楊強(qiáng),徐盼,蔣凱,喬傳民,任軍,黃路生,幸宇云
?
慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)編輯PFF細(xì)胞BMPR-IB基因及BMPs信號(hào)通路重要基因表達(dá)分析
楊強(qiáng),徐盼,蔣凱,喬傳民,任軍,黃路生,幸宇云
(江西農(nóng)業(yè)大學(xué)豬遺傳改良與養(yǎng)殖技術(shù)省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室,南昌 330045)
【】利用慢病毒介導(dǎo)的CRISPR/Cas9基因組編輯技術(shù)獲得編輯BMPR-IB(bone morphogenetic protein receptor, type IB)基因的豬胎兒成纖維細(xì)胞(pig fetal fibroblasts, PFF),并研究該基因被編輯后對(duì)骨形態(tài)發(fā)生蛋白(bone morphogenetic proteins, BMPs)信號(hào)通路中重要功能基因表達(dá)的影響?!尽酷槍?duì)豬的BMPR-IB基因的外顯子8,利用在線軟件http://crispr.mit.edu獲得了21條sgRNAs(single-guide RNAs)序列;得分最高的sgRNA與互補(bǔ)序列(包含接頭)退火成雙鏈后連接入線性化的lentiCRISPR v2質(zhì)粒以獲得打靶質(zhì)粒,打靶質(zhì)粒與包裝質(zhì)粒psPAX2和pCMV-VSV-G按5﹕4﹕1質(zhì)量比混合后通過293T細(xì)胞包裝慢病毒。慢病毒溶液經(jīng)0.45 μm濾膜回收后與PFF細(xì)胞培養(yǎng)液按照1﹕1混合、并加入聚凝胺(polybrene)至終濃度為6 μg·mL-1,在1 000 g轉(zhuǎn)速、32℃下離心感染PFF細(xì)胞1 h。感染3 d后,細(xì)胞在含3.5 μg·mL-1嘌呤霉素的培養(yǎng)液中篩選6—7 d,最終獲得編輯BMPR-IB基因的PFF細(xì)胞克隆群。針對(duì)編輯(打靶)細(xì)胞,首先通過T7E1酶切檢測(cè)突變體,初步判斷打靶效率,再通過PCR、PCR-TA克隆分析細(xì)胞的編輯及脫靶情況。利用RT-PCR檢測(cè)編輯和對(duì)照組細(xì)胞中與BMPs信號(hào)通路相關(guān)的重要基因的表達(dá)情況;western blotting檢測(cè)編輯細(xì)胞與對(duì)照組細(xì)胞中BMPR-IB基因的蛋白表達(dá)量。利用Cell Counting Kit-8(CCK-8)試劑盒檢測(cè)編輯細(xì)胞及對(duì)照組細(xì)胞的增殖能力?!尽縏7E1酶切及PCR測(cè)序均證實(shí)PFF細(xì)胞成功打靶目標(biāo)DNA區(qū)域;TA克隆測(cè)序表明目標(biāo)區(qū)域發(fā)生了插入與缺失突變,突變率為70%。針對(duì)20個(gè)潛在的脫靶位點(diǎn)的TA克隆測(cè)序結(jié)果表明,僅1個(gè)位點(diǎn)出現(xiàn)了10%(2/20)的脫靶情況。RT-PCR結(jié)果顯示,打靶細(xì)胞與對(duì)照組細(xì)胞相比,BMPR-IB、CylinD2、Cdk2和Bcl2基因的表達(dá)量均極顯著下降(<0.01)。Western blotting結(jié)果顯示,打靶細(xì)胞BMPR-IB基因的表達(dá)量較對(duì)照組細(xì)胞降低62%。CCK-8檢測(cè)試驗(yàn)表明,同一代細(xì)胞中,打靶PFF的增殖能力極顯著低于對(duì)照組細(xì)胞(< 0.01);打靶細(xì)胞中,隨著傳代的(P5、P7和P9)增加其增殖能力極顯著下降(< 0.01),而對(duì)照組細(xì)胞不同代次間細(xì)胞增殖能力無(wú)顯著差異(> 0.05);打靶PFF的增殖能力不受嘌呤霉素篩選的影響。【】慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)可針對(duì)PFF細(xì)胞快速高效地實(shí)現(xiàn)基因編輯;在BMPR-IB基因編輯細(xì)胞中,BMPs通路重要功能基因的表達(dá)量顯著下降,該基因?qū)FF細(xì)胞的增殖有重要的調(diào)節(jié)作用。
慢病毒;CRISPR/Cas9;豬胎兒成纖維細(xì)胞;;脫靶;細(xì)胞增殖
【研究意義】基因組編輯技術(shù)是現(xiàn)代生命科學(xué)領(lǐng)域的一項(xiàng)重要革新性技術(shù),在功能基因組學(xué)研究、經(jīng)濟(jì)物種的遺傳改良、生物醫(yī)藥、基因治療等領(lǐng)域發(fā)揮了重要的作用。自2013年CRISPR/Cas9技術(shù)成功地在人和小鼠細(xì)胞中實(shí)現(xiàn)基因組編輯[1-3]以來(lái),該技術(shù)在生命科學(xué)領(lǐng)域的應(yīng)用呈現(xiàn)出井噴的態(tài)勢(shì),目前已被廣泛應(yīng)用于動(dòng)物、植物、微生物和人類醫(yī)學(xué)等領(lǐng)域。豬胎兒成纖維細(xì)胞(porcine fetal fibroblasts, PFF)是研制轉(zhuǎn)基因克隆豬的重要供體細(xì)胞,然而常規(guī)化學(xué)轉(zhuǎn)染法對(duì)PFF細(xì)胞的轉(zhuǎn)染效率較低[4-5]。慢病毒對(duì)分裂和非分裂細(xì)胞均有感染能力,且能夠有效地感染較難轉(zhuǎn)染的細(xì)胞[6],因此慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)用于PFF細(xì)胞基因組編輯,可以更好地克服其難轉(zhuǎn)染的問題。骨形態(tài)發(fā)生蛋白(bone morphogenetic proteins, BMPs)是轉(zhuǎn)化生長(zhǎng)因子β亞基(transforming growth factor-β, TGF-β)的一個(gè)亞家族,此家族所編碼的多功能蛋白在各種組織中具有廣泛的生物活性,在多種細(xì)胞中起調(diào)節(jié)生長(zhǎng)和分化的作用。BMPR-IB基因?qū)儆贐MP家族I型受體,在將BMPs通路信號(hào)從細(xì)胞表面?zhèn)鲗?dǎo)至細(xì)胞核過程中起著至關(guān)重要的作用[7]?!厩叭搜芯窟M(jìn)展】目前鮮見慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)用于PFF細(xì)胞的報(bào)道。LIU等[8]和LAI等[9]利用慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)分別將Cas9基因和Oct4-tdTomato報(bào)告基因敲入PFF細(xì)胞中,該兩項(xiàng)研究均使用了超速離心機(jī)濃縮病毒。研究表明,BMPR-IB基因在成骨細(xì)胞[10-12]和卵泡顆粒細(xì)胞[13]的分化和凋亡過程中均起重要作用。此外,羊的746突變位點(diǎn)被證明是影響部分綿羊品種多羔性狀的主效突變位點(diǎn)[14-16]。ZHAO等[13]通過siRNA干擾的方式將豬卵泡顆粒細(xì)胞中的BMPR-IB基因沉默后,會(huì)顯著抑制顆粒細(xì)胞的增殖和促進(jìn)顆粒細(xì)胞的凋亡,并且會(huì)影響CylinD2、Cdk2、Bcl2、Cyp19a1等基因的表達(dá)[13]?!颈狙芯壳腥朦c(diǎn)】目前利用慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)針對(duì)PFF細(xì)胞開展基因組編輯的研究報(bào)道較少,且已有的研究往往利用昂貴的超速離心機(jī)對(duì)慢病毒進(jìn)行了濃縮[8-9];此外,之前暫無(wú)BMPR-IB基因?qū)FF細(xì)胞增殖或凋亡的影響的相關(guān)報(bào)道?!緮M解決的關(guān)鍵問題】本研究擬針對(duì)PFF細(xì)胞建立快速和高效的、慢病毒介導(dǎo)的CRISPR/Cas9基因組編輯技術(shù)體系;并分析BMPR-IB基因編輯后對(duì)PFF細(xì)胞BMP信號(hào)通路中重要功能基因表達(dá)及細(xì)胞增殖能力影響。
本研究于2016—2017年在江西農(nóng)業(yè)大學(xué)豬遺傳改良與養(yǎng)殖技術(shù)省部共建國(guó)家重點(diǎn)試驗(yàn)室完成。
1.1.1 細(xì)胞系和質(zhì)粒 豬胎兒成纖維細(xì)胞系由江西農(nóng)業(yè)大學(xué)豬遺傳改良與養(yǎng)殖技術(shù)省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室前期所建立;293T細(xì)胞購(gòu)自中科院細(xì)胞庫(kù)(http://www.cellbank.org.cn/);PX458(Addgene: #48138)、lentiCRISPR v2(Addgene: #52961)、psPAX2(Addgene: #12260)、pCMV-VSV-G(Addgene: #8454)均購(gòu)自Addgene質(zhì)粒庫(kù)(http://www.addgene.org/);Trans 5α感受態(tài)細(xì)胞購(gòu)自北京全式金生物技術(shù)公司。
1.1.2 試驗(yàn)試劑 聚凝胺(polybrene)、嘌呤霉素為Sigma公司產(chǎn)品;胰酶(Trypsin-EDTA solution)、磷酸鹽緩沖液(PBS)、高糖DMEM(11995-065)、胎牛血清(FBS)為Gibco公司產(chǎn)品;質(zhì)粒小提試劑盒(QIA prep spin Mini prep kit)、膠回收試劑盒(QIAquick Gel Extraction Kit(50))為QIAGEN公司產(chǎn)品;Lipofectamine 3000 Transfection Reagent為Invitrogen 公司產(chǎn)品;T7核酸內(nèi)切酶Ι(T7E1)、T4連接酶和限制性內(nèi)切酶Ι購(gòu)自NEB公司;瓊脂糖為Biowest公司產(chǎn)品;細(xì)胞基因組DNA提取試劑盒(E.Z.N.A. Tissue DNA Kit)為Omega公司產(chǎn)品;r-Taq酶為Takara公司產(chǎn)品;TRIzol試劑(Invitrogen);PrimeScript RT reagent Kit with gDNA Eraser反轉(zhuǎn)錄試劑盒(TaKaRa);SYBR Premix ExTaq? RT-PCR試劑盒((TaKaRa);RIPA裂解液(強(qiáng))、BCA蛋白濃度測(cè)定試劑盒、超敏ECL化學(xué)發(fā)光試劑購(gòu)自碧云天公司;兔源BMPR-IB一抗(ab97051)、鼠源β-actin一抗(mAbcam 8226)、BMPR-IB二抗(辣根過氧化物酶標(biāo)記的羊抗兔IgG,ab97051)、β-actin二抗(辣根過氧化物酶標(biāo)記的羊抗鼠IgG,ab6789)均購(gòu)自abcam公司;Cell Counting Kit-8(CCK-8)試劑盒購(gòu)自日本Dojindo公司。
1.1.3 引物合成 sgRNA鏈和檢測(cè)引物從Invitrogen公司訂購(gòu)。
1.1.4 測(cè)序 普通測(cè)序及TA-克隆測(cè)序由華大基因武漢分公司完成。
1.2.1 sgRNA 的設(shè)計(jì)和引物合成 針對(duì)豬BMPR-IB基因的第8個(gè)外顯子,利用麻省理工學(xué)院張鋒(Feng Zhang)實(shí)驗(yàn)室的在線網(wǎng)站(http://crispr.mit.edu)設(shè)計(jì)sgRNA。該軟件針對(duì)所設(shè)計(jì)的sgRNA序列的潛在脫靶效應(yīng)給予評(píng)分,分值越高(滿分為100分)說明潛在脫靶效應(yīng)越低。挑選評(píng)分最高的sgRNA序列:5′-GATTGGAAAAGGTCGCTATG-3′,在sgRNA鏈的5′端添加CACCG,在sgRNA互補(bǔ)鏈的5′端添加AAAC、3′端添加堿基C,以使雙鏈sgRNA序列與線性化的lentiCRISPR v2質(zhì)粒連接。表1中的P 1引物對(duì)用于檢測(cè)sgRNA序列是否與lentiCRISPR v2質(zhì)粒正確連接;P 2和P 3引物用于檢測(cè)是否成功打靶;其他引物均用于RT-PCR分析。
表1 載體構(gòu)建、打靶驗(yàn)證和RT-PCR引物
1.2.2 CRISPR-sgRNA/Cas9打靶DNA的制備 利用20單位B I酶切1 μg lentiCRISPR v2質(zhì)粒DNA,電泳后通過QIAquick Gel Extraction Kit(50)試劑盒割膠回收片段為10 kb的條帶。將sgRNA正向鏈和反向鏈按1﹕1比例于0.5 mL EP管中混勻后,將EP管置于裝有沸水的燒杯,沸水于室溫下冷卻過夜,使單鏈退火形成雙鏈。將50 ng線性化的lentiCRISPR v2質(zhì)粒DNA與1 μL(50 nmol)sgRNA雙鏈通過T 4連接酶相連接。連接產(chǎn)物轉(zhuǎn)化于Trans 5α感受態(tài)細(xì)胞,經(jīng)氨芐抗性平板篩選、菌落PCR(引物對(duì)為P 1)及測(cè)序,最后利用QIA Prep Spin Mini Prep Kit提取打靶質(zhì)粒DNA。菌落PCR反應(yīng)體系為:25 μL 體系中含1× buffer,0.5 mmol·L-1Mg2+,0.2 mmol·L-1dNTP(Takara),1 × Q-solution(QIAGEN),0.4 μmol·L-1上游和下游引物,2.5 U r-Taq酶(Takara),1 μL菌液模板。PCR反應(yīng)條件:94℃5 min;(94℃30 s,65℃(-0.5℃/循環(huán))30 s,72℃1 min)26個(gè)循環(huán);(94℃30 s,55℃30 s,72℃1 min)14個(gè)循環(huán);72℃10 min。
1.2.3 慢病毒包裝 慢病毒包裝前一天,在兩個(gè)10 cm培養(yǎng)皿中分別接種約2.0×106293T細(xì)胞,于37℃、5% CO2箱中培養(yǎng),培養(yǎng)液為含10%胎牛血清的DMEM。第二天待細(xì)胞密度達(dá)到80%—90%時(shí),通過Lipofectamine 3000轉(zhuǎn)染慢病毒包裝體系于一個(gè)10 cm培養(yǎng)皿中,該體系含有5 μg lentiCRISPR v2-sgRNA、4 μg psPAX2和1 μg pCMV-VSV-G。為評(píng)估轉(zhuǎn)染效率,將攜帶綠色熒光蛋白(green fluorescent protein,GFP)的PX458質(zhì)粒,轉(zhuǎn)染于另一個(gè)10 cm培養(yǎng)皿中。轉(zhuǎn)染6 h后更換新鮮的DMEM培養(yǎng)液;轉(zhuǎn)染后48 h和72 h分別回收病毒上清液,上清液經(jīng)0.45 μm的濾膜過濾后、分裝后置于-80℃冰箱中備用。
1.2.4 慢病毒感染PFF細(xì)胞 在慢病毒感染前一天,將3個(gè)不同血緣的第三(P3)代PFF細(xì)胞接種至6孔板中培養(yǎng),培養(yǎng)液為含10%胎牛血清和1%雙抗的DMEM。當(dāng)細(xì)胞匯合度約50%時(shí),將6孔板中的培養(yǎng)液替換為病毒上清液與新鮮培養(yǎng)液的1﹕1混勻液,加入polybrene至終濃度為6 μg·mL-1。6孔板于1 000 rcf (relative centrifugal force)轉(zhuǎn)速、32℃下離心1 h后,置于培養(yǎng)箱中繼續(xù)培養(yǎng)6 h,然后更換成正常的培養(yǎng)液。在另一個(gè)6孔板中設(shè)置對(duì)應(yīng)的3個(gè)不同血緣的P3代細(xì)胞作為對(duì)照組(野生型),對(duì)照組不加病毒上清、不離心,其他條件與試驗(yàn)組相同。
1.2.5 篩選打靶細(xì)胞 lentiCRISPR v2質(zhì)粒含有嘌呤霉素抗性基因,慢病毒感染前,用P3代PFF細(xì)胞開展嘌呤霉素的抗性試驗(yàn)。設(shè)置1.5、2.0、2.5、3.0、3.5和4.0 μg·mL-1的嘌呤霉素濃度梯度,記錄細(xì)胞在不同濃度下抗藥時(shí)間,選擇4 d能殺死所有細(xì)胞的濃度(3.5 μg·mL-1)為后續(xù)細(xì)胞篩選的濃度。慢病毒感染72 h后,在細(xì)胞培養(yǎng)液中加入嘌呤霉素至3.5 μg·mL-1,加入嘌呤霉素后的前兩天,細(xì)胞每天換液一次,之后隔天換液一次。待對(duì)照組細(xì)胞全部死亡之后,試驗(yàn)組細(xì)胞在含2.0 μg·mL-1嘌呤霉素的培養(yǎng)液中繼續(xù)培養(yǎng)4 d。
1.2.6 細(xì)胞基因組DNA的提取 胰酶消化并收集打靶細(xì)胞(抗嘌呤霉素)和對(duì)照組細(xì)胞,用E.Z.N.A. Tissue DNA Kit提取DNA。
1.2.7 打靶效率的檢測(cè) 為檢測(cè)是否成功打靶目標(biāo)基因,首先通過P 2引物對(duì)(表1)擴(kuò)增細(xì)胞DNA,PCR反應(yīng)體系及擴(kuò)增循環(huán)與菌落PCR相同。PCR產(chǎn)物經(jīng)瓊脂糖凝膠電泳檢測(cè)其擴(kuò)增特異性后,再通過T7E1酶檢測(cè)是否產(chǎn)生突變體。然后利用P 3引物對(duì)(表1)擴(kuò)增打靶和對(duì)照組細(xì)胞DNA并送測(cè)序,PCR反應(yīng)體系及擴(kuò)增循環(huán)與菌落PCR相同。為分析打靶效率,將打靶細(xì)胞的PCR產(chǎn)物進(jìn)行TA克隆測(cè)序,測(cè)序結(jié)果與對(duì)照組序列通過SeqMan軟件比對(duì)分析。
1.2.8 脫靶效應(yīng)檢測(cè) 在線軟件http://crispr.mit.edu/在設(shè)計(jì)出sgRNA序列的同時(shí),還針對(duì)該sgRNA序列在整個(gè)基因組的同源性提供潛在的脫靶位點(diǎn)(off-target sites, OTS),并按脫靶可能性的高低給予評(píng)分。本試驗(yàn)針對(duì)20個(gè)可能性最高的潛在脫靶位點(diǎn)設(shè)計(jì)引物(表2),PCR擴(kuò)增后送TA克隆測(cè)序,PCR反應(yīng)體系和擴(kuò)增循環(huán)與菌落PCR相同,對(duì)照組細(xì)胞的PCR產(chǎn)物送普通測(cè)序,測(cè)序結(jié)果通過SeqMan軟件比對(duì)分析。
1.2.9 RT-PCR檢測(cè) 以為內(nèi)參基因,針對(duì)打靶和對(duì)照組細(xì)胞中BMPR-IB、CylinD2、Cdk2、Bcl2、Cyp19a1基因進(jìn)行RT-PCR檢測(cè)。RT-PCR采用10.0 μL反應(yīng)體系,體系包括:1× SYBR Premix ExTaq,1× ROX Reference Dye,0.2 μmol·L-1上游和下游引物,cDNA模板1.0 μL;反應(yīng)條件為:50℃2 min;95℃5 min;(95℃15 s,60℃50 s)40個(gè)循環(huán);95℃15 s;60℃15 s;95℃15 s。mRNA相對(duì)表達(dá)量計(jì)算采用LIVAK等的2ˉΔΔCt法[17]。RT-PCR反應(yīng)在7900HT Fast Real-Time PCR System(ABI公司)上完成,采用SPSS17.0統(tǒng)計(jì)軟件進(jìn)行檢驗(yàn),以<0.05表示差異顯著,以<0.01表示差異極顯著。
表2 20個(gè)潛在脫靶位點(diǎn)及其檢測(cè)引物
OTS按脫靶可能性從高到低排列。參考序列為豬的10.2版本基因組序列
OTS are listed from high to low off-target possibility. Reference sequence: Sscrofa10.2. genome sequence
1.2.10 Western blotting檢測(cè)BMPR-IB蛋白表達(dá)量 使用RIPA裂解液(強(qiáng))分別提取打靶和對(duì)照組PFF細(xì)胞的總蛋白。利用BCA蛋白濃度測(cè)定試劑盒檢測(cè)2種細(xì)胞的蛋白濃度,各取40 μg蛋白上樣(每種細(xì)胞設(shè)置一個(gè)重復(fù)樣),進(jìn)行SDS-PAGE凝膠電泳。電泳結(jié)束后,以30 mA 的恒定電流冰浴濕轉(zhuǎn)3 h ,然后將凝膠上的蛋白轉(zhuǎn)移至PVDF膜上。于含5%脫脂奶粉的TBST、4℃封閉過夜,然后用TBST洗膜3次,再分別加入1﹕800 稀釋的兔源一抗和1﹕1 000 稀釋的鼠源一抗,室溫下孵育3 h;用TBST洗膜3次,之后分別加入1﹕10 000稀釋的目標(biāo)基因及內(nèi)參基因二抗,在室溫條件下孵育2 h后用TBST洗膜3次。最后用超敏ECL化學(xué)發(fā)光試劑顯色,采取Quantity-One軟件分析條帶光密度值。
1.2.11 CCK-8法檢測(cè)細(xì)胞增殖 本試驗(yàn)經(jīng)打靶藥篩的細(xì)胞為P4代,取1.2.4所述的對(duì)照組(3個(gè)樣本)和試驗(yàn)組(3個(gè)樣本)的P4代細(xì)胞,在6孔板中分別傳代至P6和P8代,待CCK-8檢測(cè)的細(xì)胞經(jīng)計(jì)數(shù)后接種到24孔板中培養(yǎng)(即為P5、P7和P9代),每孔的細(xì)胞數(shù)量約為7.5×104個(gè)。本試驗(yàn)設(shè)置3個(gè)組:野生型細(xì)胞,打靶細(xì)胞,加嘌呤霉素的打靶細(xì)胞;不含細(xì)胞的培養(yǎng)液為空白對(duì)照。依據(jù)CCK-8試劑盒說明書完成相應(yīng)的細(xì)胞處理,每個(gè)樣本設(shè)置1個(gè)重復(fù)。最后用全自動(dòng)酶標(biāo)儀(TECAN,infinite M200 PRO)測(cè)定吸光度。通過SPSS17.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行t檢驗(yàn),以<0.05表示差異顯著,以<0.01表示差異極顯著。
本試驗(yàn)針對(duì)豬BMPR-IB基因相對(duì)較長(zhǎng)的外顯子8(196 bp),并通過http://crispr.mit.edu/軟件共設(shè)計(jì)出21條sgRNA序列,得分最高的sgRNA成功連接在lentiCRISPR v2載體上。
利用Lipofectamine 3000試劑將病毒包裝體系轉(zhuǎn)染293T細(xì)胞,最終過濾回收到靶向BMPR-IB基因的慢病毒溶液;對(duì)照PX458質(zhì)粒的轉(zhuǎn)染效率達(dá)90%以上(圖片未展示)。
本試驗(yàn)在1.5—4.0 μg·mL-1的濃度范圍內(nèi),按0.5 μg·mL-1的間隔設(shè)置了6個(gè)濃度梯度開展篩選試驗(yàn),最終選擇3.5 μg·mL-1的嘌呤霉素濃度篩選打靶細(xì)胞。篩選至第4天,對(duì)照組細(xì)胞全部死亡(圖1-d),試驗(yàn)組(T25,P4代)中發(fā)現(xiàn)10余個(gè)細(xì)胞群,每個(gè)細(xì)胞群中含有數(shù)量不等的抗嘌呤霉素細(xì)胞,較大細(xì)胞群中的細(xì)胞數(shù)多于100個(gè)(圖1-b)。
a:試驗(yàn)組未經(jīng)藥篩的細(xì)胞;b:試驗(yàn)組經(jīng)藥篩4 d的細(xì)胞群;c:對(duì)照組未經(jīng)藥篩的細(xì)胞;d:對(duì)照組細(xì)胞經(jīng)藥篩4 d后(全部死亡)
抽提細(xì)胞DNA,PCR擴(kuò)增跨sgRNA序列的區(qū)域,利用T7E1酶切PCR產(chǎn)物,打靶細(xì)胞中出現(xiàn)了312 bp和131 bp的產(chǎn)物,而對(duì)照組中僅有443 bp的條帶(圖2)。這初步說明CRISPR -sgRNA/Cas9質(zhì)粒成功打靶目標(biāo)基因。
為進(jìn)一步確認(rèn)細(xì)胞打靶成功,本試驗(yàn)通過PCR測(cè)序獲得了打靶細(xì)胞sgRNA區(qū)域的測(cè)序結(jié)果(圖3)。從圖中可見,試驗(yàn)組PAM(GGG)前3—4個(gè)堿基處出現(xiàn)明顯的重疊峰,而對(duì)照組中未出現(xiàn)重疊峰。這說明打靶基因PAM附近出現(xiàn)了堿基缺失或(和)插入突變、導(dǎo)致重疊峰的出現(xiàn),從而確證了成功編輯目標(biāo)基因。
1:試驗(yàn)組;2:對(duì)照組;3:水;M:marker
a:試驗(yàn)組;b:對(duì)照組。長(zhǎng)直線標(biāo)注為sgRNA序列,短直線標(biāo)注為PAM序列
本試驗(yàn)通過TA-克隆測(cè)序獲得了隨機(jī)20個(gè)克隆的sgRNA區(qū)域的靶向位點(diǎn)序列,分析了其打靶效率(圖4)。結(jié)果表明,20個(gè)克隆中出現(xiàn)了1個(gè)15 bp和3 bp的缺失突變,1個(gè)克隆為CT插入突變,11個(gè)克隆為1個(gè)T堿基的插入突變,而6個(gè)克隆與野生型細(xì)胞的序列一致(圖4)。整體打靶效率為70%。
針對(duì)sgRNA設(shè)計(jì)軟件所預(yù)測(cè)的脫靶效應(yīng)最高的20個(gè)潛在脫靶位點(diǎn),本試驗(yàn)通過PCR-TA克隆測(cè)序分別獲得了每個(gè)位點(diǎn)的20個(gè)克隆的序列。通過與對(duì)照組序列的比對(duì),發(fā)現(xiàn)僅在OTS-2中出現(xiàn)了兩種突變,分別為1 bp和2 bp的插入突變(圖5)。針對(duì)OTS-2的脫靶率為10%(2/20),而針對(duì)20個(gè)OTS的脫靶率為0.5%(2/400)。
#1至#20為sgRNA區(qū)域20個(gè)單克隆測(cè)序結(jié)果。斜體序列為sgRNA序列,單下劃線標(biāo)注的為PAM序列,虛線表示堿基缺失,雙下劃線表示為插入突變。WT,野生型細(xì)胞
#1-#20:OTS-2的20個(gè)單克隆測(cè)序結(jié)果。斜體表示為sgRNA序列,單下劃線表示為PAM序列,雙下劃線表示為插入突變。WT,野生型細(xì)胞
針對(duì)BMPR-IB、CylinD2、Cdk2、Bcl2、Cyp19a1基因,分別在試驗(yàn)組和對(duì)照組細(xì)胞中開展了RT-PCR試驗(yàn)。結(jié)果顯示,打靶細(xì)胞的BMPR-IB、CylinD2、Cdk2、Bcl2基因表達(dá)量極顯著下調(diào)(<0.01,圖6),但Cyp19a1基因的表達(dá)量無(wú)顯著性差異(>0.05,圖6)。
Western blotting結(jié)果表明,正常未編輯細(xì)胞的BMPR-IB蛋白表達(dá)量是打靶細(xì)胞的2.6倍(圖7),打靶細(xì)胞BMPR-IB蛋白量降低62%。
豬的GAPDH基因作為內(nèi)參基因,每個(gè)反應(yīng)3個(gè)重復(fù)。** 差異極顯著(P<0.01)
CCK-8試驗(yàn)檢測(cè)結(jié)果表明,在同一代細(xì)胞中,野生型細(xì)胞的增殖能力極顯著高于打靶細(xì)胞(<0.01),而添加嘌呤霉素與不加嘌呤霉素實(shí)驗(yàn)組之間細(xì)胞的增殖能力無(wú)顯著差異(>0.05)(圖8-A)。野生型細(xì)胞不同代次之間的細(xì)胞增殖能力無(wú)顯著性差異(>0.05),而打靶細(xì)胞增殖水平隨著代數(shù)的增加極顯著下降(<0.01)(圖8-B)
WT:野生型細(xì)胞,Target:打靶細(xì)胞
。
WT:野生型細(xì)胞;Target+P:加嘌呤霉素的打靶細(xì)胞;Target:打靶細(xì)胞。每個(gè)試驗(yàn)組3個(gè)樣本,每個(gè)樣本一次重復(fù)。**. 差異極顯著(P<0.01)
sgRNA設(shè)計(jì)是CRISPR/Cas9編輯技術(shù)的一個(gè)重要環(huán)節(jié),高特異性的sgRNA可有效提高打靶效率和降低脫靶效應(yīng)。目前已有多種軟件可用來(lái)設(shè)計(jì)sgRNA[18],這些軟件針對(duì)參數(shù)設(shè)置、脫靶位點(diǎn)預(yù)測(cè)、sgRNA序列評(píng)分等具有不同特點(diǎn)。本試驗(yàn)利用麻省理工學(xué)院張鋒(Feng Zhang)實(shí)驗(yàn)室建立的CRISPR設(shè)計(jì)軟件(http://crispr.mit.edu/),針對(duì)BMPR-IB基因的第8個(gè)外顯子,共設(shè)計(jì)出21條sgRNA序列,得分最低(特異性最差)的為30分,得分最高的為90分,得分80分以上的有5條(具體結(jié)果未顯示)。本試驗(yàn)選擇得分最高的sgRNA用于打靶載體的構(gòu)建,最終針對(duì)PFF細(xì)胞獲得了70%的打靶效率。http://crispr.mit.edu/軟件在設(shè)計(jì)sgRNA序列的同時(shí),還針對(duì)每一條sgRNA序列預(yù)測(cè)潛在脫靶位點(diǎn),并按脫靶效應(yīng)的高低給予評(píng)分,分值越高則脫靶效應(yīng)越強(qiáng)。針對(duì)本研究的sgRNA,該軟件共預(yù)測(cè)了50個(gè)可能的脫靶位點(diǎn),評(píng)分最高的為0.6分(滿分為100分),最低分為0.1分(具體信息未顯示)。本試驗(yàn)選擇了脫靶效應(yīng)排在前20的開展PCR-TA克隆測(cè)序分析,結(jié)果在OTS-2(評(píng)分為0.5分)的20個(gè)TA克隆中發(fā)現(xiàn)了2個(gè)突變體。這說明即使軟件給予的脫靶效應(yīng)評(píng)分較低,也不排除脫靶發(fā)生的可能性。眾所周知,存在脫靶效應(yīng)是CRISPR/Cas9技術(shù)目前較明顯的一個(gè)缺點(diǎn)。本試驗(yàn)對(duì)20個(gè)OTS進(jìn)行驗(yàn)證,僅發(fā)現(xiàn)一個(gè)脫靶位點(diǎn),但由于未針對(duì)所有預(yù)測(cè)的OTS進(jìn)行檢測(cè),因此也不排除存在其它脫靶位點(diǎn)的可能性。隨著CRISPR/Cas9技術(shù)的發(fā)展,目前已建立起多種捕獲脫靶位點(diǎn)的方法,如CHIP-seq[19-22]、GUIDE-seq[23]、IDLV[24]、digenome-seq[25]等。隨著重測(cè)序成本的逐步降低,針對(duì)單克隆細(xì)胞的全基因組測(cè)序可以較準(zhǔn)確地獲得脫靶位點(diǎn)的信息。
本試驗(yàn)選擇了攜帶嘌呤霉素的lentiCRISPR v2質(zhì)粒用于編輯PFF細(xì)胞的目標(biāo)基因。相比傳統(tǒng)的新霉素,嘌呤霉素可以更快速地用于哺乳動(dòng)物細(xì)胞篩選;前者往往需要10—14 d全部殺死沒有抗性的細(xì)胞[26-27],而后者一般需要3—5 d即可全部殺死不帶抗性基因的細(xì)胞。本試驗(yàn)選擇了4 d可殺死所有PFF細(xì)胞的濃度(3.5 μg·mL-1)用于篩選打靶細(xì)胞,用8 d即獲得了具有嘌呤霉素穩(wěn)定抗性的細(xì)胞群,合并計(jì)算載體構(gòu)建、慢病毒包裝等工作,僅用兩星期左右的時(shí)間即獲得了打靶細(xì)胞。在轉(zhuǎn)染慢病毒包裝體系的過程中,攜帶GFP基因的PX458質(zhì)粒同步轉(zhuǎn)染于另一盤細(xì)胞中,以有效監(jiān)測(cè)轉(zhuǎn)染效率。HOTTA等[28]在包裝CRISPR-sgRNA/ Cas9慢病毒試驗(yàn)中,同樣以帶GFP的質(zhì)粒作為包裝轉(zhuǎn)染效率的質(zhì)控,并認(rèn)為當(dāng)293T細(xì)胞的發(fā)光比率達(dá)90%以上,慢病毒的包裝效率是有保障的[28]。本試驗(yàn)選擇PX458(9.3 kb)作為病毒包裝時(shí)評(píng)估轉(zhuǎn)染效率的參照質(zhì)粒,雖然PX458的質(zhì)粒結(jié)構(gòu)與lentiCRISPR v2的較相似,但質(zhì)粒大小有一定的差距(lentiCRISPR v2-sgRNA大小為12.9 kb),而質(zhì)粒大小對(duì)轉(zhuǎn)染效率有影響。因此,今后在開展類似的試驗(yàn)時(shí),應(yīng)采用片段大小更接近的質(zhì)粒作為對(duì)照,如lentiCRISPR v2GFP(Addgene編號(hào):82416)片段大小為13.1 kb,更適用于本試驗(yàn)監(jiān)控病毒包裝時(shí)的轉(zhuǎn)染效率。慢病毒離心法感染宿主細(xì)胞被證實(shí)可以提高感染效率5倍以上[29],該方法無(wú)需通過價(jià)值昂貴的超速離心機(jī)濃縮病毒,無(wú)需測(cè)定慢病毒的滴度,直接取病毒溶液過濾后通過離心法感染細(xì)胞,使操作過程更簡(jiǎn)便,只需一臺(tái)普通的溫控離心機(jī)即可開展。本試驗(yàn)采用離心法也獲得了較好的感染效率,在一個(gè)T25培養(yǎng)瓶中找到了10余個(gè)克隆群。慢病毒針對(duì)不同細(xì)胞的感染效率有較大不同[30]。本試驗(yàn)也嘗試用病毒上清液與細(xì)胞培養(yǎng)液1﹕1混合后(含6.0 μg·mL-1的polybrene)直接感染293T細(xì)胞和PFF細(xì)胞,293T細(xì)胞經(jīng)嘌呤霉素篩選3—4 d細(xì)胞可長(zhǎng)滿,而PFF細(xì)胞無(wú)法獲得細(xì)胞群,這說明慢病毒對(duì)PFF細(xì)胞的感染效率遠(yuǎn)低于293T細(xì)胞(具體結(jié)果未展示)。
本試驗(yàn)還利用RT-PCR檢測(cè)了打靶和對(duì)照組PFF細(xì)胞中的BMPR-IB、CylinD2、Cdk2、Bcl2、Cyp19a1基因表達(dá)情況,結(jié)果顯示BMPR-IB基因被編輯之后,其表達(dá)量極顯著下調(diào)(檢測(cè)引物位于靶位點(diǎn)下游),同時(shí)CylinD2、Cdk2、Bcl2基因的表達(dá)量也極顯著下調(diào),但Cyp19a1基因的表達(dá)量無(wú)顯著性差異。BMPR-IB基因的western blotting結(jié)果顯示,打靶細(xì)胞BMPR-IB蛋白表達(dá)量下降62%。眾所周知,細(xì)胞的增殖主要取決于細(xì)胞周期,尤其是哺乳動(dòng)物細(xì)胞,G1/S、G2/M期在其增值過程中有著關(guān)鍵性的作用[31]。在哺乳動(dòng)物細(xì)胞周期中,調(diào)節(jié)G1期的因子主要是D型的細(xì)胞周期蛋白()和細(xì)胞周期蛋白依賴激酶()。2在細(xì)胞周期起始以及從G1至S期均具有重要的調(diào)節(jié)作用[32]。BMPR-IB基因是BMPs的I型受體,其位于BMP-Smad信號(hào)傳導(dǎo)通路II型受體的下游,在配體結(jié)合后,I型受體被磷酸化激活,將信號(hào)傳導(dǎo)給下游信號(hào)載體蛋白,有利于細(xì)胞增殖信號(hào)的傳導(dǎo)。當(dāng)BMPR-IB基因被編輯后,BMP信號(hào)通路被阻斷,抑制了細(xì)胞增殖,從而引起了CylinD2、Cdk2基因的表達(dá)極顯著下調(diào)[13]。研究表明,Bcl-2基因家族在卵泡發(fā)育過程中對(duì)卵巢顆粒細(xì)胞凋亡的調(diào)節(jié)具有重要作用,ZHAO等[13]發(fā)現(xiàn)BMPR-IB基因被編輯后會(huì)促進(jìn)顆粒細(xì)胞的凋亡,使線粒體功能發(fā)生障礙,進(jìn)而極顯著下調(diào)Bcl-2基因的表達(dá)。19a1是芳香化酶的編碼基因,ZHAO等[13]發(fā)現(xiàn)BMPR-IB基因被編輯后會(huì)極顯著下調(diào)Cyp19a1基因的表達(dá),而本試驗(yàn)中該基因的表達(dá)并未出現(xiàn)顯著性改變(>0.05),推測(cè)是由于不同細(xì)胞的BMP信號(hào)通路表達(dá)調(diào)控差異所造成。豬胎兒成纖維細(xì)胞中BMPR-IB基因被編輯使得CylinD2、Cdk2、Bcl2基因表達(dá)量極顯著下調(diào),可能嚴(yán)重影響了豬胎兒成纖維細(xì)胞的增殖和凋亡,在試驗(yàn)過程中發(fā)現(xiàn),編輯BMPR-IB基因的PFF細(xì)胞傳代2—3次后,明顯出現(xiàn)細(xì)胞增殖緩慢、細(xì)胞形態(tài)變差的現(xiàn)象。CCK-8檢測(cè)結(jié)果也表明,打靶細(xì)胞隨著代數(shù)的增加其增殖水平極顯著下降(<0.01,圖8)。
利用慢病毒介導(dǎo)的CRISPR/Cas9技術(shù)快速地獲得了編輯BMPR-IB基因的PFF細(xì)胞,打靶細(xì)胞突變率為70%;在所檢測(cè)的20個(gè)最可能的脫靶位點(diǎn)中,僅一個(gè)存在脫靶現(xiàn)象。研究顯示,BMPR-IB基因可能對(duì)BMPs信號(hào)通路中重要功能基因的表達(dá)和PFF細(xì)胞的增殖有重要的調(diào)節(jié)作用。
[1] JINEK M, EAST A, CHENG A, LIN S, MA E, DOUDNA J. RNA-programmed genome editing in human cells., 2013, 2: e00471.
[2] CONG L, RAN F A, COX D, LIN S L, BARRETTO R, HABIB N, HSU P D, WU X B, JIANG W Y, MARRAFFINI L A. Multiplex genome engineering using CRISPR/Cas systems., 2013, 339(6121): 819-823.
[3] MALI P, YANG L H, ESVELT K M, AACH J, GUELL M, DICARLO J E, NORVILLE J E, CHURCH G M. RNA-guided human genome engineering via Cas9., 2013, 339(6121): 823-826.
[4] KIM B C, KIM H R, KIM M Y, PARK C S, JIN D I. Analysis of transgene integration efficiency into porcine fetal fibroblast using different transfection methods., 2008, 33: 113-117.
[5] DENNING C, DICKINSON P, BURL S, WYLIE D, FLETCHER J, CLARK AJ. Gene targeting in primary fetal fibroblasts from sheep and pig., 2001, 3(4): 221-231.
[6] DENNING W, DAS S, GUO S, XU J, KAPPES J C, HEL Z. Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations., 2013, 53(3): 308-314.
[7] HELDIN C H, MIYAZONO K, TEN DIJKE P. TGF-β signalling from cell membrane to nucleus through SMAD proteins., 1997, 390(6659): 465-471.
[8] Liu G, Liu K, Wei H, Li L, Zhang S. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer., 2016, 14(3): 2527-2533
[9] LAI S S, WEI S, ZHAO B T, OUYANG Z, ZHANG Q J, FAN N N, LIU Z M, ZHAO Y, YAN Q M, ZHOU X Q, LI L, XIN J G, ZENG Y Z, LAI L X, ZOU Q J. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering.. 2016, 11(1): e0146562.
[10] YOON B S, POGUE R, OVCHINNIKOV D A, YOSHII I, MISHINA Y, BEHRINGER R R, LYONS K M. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways., 2006, 133(23): 4667-4678.
[11] YUJI H, JUNKO H, YURIKO, M, YURIKO M, KYOKO O, EICHI T, TETSUICHIRO I, YOSHIHIKO S. Growth differentiation factor 5 (GDF-5) induces matrix Metalloproteinase 2 (MMP-2) expression in periodontal ligament cells and modulates MMP-2 and MMP-13 activity in osteoblasts., 2010(3): 1-10.
[12] BASSON M A. Signaling in cell differentiation and morphogenesis., 2012, 4(6): a008151
[13] ZHAO Y Y, LI X X, WANG W, CHEN X, YU P, WANG J J, XU Y X. Effect of BMPR-IB gene silencing by siRNA on apoptosis and steroidogenesis of porcine granulosa cells., 2014, 13(4): 9964-9975.
[14] WILSON T, WU X Y, JUENGEL J L, ROSS I K, LUMSDEN J M, LORD E A, DODDS K G, WALLING G A, MCEWAN J C, O'CONNELL A R, MCNATTY K P, MONTGOMERY G W. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells., 2001, 64(4): 1225-1235.
[15] MULSANT P, LECERF F, FABRE S, SCHIBLER L, MONGET P, LANNELUC I, PISSELET C, RIQUET J, MONNIAUX D, CALLEBAUT I, CRIBIU E, THIMONIER J, TEYSSIER J, BODIN L, COGNIé Y, CHITOUR N, ELSEN J M. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes., 2001, 98(9): 5104-5109.
[16] SOUZA C J, MACDOUGALL C, MACDOUGALL C, CAMPBELL B K, MCNEILLY A S, BAIRD D T. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene., 2001, 169(2): R1-R6.
[17] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method., 2001, 25(4): 402-408.
[18] GRAHAM D B, ROOT D E. Resources for the design of CRISPR gene editing experiments., 2015, 16(1): 260-281.
[19] DUAN J, LU G, XIE Z, LOU M, LUO J, GUO L, ZHANG Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome., 2014, 24(8): 1009-1012.
[20] BULTMANN S, MORBITZER R, SCHMIDT C S, THANISCH K, SPADA F, ELSAESSER J, LAHAYE T, LEONHARDT H. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers., 2012, 40(12): 5368-5377.
[21] HSU P D, SCOTT D A, WEINSTEIN J A, RAN F A, KONERMANN S, AGARWALA V, LI Y, FINE E J, WU X, SHALEM O, CRADICK T J, MARRAFFINI L A, BAO G, ZHANG F. DNA targeting specificity of RNA-guided Cas9 nucleases., 2013, 31(9): 827-832.
[22] KUSCU C, ARSLAN S, SINGH R, THORPE J, ADLI M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease., 2014, 32(7): 677-683.
[23] TSAI S Q, ZHENG Z, NGUYEN N T, LIEBERS M, TOPKAR V V, THAPAR V, WYVEKENS N, KHAYTER C, IAFRATE A J, LE L P, ARYEE M J, JOUNG J K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases., 2015, 33(2): 187-197.
[24] WANG X, WANG Y, WU X, WANG J, WANG Y, QIU Z, CHANG T, HUANG H, LIN R J, YEE J K. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors., 2015, 33(2): 175-178.
[25] KIM D, BAE S, PARK J, KIM E, KIM S, YU H R, HWANG J, KIM J I, KIM J S. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells., 2015, 12(3): 237-244.
[26] KOCHUPURAKKAL B S, IGLEHART J D. Nourseothricin N-acetyl transferase: a positive selection marker for mammalian cells., 2013, 8(7): e68509.
[27] WATANABE S, IWAMOTO M, SUZUKI S, FUCHIMOTO D, HONMA D, NAGAI T, HASHIMOTO M, YAZAKI S, SATO M, ONISHI A. A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin., 2005, 72(2): 309-315.
[28] HOTTA A, CHEUNG A Y, FARRA N, GARCHA K, CHANG W Y, PASCERI P, STANFORD W L, ELLIS J. EOS lentiviral vector selection system for human induced pluripotent stem cells., 2009, 4(12): 1828-1844.
[29] SPENCER A. Enhancing Lentiviral Transduction Efficiency[A]. Sigma-aldrich, 2011.
[30] WILSON A A, MURPHY G J, HAMAKAWA H, KWOK L W, SRINIVASAN S, HOVAV A H, MULLIGAN R C, AMAR S, SUKI B, KOTTON D N. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages., 2010, 120(1): 379-389.
[31] FISHMAN D D, SEGAL S, LIVNEH E. The role of protein kinase C in G1 and G2/M phases of the cell cycle (review)., 1998, 12: 181-186.
[32] LONG X E, GONG Z H, PAN L, Zhong Z W, Le Y P, Liu Q, Guo J M, Zhong J C. Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells., 2010, 43: 291-296.
(責(zé)任編輯 林鑒非)
Targeted Editing of Bmpr-Ib Gene in Porcine Fetal Fibroblasts via Lentivirus Mediated Crispr/Cas9 Technology and Its Effects on Expression of Genes in the Bmps Signaling Pathway
YANG Qiang, XU Pan, JIANG Kai, QIAO ChuanMin, REN Jun, HUANG LuSheng, XING YuYun
(State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045)
【】The aims of this study were to edit the BMPR-IB gene in pig fetal fibroblasts (PFF) via a lentivirus-mediated CRISPR/Cas9 genome editing technology, and toinvestigate its effects on expression of relevant functional genes in the bone morphogenetic proteins (BMPs) signaling pathway. 【】Twenty one single-guide RNAs (sgRNAs) targeting the eighth exon of porcine BMPR-IB gene were designed by the online software http://crispr.mit.edu. The sgRNA sequence with the highest score was selected for annealing with its complementary sequence (including adapters), and then the double-stranded DNA was ligated into the linearized lentiCRISPR v2, with the aim to obtain targeting plasmid. The targeting plasmid was mixed with packing vectors psPAX2 and pCMV-VSV-G at 5﹕4﹕1 molar ratio, then used to produce the recombinant lentivirus in 293T cells. To generate the induction mixture, the lentivirus supernatant was filtered through 0.45 μm, mixed with equal volume of fresh PFF growth medium, and finally polybrene was added to a final concentration of 6 μg·mL-1. PFF cells were infected in induction mixture and centrifuged at 1 000 g for 1 h at 32℃, then cultured in a 37℃incubator for 3 days. Three days post-transfection cells were selected with 3.5 μg·mL-1puromycin for 6-7 days, and resistant clones targetingwere expanded. Targeting cells were screened first by T7E1 digestion, and then the PCR and PCR-TA cloning were performed to confirm correct targeting. Quantitative real-time PCR was performed to detect the expression levels of relevant functional genes in BMPs signaling pathway. Protein expression of the BMPR-IB gene was detected by western blotting. Cell Counting Kit-8 (CCK-8) kit was used to measure the proliferation capacity of targeted cells and control group cells. 【】Both T7E1 assay and PCR sequencing showed that the targeted region was successfully edited in targeted cells. TA cloning and sequencing revealed the desired insertion and deletion mutations in the targeted region, and the indels mutation rate was 70%. Moreover,only one off-target site (OTS) was detected among 20 potential ones, and an off-target rate of 10% was observed at this site. Quantitative real-time PCR results demonstrated that the expression levels of BMPR-IB, CylinD2, Cdk2 and Bcl2 genes were significantly (<0.01) down-regulated in edited cells compared with wild-type cells. Western blotting results showed that the expression level ofin targeted cell was 38% of that in wild type cells. Cell proliferation assay revealed that the proliferation capacity of targeted cells was significantly lower than that of wild-type PFF cells of the same generation(<0.01). Significant losses of proliferation capacity in targeted PFF cells were found following the cell passages (P5, P7 and P9); while there was no significant difference between passage 5 and passage 7 or 9 in control cells. This loss of proliferation capacity in targeted cells does not seem to be caused by the puromycin selection process, as control cells did not show the same loss when underwent the same process. 【】The lentivirus-mediated CRISPR/Cas9 system is efficient for targeted gene editing in PFF. The expression levels of relevant genes in BMPs signaling pathway were significantly down-regulated inedited cells, indicating thatplays an important role in regulating the proliferation of PFF cells.
Lentivirus;CRISPR/Cas9; porcine fetal fibroblasts;; off-target; cell proliferation
2017-03-02;
2018-02-02
國(guó)家自然科學(xué)基金(31560304)、國(guó)家科技重大專項(xiàng)(2016ZX08006-003)
楊強(qiáng),E-mail:626818972@qq.com。
幸宇云,Tel/Fax:0791-83813080;E-mail:xingyuyun9@hotmail.com