久久久国产一级毛片| 欧美日韩在线观看h| 下体分泌物呈黄色| 免费大片黄手机在线观看| 亚洲精品乱久久久久久| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| a级毛片在线看网站| 丰满少妇做爰视频| 女性生殖器流出的白浆| 日日摸夜夜添夜夜爱| kizo精华| 久久午夜综合久久蜜桃| 日韩电影二区| 色吧在线观看| 日日啪夜夜爽| 日韩制服骚丝袜av| 久久精品国产鲁丝片午夜精品| 亚洲色图 男人天堂 中文字幕 | 18禁动态无遮挡网站| 精品人妻偷拍中文字幕| 久久久久精品性色| 大话2 男鬼变身卡| 99久国产av精品国产电影| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院 | 久久午夜综合久久蜜桃| 美女中出高潮动态图| 美女国产视频在线观看| 新久久久久国产一级毛片| 亚洲天堂av无毛| 人妻人人澡人人爽人人| 午夜视频国产福利| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 成人毛片a级毛片在线播放| 一级毛片我不卡| 国产欧美亚洲国产| 亚洲图色成人| 日韩视频在线欧美| 精品一区二区三区视频在线| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 中文字幕免费在线视频6| 国产淫语在线视频| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 国产精品一区www在线观看| 精品人妻在线不人妻| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 国产乱人偷精品视频| 免费观看av网站的网址| 精品一区在线观看国产| 中文字幕制服av| 日本-黄色视频高清免费观看| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 国产有黄有色有爽视频| 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| xxx大片免费视频| 天堂俺去俺来也www色官网| 成人毛片a级毛片在线播放| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 国语对白做爰xxxⅹ性视频网站| 亚洲经典国产精华液单| 观看美女的网站| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 国产精品国产三级专区第一集| 久久精品国产亚洲网站| 亚洲av国产av综合av卡| 99热全是精品| 黄片无遮挡物在线观看| 久热久热在线精品观看| 婷婷色综合大香蕉| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 高清毛片免费看| 成人国产麻豆网| av线在线观看网站| 99久久中文字幕三级久久日本| 免费黄频网站在线观看国产| 国产精品国产三级国产av玫瑰| 丁香六月天网| 777米奇影视久久| 精品一区二区三卡| 97在线视频观看| 亚洲精华国产精华液的使用体验| 国产精品女同一区二区软件| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 亚洲欧美精品自产自拍| 曰老女人黄片| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲 | 亚洲五月色婷婷综合| 亚洲av中文av极速乱| 久久精品国产亚洲网站| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 久久久久久伊人网av| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 在线观看一区二区三区激情| 国国产精品蜜臀av免费| 国产毛片在线视频| 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 免费日韩欧美在线观看| 男女边摸边吃奶| 久久久精品区二区三区| 看非洲黑人一级黄片| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 18+在线观看网站| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 免费日韩欧美在线观看| 亚洲精品自拍成人| 国产精品蜜桃在线观看| 美女国产视频在线观看| 国产免费又黄又爽又色| 国产片内射在线| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 人人妻人人澡人人爽人人夜夜| 午夜老司机福利剧场| 亚洲国产精品一区二区三区在线| 一级黄片播放器| 国产免费一级a男人的天堂| av电影中文网址| 男女无遮挡免费网站观看| 中文字幕久久专区| 国产成人精品无人区| 91久久精品国产一区二区三区| 国产乱来视频区| 免费看不卡的av| 国产欧美另类精品又又久久亚洲欧美| 飞空精品影院首页| 一区二区三区精品91| av女优亚洲男人天堂| 插逼视频在线观看| 毛片一级片免费看久久久久| 在线播放无遮挡| 免费久久久久久久精品成人欧美视频 | 欧美亚洲 丝袜 人妻 在线| 久久精品国产亚洲网站| 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 国产免费福利视频在线观看| 99九九在线精品视频| 欧美日韩综合久久久久久| 亚洲欧洲精品一区二区精品久久久 | 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 成年av动漫网址| 亚洲国产av影院在线观看| 中文字幕制服av| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 视频在线观看一区二区三区| 99热6这里只有精品| a级毛片在线看网站| 曰老女人黄片| 国产免费福利视频在线观看| 99久久精品国产国产毛片| 成人亚洲欧美一区二区av| 亚洲国产精品一区三区| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 新久久久久国产一级毛片| 草草在线视频免费看| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| 午夜福利在线观看免费完整高清在| 性色avwww在线观看| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 秋霞伦理黄片| 在线观看三级黄色| 天天影视国产精品| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| 亚洲美女视频黄频| 亚洲av在线观看美女高潮| 视频区图区小说| 中文字幕亚洲精品专区| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 亚洲国产av新网站| 九九爱精品视频在线观看| 一区二区av电影网| 黑人巨大精品欧美一区二区蜜桃 | 黄色怎么调成土黄色| 国产毛片在线视频| 男女边吃奶边做爰视频| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 三级国产精品片| 亚洲精品,欧美精品| 亚洲成人一二三区av| 少妇丰满av| 久久精品国产亚洲av天美| 久久久久久伊人网av| 精品亚洲乱码少妇综合久久| 一区在线观看完整版| 亚洲精品456在线播放app| 欧美日韩精品成人综合77777| av一本久久久久| 丝瓜视频免费看黄片| 成人国产麻豆网| av黄色大香蕉| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频| 国产精品国产三级专区第一集| 亚洲精品第二区| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 91久久精品电影网| 国产精品一二三区在线看| 在线观看免费日韩欧美大片 | 成人毛片a级毛片在线播放| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 国产精品国产三级专区第一集| 99热全是精品| 欧美日韩在线观看h| 午夜激情福利司机影院| 久久久久久久久久久久大奶| 简卡轻食公司| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃 | 国产片内射在线| 不卡视频在线观看欧美| 一区二区三区四区激情视频| 99视频精品全部免费 在线| 欧美日韩国产mv在线观看视频| 高清午夜精品一区二区三区| av不卡在线播放| 免费观看在线日韩| 亚洲欧美一区二区三区国产| 国产黄频视频在线观看| 亚洲不卡免费看| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 日韩电影二区| 精品一区在线观看国产| 中国美白少妇内射xxxbb| 欧美性感艳星| 看十八女毛片水多多多| 高清欧美精品videossex| 日本-黄色视频高清免费观看| 我要看黄色一级片免费的| 91久久精品电影网| 老司机影院成人| 一区二区日韩欧美中文字幕 | 国产亚洲午夜精品一区二区久久| 亚洲国产精品999| 免费观看性生交大片5| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 视频区图区小说| 精品一区二区三卡| 夫妻午夜视频| 国产精品国产av在线观看| 亚洲内射少妇av| 人妻一区二区av| av卡一久久| 亚洲欧美一区二区三区黑人 | 欧美日韩视频精品一区| 18禁动态无遮挡网站| 国产一区二区在线观看av| 精品亚洲成国产av| 久久久久久久久大av| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 春色校园在线视频观看| 久久99一区二区三区| 久久精品久久久久久久性| 久久精品国产自在天天线| av在线老鸭窝| 各种免费的搞黄视频| 欧美一级a爱片免费观看看| 激情五月婷婷亚洲| 免费大片黄手机在线观看| av卡一久久| 满18在线观看网站| 51国产日韩欧美| 欧美人与性动交α欧美精品济南到 | 三上悠亚av全集在线观看| 女人精品久久久久毛片| 在线观看一区二区三区激情| av天堂久久9| 少妇高潮的动态图| 一本大道久久a久久精品| 91久久精品电影网|