• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?

    2021-10-28 07:01:38BoSun孫博DongHe賀棟HongboWang王宏博JiangchaoLiu劉江超ZunjianKe柯尊健LiCheng程莉andXianghengXiao肖湘衡
    Chinese Physics B 2021年10期
    關(guān)鍵詞:宏博

    Bo Sun(孫博), Dong He(賀棟), Hongbo Wang(王宏博), Jiangchao Liu(劉江超),Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡)

    Department of Physics,Hubei Nuclear Solid Physics Key Laboratory,Wuhan University,Wuhan 430072,China

    Keywords: ion implantation,oxygen vacancy,oxygen evolution reaction,heteroatom doping

    1. Introduction

    In the face of the rapid growth of energy demand and the consumption of traditional fossil fuels,it is urgent need to develop sustainable energy sources.[1,2]As is well known, hydrogen has long been considered as an ideal energy carrier to replace traditional fossil fuels because of its high energy density and carbon neutral.[3,4]As one of the most promising methods for hydrogen production,electrochemical watersplitting mainly includes hydrogen evolution reaction (HER)and oxygen evolution reaction(OER).However,as a sluggish kinetics process, OER involves a four-electron and four protons transfer process, which impedes the energy conversion efficiency of hydrogen production by water electrolysis.[1,5–8]Currently,the commercial catalysts for water splitting are noble metals and their compounds such as ruthenium dioxide(RuO2)/iridium dioxide (IrO2) for OER in practical application, but their high price and instability limit the large-scale commercial application of those electrocatalysts.[9–11]Thus,it is urgent to develop earth-abundant and high-efficient catalysts to replace noble metal-based catalysts for OER catalysis.

    Recently, transition metal oxides (TMO) such as Ni/Co/Fe-based oxides have been widely concerned by researchers, considered to be the promising OER catalysts. Among TMO materials, Co3O4, B-doped Co3O4,CoO/Co3O4, CoFe2O4,etc., as potential non-precious metal OER electrocatalysts have been intensively investigated.[12–15]Specifically, Co3O4have been widely regarded as the wellstudied OER catalysts due to low cost, multivalence oxidation states, and high stabilities.[16,17]However, the relatively poor conductivity and unfavorable absorption ability to oxygen-containing reaction intermediates of Co-based TMOs impede their practical application.[18]Therefore, improving the conductivity and properly adjust the absorption behavior of Co3O4during the OER process is expected for a long time.[19,20]Recently,defects and oxygen vacancies(Ov)have been intensively explored as effective method to coordinate the electronic structure of Co3O4toward improving catalytic activity.[18,21]Creating oxygen vacancies are effective strategy to enhances the adsorption of intermediates and promote the electronic conductivity of Co3O4, and oxygen vacancies filled with OH? first could facilitate the pre-oxidation has been confirmed by operando spectroscopy and electrochemical measurement for Co3O4with oxygen vacancies (Ov–Co3O4).[12,22]Furthermore, doping suitable heteroatoms is widely used to improve conductivity and further enhance its OER performance of Co3O4. Although it has been reported that doping heteroatoms into cobalt oxide can improve the OER activity, but more work has focused on cation doping with some atomic whose size similar to Co atoms,limited by conventional chemical doping methods.[23]So far, compared with iron, nickel and manganese, there are rarely studies on vanadium as a dopant for electrocatalysts,so it is very meaningful to develop cobalt oxides with V-doping and oxygen vacancies.[24–26]Meanwhile, it is very important and meaningful to analyze on the synergistic interaction of V dopant and oxygen vacancies. However, limited by methods that simultaneously generate oxygen vacancies and V doping, the mechanism of the synergistic interaction still needs to be studied in depth. The development and application of simple, efficient and controllable doping and defect generated methods have always been the focus and deficiencies of research.

    Herein, we report an oxygen vacancy and V co-doped Co3O4(V–Ov–Co3O4)as an OER catalyst,prepared by novel and controllable V ion implantation. The increased of low valence state of Co species (demonstrated by XPS results) in V–Ov–Co3O4is higher than that of pristine Co3O4(Co3O4)and V–Co3O4represent the generated of oxygen vacancies by V ions implantation. At the contributed of the vanadium doping and the generation oxygen vacancies for the optimization of electronic properties,the overpotential of V–Ov–Co3O4on Ti foil was reduced to 329 mV, compared with Co3O4(403 mV) and V–Co3O4(381 mV). The Tafel slope of V–Ov–Co3O4is much smaller, 74.5 mV·dec?1, which is obviously better than that of Co3O4(172 mV·dec?1)and V–Co3O4(152.9 mV·dec?1). The density functional theory(DFT)simulations confirm synergistic interaction between V doping and oxygen vacancies generated by ions implantation. Apart from improving conductivity,another factor for the significantly improved OER activity is due to the energy barrier from O?to HOO?was decreased, caused by the increase of the charge density around Co atoms and the improvement of HOO?absorption.

    2. Results and discussion

    Cobalt hydroxide is prepared on Ti foil substrate using a general electrochemical deposition method, and it was converted to Co3O4after a thermal annealing process.[27]And then, Co3O4was subjected to vanadium ion-implantation at 40 kV (V–Ov–Co3O4) to the dosage of 4×1016ions·cm?2,and V?Co3O4was prepared from annealed V–Ov–Co3O4(Fig. 1(a)) in air atmosphere. The x-ray diffraction (XRD)patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4were firstly tested as show in Fig. 1(b). The diffraction peaks of Co3O4sample located at 31.2°,36.7°,59.2°,and 65.2°,can be corresponded to(200),(211),(321),and(400)planes of the spinel Co3O4phase (JCPDS No. 43-1003), apart from diffraction peaks belongs to Ti foil. Meanwhile, the V–Ov–Co3O4(irradiated Co3O4) and V–Co3O4(annealed V–Ov–Co3O4) exhibited the similar diffraction pattern as Co3O4,indicating no obvious phase changes occurred during the implantation process. The morphology change of the high-energy vanadiumion implantation Co3O4was analyzed by scanning electron microscope (SEM). Figure 1(c) showed that the Co3O4sample was consisted of smooth and continuous two-dimensional(2D) nanosheets oriented and interconnected other. After the high-energy vanadium-ion implantation, broken surface and porous framework was observed for V–Ov–Co3O4(Fig.1(d))which was constructed by ion sputtering,and the similar morphology was also found in the sample of V–Co3O4(Fig.S1).Energy dispersive spectrometer(EDS)reveals that Co,O,and V elements homogenously distribution throughout the V–Ov–Co3O4(Fig.1(e)). Compared to Co3O4(Fig.S2),the elemental mapping images of V–Ov–Co3O4and V–Co3O4(Fig. S1)suggested that V element was successfully homogenously doped into Co3O4after the V-ion implantation. The vanadium content in V–Ov–Co3O4is 0.34 wt%.In short,V-ion implantation realized the doping of V element and increases the surface area in Co3O4nanosheets,which was supported by SEM and XRD results.

    Fig. 1. Illustration of fabrication, structural, and morphology characterization. (a) Schematic diagram of preparation Co3O4, V–Co3O4, and V–Ov–Co3O4. (b) XRD patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4. SEM images of(c)Co3O4. SEM images(d)and elemental mapping images(e)of V–Ov–Co3O4.

    Fig. 2. Electronic structure characterization: Co 2p XPS spectra of Co3O4 (a) and V–Ov–Co3O4 (b). The O 1s XPS for Co3O4 (c) and V–Ov–Co3O4 (d).

    Since electrochemical reaction usually occurs on the solid–liquid interface between the surface of the electrocatalyst and the electrolyte, probing the surface electronic structure of the prepared catalyst samples is crucial to study the OER reaction. Hence, x-ray photoelectron spectroscopy(XPS),as a universal and super-sensitive instrument,was used to study electronic states on prepared catalyst surfaces. Figures 2(a), 2(b), and S3 show that the Co 2p XPS spectra of Co3O4,V–Co3O4,V–Ov–Co3O4. Two typical peaks at around 795 eV and 779.9 eV should be specified to Co 2p1/2and Co 2p3/2for Co3O4and V–Co3O4,respectively. After V-ion implantation, it could be distinctly observed that the peaks of the two new satellites are located at 787 eV and 803 eV, respectively, and the Co 2p of V–Ov–Co3O4peaks shift negatively(about 0.2 eV)(Fig.2(b)),which indicates the increase of electron density in the Co species. In order to explore the differences in the chemical valence of Co atoms before and after V-ion implantation,Co 2p spectra were fitted. There are two fitted peaks,located at 779.8 eV and 781 eV,which belong to Co3+oxidation state and Co2+oxidation state for Co 2p3/2,respectively.[27,28]From the fitted result,it is obviously exhibited that atomic ratios of Co2+/Co3+of V–Ov–Co3O4(1.1)is significantly higher than that Co2+/Co3+of Co3O4(0.4). The higher atomic ratios indicate that there is a higher proportion of Co2+in the V-ion-implanted Co3O4,and oxygen vacancies were created by sputtering effect of V-ion implantation. The atomic ratios of Co2+/Co3+of V–Co3O4are similar to that of Co3O4. The oxygen vacancies in V–Co3O4were also validated by fine-scanned O1s spectrum. Figures 2(c), 2(d), and S4 shows that there are two typically oxygen peaks located at 529.8 eV(O1)and 531.6 eV(O2)of Co3O4,V–Co3O4and V–Ov–Co3O4.[27,29]O1 is identified as a typical metal–oxygen bonds. The O2 with higher binding energy peak is considered to be oxygen defect species.[27]Comparing with O2 peak of Co3O4and V–Co3O4,the stronger intensity O2 peak of V–Ov–Co3O4(Fig.2(d))reveals a large number of oxygen defect sites with Co2+species are formed. The results shown in XPS for three samples indicated that Co2+species were produced with creating oxygen vacancies by V-ion implantation. Combined with the characterization of structure,morphology,and composition, it is confirmed that V-ion implantation can realize both of the doping of V element and the generation of oxygen vacancy in Co3O4without distinct phase change.

    The role of oxygen defect and doped V sites on Co3O4nanosheets were investigated herein by carefully evaluating the as-prepared catalysts performance for OER activity. All electrocatalytic performance tests are performed in a threeelectrode cell with workstation (CHI 760E) at 25°C in 1-M KOH solution. Due to Co3O4, V–Co3O4, and V–Ov–Co3O4electrocatalysts were supported on Ti foil, which were tested directly as work electrodes. The OER electrocatalytic activity of the prepared samples were measured by polarization curves with a scan rate of 5 mV·s?1and the data were presented with IR corrected by 90%. Figure 3(a) illustrates OER polarization curves of the Co3O4, V–Co3O4, and V–Ov–Co3O4.The V–Ov–Co3O4catalysts displayed outstanding OER catalytic activity. To maintain a current density of 10 mA·cm?2,the V–Ov–Co3O4only needs overpotential of 329 mV. The V–Co3O4(381 mV) and Co3O4(403 mV) need higher overpotential, indicating the great OER catalytic performance of V-ion implantation Co3O4. Tafel slope is a commonly used descriptor for studying the catalytic mechanism of OER catalysis. According to the Tafel equation, Tafel slope was fitted from the LSV curves.[30,31]It can be seen from Fig.3(b)that the Tafel slope of V–Ov–Co3O4is 74.5 mV·dec?1, which is smaller than that of Co3O4(172 mV·dec?1) and V–Co3O4(152.9 mV·dec?1), suggesting the rapid reaction kinetics of V–Ov–Co3O4. As displayed in Fig.3(c),the overpotential and Tafel of among all as-prepared samples are put together to emphasize the improve of the OER activity of V–Ov–Co3O4.Furthermore,electrochemical impedance spectroscopy(EIS)test,a cogent method to analyses the electrode kinetics in electrocatalytic process,performed from high frequencies 100 kHz to low frequencies 0.1 Hz in 1.0-M KOH.The Nyquist diagram of V–Ov–Co3O4, V–Co3O4, and Co3O4were compared under same potential in Fig.3(d). Apparently, the semicircle of V–Ov–Co3O4at the high-frequency range in Nyquist diagram,is much smaller compared with Co3O4and V–Co3O4, which indicated a smaller charge transfer resistance(Rct).As show in Fig.S8,the charge-transfer resistance values of V–Ov–Co3O4is 2.2 ?, which is far less than of V–Co3O4(10.3 ?) and Co3O4(34.9 ?). The smallerRctsuggest that high intrinsic activity performance can be ascribed to the great improvement interfacial electron-transfer kinetics and improved electrical conductivity. It is well known that the activity of a catalyst depends on the number of active centers and the inherent activity of each active centers. It is a widely recognized method to compare the electrochemical active surface area(ECSA)by measuring the electrochemical double-layer capacitance(Cdl).TheCdlwas obtained by measuring theC–Vcurve at different scan rates (Fig. S5).[32]As shown in Fig. 3(e), theCdlof V–Ov–Co3O4is 50.6 mF·cm?2,higher than that of the Co3O4(37.6 mF·cm?2).TheCdlof V–Co3O4(33.2 mF·cm?2)is similar than that of Co3O4,which due to the reduction in the number of active sites caused by defect repair during thermal annealing. This confirms that high-energy V-ion implantation produced and exposed more active sites. Moreover,the longterm stability is crucial factors of the OER catalyst. The stability measure of V–Ov–Co3O4was tested by chronopotentiometric curves at 10 mA·cm?2and 20 mA·cm?2for continuous 27 h, respectively. Indicating a good durability without appreciable increase in potential (Fig. 3(f)). The OER activity of three samples indicate that V-ion implantation is an efficient and stable method to generate oxygen vacancies and dope V element in Co3O4for improving electrochemical activity. From the point of view of the reaction process, it is essential to in-depth investigate the mechanism of oxygen vacancy and vanadium doping to enhance the activity of OER.

    Fig.3. Electrochemical catalytic measurement: (a)LSV curves of Co3O4,V–Co3O4,and V–Ov–Co3O4;(b)corresponding Tafel slopes of Co3O4,V–Co3O4,and V–Ov–Co3O4;(c)overpotential and Tafel slope of Co3O4,V–Co3O4,and V–Ov–Co3O4;(d)Nyquist plots of Co3O4,V–Co3O4,and V–Ov–Co3O4;(e)ECSAs of Co3O4,V–Co3O4,and V–Ov–Co3O4;(f)chronopotentiometric curves at 10 mA·cm?2 and 20 mA·cm?2,respectively.

    Fig.4. DFT calculations of Co3O4 and V-implanted Co3O4. (a)The top view structures of Co3O4 (001)plane and V–Ov–Co3O4 (001). Slices of side view electron density differences of Co3O4 (c)and V–Ov–Co3O4 (d). (e)PDOS plots for Co3O4 and V–Ov–Co3O4. (f)The calculated OER Gibbs free energy diagrams.

    Through density functional theory (DFT) calculations,the effects of oxygen vacancies and V doping on the electronic and catalytic properties of Co3O4at the atomic level were studied. As shown in Fig. 4(a), the Co3O4(001) crystal plane was first constructed, V-doped Co3O4(V–Co3O4,Fig. S5) and coexistence models of V and oxygen vacancies(V–Ov–Co3O4, Fig. 4(b)) were also constructed by V atom replacing and oxygen atom removing. As shown in Figs.4(c)and 4(d),due to the V doping and the oxygen vacancies caused by V ion implantation, the excess electrons generated by the oxygen vacancies are completely redistributed to the surrounding Co atoms, resulting in a decrease in the chemical state of the Co element compared with the original Co3O4, which is consistent with the result of XPS test. It can be clearly seen that the Millikan charge value of the exposed Co atom at the surface decreased from 0.87 to 0.84, which means that the charge density of the Co atom has increased. Therefore, its electronic structure can be effectively modulated to affect its catalytic activity. In addition, we found that the introduction of oxygen vacancies and V impurities can effectively adjust its band structure(Fig.4(e)).It can be seen that oxygen vacancies and V doping can introduce a large number of impurity states in the Co3O4band gap,thereby effectively enhancing the conductivity of the sample and accelerating its charge transfer process. The results are consistent with the EIS test data.

    In order to further reveal the enhancement essence of Vion implantation on catalytic activity from the perspective of the reaction mechanism, we calculated the energy profile of OER reaction pathway as shown in Fig 4(f).[33–35]It can be found that the limiting energy barrier of OER reaction pathway is from O?to HOO?step for Co3O4(001)plane(Fig.S7).There is a 2.05 eV energy barrier for OER reaction. Interestingly, as a result of V-ions implantation, the adsorption capacity of the Co3O4surface for OOH groups increases as the charge density of Co atoms increases, so the OER reaction barrier is effectively reduced.The OER reaction barriers of V–Co3O4and V–Ov–Co3O4are reduced from 2.05 eV to 1.82 eV and 1.75 eV,respectively. This calculation result is fully coupled with the LSV test,which provides an in-depth analysis of the enhancement mechanism of ion implantation.

    3. Conclusion

    In summary, we have confirmed that introducing V dopant and oxygen vacancy can significantly improve the OER activity of Co3O4. XPS, EDS, and DFT consistently proved that V-doping and oxygen vacancy produced by V-ion implantation effectively regulated the electronic density of Co3O4,which increased the electrical conductivity of Co3O4and obviously decreased the energy barrier from O?to HOO?. The reducing of the reaction barrier is attributed to the improved HOO?absorption.The optimized V–Ov–Co3O4shows a lower overpotential of 329 mV, compared with Co3O4(403 mV)and V–Co3O4(381 mV).Also, V–Ov–Co3O4has a low Tafel slope of 74.5 mV·dec?1. Therefore, ion implantation can be used precise approach to manipulating electronic properties of metal oxide based OER catalysts.

    猜你喜歡
    宏博
    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    精品一区二区三卡| 自线自在国产av| 亚洲国产色片| 少妇猛男粗大的猛烈进出视频| 大片电影免费在线观看免费| 国产精品秋霞免费鲁丝片| 免费观看在线日韩| 尾随美女入室| 亚洲av在线观看美女高潮| 建设人人有责人人尽责人人享有的| 色播在线永久视频| 色哟哟·www| 成人国产av品久久久| av在线观看视频网站免费| 日韩熟女老妇一区二区性免费视频| 精品人妻在线不人妻| 熟妇人妻不卡中文字幕| 国产精品99久久99久久久不卡 | 看免费av毛片| 国产综合精华液| 一本色道久久久久久精品综合| 免费观看a级毛片全部| a级毛片在线看网站| 五月开心婷婷网| 久久久久国产网址| 免费在线观看完整版高清| 在线观看一区二区三区激情| 97在线人人人人妻| 婷婷成人精品国产| 免费黄色在线免费观看| 久久韩国三级中文字幕| 久久午夜综合久久蜜桃| av免费在线看不卡| 婷婷色综合大香蕉| 亚洲人成电影观看| 电影成人av| 国产有黄有色有爽视频| 久久精品国产亚洲av涩爱| 日韩一区二区视频免费看| 亚洲图色成人| 性色av一级| 亚洲五月色婷婷综合| 国产片特级美女逼逼视频| 99九九在线精品视频| 国精品久久久久久国模美| 精品一区在线观看国产| 色吧在线观看| 国产成人91sexporn| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 大陆偷拍与自拍| 日韩,欧美,国产一区二区三区| 亚洲,欧美精品.| av视频免费观看在线观看| 巨乳人妻的诱惑在线观看| 欧美成人精品欧美一级黄| 久久人人爽人人片av| a 毛片基地| 狂野欧美激情性bbbbbb| 国产 精品1| 下体分泌物呈黄色| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 9191精品国产免费久久| 人人澡人人妻人| 亚洲国产av新网站| 大话2 男鬼变身卡| 99国产精品免费福利视频| 尾随美女入室| 18禁国产床啪视频网站| 80岁老熟妇乱子伦牲交| 另类亚洲欧美激情| av视频免费观看在线观看| 久热这里只有精品99| 免费黄色在线免费观看| 国产精品久久久久成人av| 国产精品熟女久久久久浪| 亚洲综合精品二区| 亚洲精品国产av成人精品| av电影中文网址| 国产av国产精品国产| 欧美日韩视频高清一区二区三区二| 亚洲精品乱久久久久久| 69精品国产乱码久久久| 欧美亚洲 丝袜 人妻 在线| 伊人亚洲综合成人网| 寂寞人妻少妇视频99o| 久久精品国产亚洲av高清一级| 欧美xxⅹ黑人| 香蕉丝袜av| 99精国产麻豆久久婷婷| 狠狠婷婷综合久久久久久88av| 免费观看在线日韩| 永久免费av网站大全| 永久免费av网站大全| 天天操日日干夜夜撸| 1024视频免费在线观看| 亚洲精品视频女| 日韩av在线免费看完整版不卡| 18在线观看网站| 国产精品一国产av| 91aial.com中文字幕在线观看| 只有这里有精品99| 国产精品无大码| 国产一区二区三区av在线| 日本色播在线视频| 中文欧美无线码| 亚洲熟女精品中文字幕| 香蕉国产在线看| 亚洲色图 男人天堂 中文字幕| 成人黄色视频免费在线看| 美女主播在线视频| 男人操女人黄网站| 观看av在线不卡| 99热国产这里只有精品6| av免费在线看不卡| 亚洲国产av影院在线观看| 婷婷色综合大香蕉| 最黄视频免费看| 精品国产乱码久久久久久小说| 国产国语露脸激情在线看| 人人妻人人澡人人看| 99热国产这里只有精品6| 精品国产乱码久久久久久小说| 女人精品久久久久毛片| 一级毛片 在线播放| 久久久久视频综合| 一边亲一边摸免费视频| www.精华液| 久久午夜综合久久蜜桃| 久久综合国产亚洲精品| 黄片播放在线免费| 制服人妻中文乱码| 在线观看国产h片| 成人18禁高潮啪啪吃奶动态图| 黄色毛片三级朝国网站| 少妇猛男粗大的猛烈进出视频| 午夜91福利影院| 最近手机中文字幕大全| 2021少妇久久久久久久久久久| 精品国产国语对白av| 好男人视频免费观看在线| 亚洲婷婷狠狠爱综合网| 天天躁日日躁夜夜躁夜夜| 在线 av 中文字幕| 国产精品嫩草影院av在线观看| 欧美国产精品va在线观看不卡| 一本大道久久a久久精品| 婷婷色综合www| 亚洲五月色婷婷综合| 如何舔出高潮| 女人被躁到高潮嗷嗷叫费观| 丝瓜视频免费看黄片| 极品少妇高潮喷水抽搐| 97在线人人人人妻| 国产深夜福利视频在线观看| 中文字幕亚洲精品专区| 在线亚洲精品国产二区图片欧美| 国产深夜福利视频在线观看| 免费黄频网站在线观看国产| 欧美97在线视频| 亚洲人成网站在线观看播放| 国产伦理片在线播放av一区| 黄色一级大片看看| 人体艺术视频欧美日本| 美女脱内裤让男人舔精品视频| 午夜福利在线观看免费完整高清在| 满18在线观看网站| 黄频高清免费视频| 电影成人av| 国产精品成人在线| 日韩精品有码人妻一区| 亚洲欧美成人综合另类久久久| 国产一区二区在线观看av| 中文字幕色久视频| 精品一区二区三区四区五区乱码 | 秋霞在线观看毛片| 亚洲男人天堂网一区| 街头女战士在线观看网站| 人体艺术视频欧美日本| 免费女性裸体啪啪无遮挡网站| 黄频高清免费视频| 免费人妻精品一区二区三区视频| 少妇被粗大猛烈的视频| 成人国语在线视频| 国产精品一区二区在线不卡| 校园人妻丝袜中文字幕| 一级毛片我不卡| 成年人午夜在线观看视频| 亚洲精品中文字幕在线视频| 熟妇人妻不卡中文字幕| 午夜福利一区二区在线看| 看免费成人av毛片| 寂寞人妻少妇视频99o| 日韩av在线免费看完整版不卡| 少妇人妻 视频| 亚洲精品国产色婷婷电影| 久久青草综合色| 性色avwww在线观看| 国产亚洲一区二区精品| 新久久久久国产一级毛片| 日韩视频在线欧美| 欧美激情 高清一区二区三区| 波野结衣二区三区在线| 91午夜精品亚洲一区二区三区| 国产黄频视频在线观看| 99热国产这里只有精品6| 久久久久国产一级毛片高清牌| 欧美另类一区| 亚洲精品久久午夜乱码| 丰满少妇做爰视频| 一二三四在线观看免费中文在| 国产精品蜜桃在线观看| 午夜福利乱码中文字幕| 国产在线视频一区二区| 午夜福利在线观看免费完整高清在| 日本午夜av视频| 亚洲国产精品一区三区| 精品久久久精品久久久| av女优亚洲男人天堂| 丝袜在线中文字幕| 亚洲国产看品久久| 久久女婷五月综合色啪小说| 中文天堂在线官网| 欧美日韩视频精品一区| 大片电影免费在线观看免费| 啦啦啦视频在线资源免费观看| 99久国产av精品国产电影| 午夜精品国产一区二区电影| 日韩电影二区| 国产成人一区二区在线| 精品国产乱码久久久久久男人| 国产极品天堂在线| 搡女人真爽免费视频火全软件| 国产片内射在线| 亚洲欧美清纯卡通| 激情视频va一区二区三区| 精品国产一区二区三区四区第35| 免费在线观看完整版高清| 国产福利在线免费观看视频| 免费在线观看黄色视频的| av一本久久久久| 超碰成人久久| 亚洲精品国产av蜜桃| 久久精品熟女亚洲av麻豆精品| 亚洲中文av在线| 91午夜精品亚洲一区二区三区| 最近最新中文字幕免费大全7| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 熟女av电影| 亚洲精品自拍成人| 久久久久久伊人网av| 在线观看国产h片| 午夜福利影视在线免费观看| 日韩中文字幕欧美一区二区 | 麻豆av在线久日| 成年女人毛片免费观看观看9 | 又大又黄又爽视频免费| www.精华液| 我要看黄色一级片免费的| 国产精品久久久久久久久免| 少妇的逼水好多| 久久久亚洲精品成人影院| 一级片'在线观看视频| 人妻人人澡人人爽人人| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 精品福利永久在线观看| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| 香蕉精品网在线| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 日韩免费高清中文字幕av| 熟妇人妻不卡中文字幕| 亚洲精品美女久久av网站| 日本av免费视频播放| 国产视频首页在线观看| 高清不卡的av网站| 一边摸一边做爽爽视频免费| 日韩精品免费视频一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 午夜福利,免费看| 麻豆av在线久日| √禁漫天堂资源中文www| 不卡av一区二区三区| 一级爰片在线观看| 你懂的网址亚洲精品在线观看| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 国产深夜福利视频在线观看| 成人免费观看视频高清| 免费观看a级毛片全部| 丰满迷人的少妇在线观看| 一二三四在线观看免费中文在| 一区二区日韩欧美中文字幕| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 日本色播在线视频| 青青草视频在线视频观看| 国产精品一二三区在线看| 亚洲男人天堂网一区| 91aial.com中文字幕在线观看| 成人漫画全彩无遮挡| 丝袜在线中文字幕| 深夜精品福利| 亚洲天堂av无毛| 人人澡人人妻人| 青春草国产在线视频| 尾随美女入室| 亚洲美女黄色视频免费看| 两个人看的免费小视频| 韩国av在线不卡| 亚洲成av片中文字幕在线观看 | 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 97在线人人人人妻| 欧美激情高清一区二区三区 | 日韩制服骚丝袜av| 亚洲欧美一区二区三区久久| 亚洲少妇的诱惑av| 国产高清不卡午夜福利| 国产麻豆69| av卡一久久| 国产又爽黄色视频| 中文天堂在线官网| 欧美另类一区| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 母亲3免费完整高清在线观看 | 一本久久精品| 伊人久久国产一区二区| 99精国产麻豆久久婷婷| 七月丁香在线播放| 日本欧美国产在线视频| 午夜影院在线不卡| 欧美精品一区二区大全| 亚洲一级一片aⅴ在线观看| 不卡av一区二区三区| 建设人人有责人人尽责人人享有的| 男人添女人高潮全过程视频| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看 | 色婷婷久久久亚洲欧美| 日韩精品免费视频一区二区三区| 成人毛片a级毛片在线播放| 久久久国产一区二区| a 毛片基地| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 午夜免费鲁丝| 如何舔出高潮| 伦理电影大哥的女人| 亚洲伊人久久精品综合| 久久国内精品自在自线图片| 97在线人人人人妻| 免费观看av网站的网址| 高清av免费在线| 国产精品99久久99久久久不卡 | 国产乱人偷精品视频| 大话2 男鬼变身卡| 国产成人精品婷婷| 亚洲三区欧美一区| 人人妻人人爽人人添夜夜欢视频| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 国产一区有黄有色的免费视频| 国产成人精品无人区| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区 | 国产亚洲最大av| 国产日韩欧美视频二区| 亚洲男人天堂网一区| 久久这里只有精品19| 天天躁日日躁夜夜躁夜夜| 国产又爽黄色视频| 大香蕉久久成人网| 国产精品久久久久久av不卡| 国产精品麻豆人妻色哟哟久久| 制服丝袜香蕉在线| www.精华液| 另类精品久久| 成人亚洲欧美一区二区av| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区| 亚洲综合精品二区| 赤兔流量卡办理| 又大又黄又爽视频免费| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| 日本色播在线视频| 精品久久久精品久久久| 久久这里有精品视频免费| 午夜av观看不卡| 国产免费一区二区三区四区乱码| 精品一区二区三卡| 国产黄色免费在线视频| 日日爽夜夜爽网站| 老女人水多毛片| videosex国产| 老鸭窝网址在线观看| 成人影院久久| 日韩制服丝袜自拍偷拍| 丝袜美腿诱惑在线| 久久热在线av| 午夜福利视频在线观看免费| 伊人亚洲综合成人网| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 永久网站在线| www.精华液| 久久久久久人妻| 国产成人精品久久久久久| 综合色丁香网| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看 | 久久久久人妻精品一区果冻| 飞空精品影院首页| 免费观看av网站的网址| 有码 亚洲区| 啦啦啦啦在线视频资源| 夫妻性生交免费视频一级片| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 伊人久久国产一区二区| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 狠狠精品人妻久久久久久综合| 伊人亚洲综合成人网| 性色avwww在线观看| kizo精华| 少妇人妻久久综合中文| 国产成人aa在线观看| 美女高潮到喷水免费观看| xxx大片免费视频| 美女视频免费永久观看网站| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片| 人妻人人澡人人爽人人| 久久久欧美国产精品| 一级毛片 在线播放| 在线观看www视频免费| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 亚洲少妇的诱惑av| 一区二区三区精品91| 亚洲成人手机| 少妇的逼水好多| 精品一区二区三区四区五区乱码 | 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 丰满少妇做爰视频| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 精品一区二区三区四区五区乱码 | 中文字幕亚洲精品专区| 高清黄色对白视频在线免费看| 久久97久久精品| 欧美97在线视频| 日韩伦理黄色片| 亚洲国产色片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女国产视频在线观看| 一二三四在线观看免费中文在| 亚洲av电影在线进入| 黑人猛操日本美女一级片| 97在线人人人人妻| 1024视频免费在线观看| 中文字幕av电影在线播放| 国产淫语在线视频| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 黄频高清免费视频| 热re99久久国产66热| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 性色avwww在线观看| 成年人免费黄色播放视频| 欧美中文综合在线视频| 亚洲图色成人| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 日韩制服骚丝袜av| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 午夜福利视频精品| 久久久久精品人妻al黑| av一本久久久久| 一个人免费看片子| av福利片在线| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜一区二区 | 国产亚洲午夜精品一区二区久久| 日日啪夜夜爽| 观看av在线不卡| 少妇熟女欧美另类| 永久免费av网站大全| 一本久久精品| 成人免费观看视频高清| 人人澡人人妻人| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 超碰97精品在线观看| 超色免费av| 久久久久网色| 天堂中文最新版在线下载| 嫩草影院入口| 精品酒店卫生间| 91在线精品国自产拍蜜月| 尾随美女入室| 久久久久人妻精品一区果冻| 精品一区二区三卡| 精品一区二区免费观看| 午夜精品国产一区二区电影| 中文天堂在线官网| 我要看黄色一级片免费的| videosex国产| 色视频在线一区二区三区| 亚洲,欧美精品.| 国产亚洲最大av| 另类亚洲欧美激情| 一级片'在线观看视频| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 如何舔出高潮| 看非洲黑人一级黄片| 亚洲精品在线美女| 日韩av不卡免费在线播放| 亚洲四区av| 免费观看av网站的网址| 国产精品av久久久久免费| 高清不卡的av网站| 国产精品二区激情视频| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 欧美中文综合在线视频| 男女午夜视频在线观看| 极品人妻少妇av视频| 老熟女久久久| 搡女人真爽免费视频火全软件| 中文字幕亚洲精品专区| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 一区在线观看完整版| 另类精品久久| av免费观看日本| 欧美 日韩 精品 国产| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 只有这里有精品99| 韩国高清视频一区二区三区| 国产精品成人在线| 999精品在线视频| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 日韩av不卡免费在线播放| 久久久久国产精品人妻一区二区| 边亲边吃奶的免费视频| 欧美日韩av久久| 高清黄色对白视频在线免费看| 老司机影院成人| av网站免费在线观看视频| 男人爽女人下面视频在线观看| 满18在线观看网站| av电影中文网址| 看十八女毛片水多多多| 亚洲色图综合在线观看| kizo精华| 一边亲一边摸免费视频| 国产野战对白在线观看| 亚洲美女视频黄频| 香蕉精品网在线| 丝袜人妻中文字幕| 女性被躁到高潮视频| 色网站视频免费| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 国产视频首页在线观看| 国产毛片在线视频| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 日韩欧美精品免费久久| 国产成人精品久久久久久| 久久精品夜色国产| 91aial.com中文字幕在线观看| 纯流量卡能插随身wifi吗| 国产一区二区在线观看av| 老女人水多毛片| 免费久久久久久久精品成人欧美视频| 国产不卡av网站在线观看| 校园人妻丝袜中文字幕| videosex国产| 亚洲av免费高清在线观看|