• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE

    2018-04-17 02:46:00SatarTursynbolatYrysgulBakytkarimJianzhiHuangLishiWang
    Journal of Pharmaceutical Analysis 2018年2期

    Satar Tursynbolat,Yrysgul Bakytkarim,Jianzhi Huang,Lishi Wang

    School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China

    1.Introduction

    Metronidazole,one of nitroimidazole derivative drugs(Fig.1)well-known for its antimicrobial properties, is effective against trichomonas[1–3],Vincent's organisms[4]and anaerobic bacteria [5–7].However,overuse and long-term use of metronidazole will cause toxicity[8],peripheral neuropathies[9]and opticneuropathy[10,11].Therefore,itisnecessary to monitor metronidazole concentration in patients under antibiotic therapy.Several analytical methods have been reported for the determination of metronidazole,including spectrophotometry[12,13]and chromatography[14–17].However,these methods could not realize high selectivity of metronidazole determination,and such determination processes were costly and time consuming.Hence,it is important to develop an alternative method for metronidazole determination with high sensitivity and selectivity.

    Nowadays,electrochemical methods have been widely used in environmental analysis and biological samples analysis[18–22].Particularly,electrochemical sensors and biosensors have been developed for pharmaceutical, food, agricultural and environmental analyses due to the advantages of fast response and good sensitivity[23–26].

    Electrochemical determination based on electrochemical sensor possesses the advantages of high sensitivity low cost and easy operation,which was widely used in analytical chemistry,and separation step is usually used to increase the selectivity prior to the determination[27–29].Electrochemical sensors fabricated by different modified electrode materials have been developed for electrochemical determination [27,29].Poly-dopamine is a conductive and biocompatible polymer,which has versatile applications due to its many attractive properties[30–33].Polydopamine can be coated on different materials and can be a good support for loading metal nanoparticle to form nanocomposites[34,35],which finally was applied in various electrochemical biosensors[36–39].Moreover,the polymerization method of dopamine was facile,and its surface morphology and layer thickness can be better controlled[40–42].Furthermore,polydopamine can be easily coated on the materials surface through a very strong chemical bond[43,44].Carboxylic muti-walled carbon nanotubes(MWCNTs–COOH)have been widely applied for the development of chemical sensors due to their excellent electrical conductivity,high surface area,remarkable mechanical strength and good chemical stability[45,46].

    Fig.1.Chemical structure of metronidazole.

    In this work,we developed a novel electrochemical sensor based on polydopamine/MWCNTs–COOH nanocomposites,where polydopamine can be easily electropolymerized to the surface of MWCNTs–COOH to form nanocomposites,and f i nally successfully realized the ultrasensitive determination for metronidazole with a wide linear detection range from 5 to 5000 μmol/dm3and a low detection limit of 0.25 μmol/dm3(S/N=3).Most importantly,the proposed sensor has been successfully applied for the quantitative determination of metronidazole in real drug samples.This work would provide an effective analytical strategy for metronidazole determination in application of real pharmaceutical and biological samples analysis.

    2.Experimental

    2.1.Reagents

    Metronidazole(99%,analytical grade)was purchased from Macklin Biochemical Co.,Ltd.(Shanghai,China).Carboxylic multiwalled carbon nanotubes were purchased from Aladdin Industrial Company(Shanghai,China).Dopamine hydrochloride(98%,analytical grade)was purchased from J&K Chemical(Beijing,China).Drug samples were obtained from Huayueyang Biotechnology Co.,Ltd.(Beijing,China).All other reagents were of analytical grade and used without further purification.0.1 M phosphate buffer solution(PBS)was prepared by mixing NaH2PO4and Na2HPO4,and then adjusted to the required pH values with H3PO4or NaOH solution.All aqueous solutions were prepared with doubly distilled water.

    2.2.Fabrication of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    First,the bare GCE was polished with 0.3 and 0.05 μm of alumina powders,then rinsed ultrasonically with absolute alcohol and distilled water,and finally dried in the nitrogen stream.5μL of 0.5 mg/mL MWCNTs–COOH homogeneous suspension was dropped onto the electrode surface and then was dried under the infrared lamp,thus obtaining MWCNTs–COOH/GCE.Finally the polydopamine was electropolymerized onto thesurfaceof MWCNTs–COOH by cyclic voltammetry in 5 mmol/dm3dopamine in 0.1 M PBS(pH=5)between-0.4 V and+0.7 V at a scan rate of 50 mV/s for 10 cycles,thus obtained polydopamine/MWCNTs–COOH nanocomposites/GCE sensor.

    2.3.Apparatus and method

    Cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV)experiments were performed on a CHI 660B electrochemical workstation,purchased from Chenhua Co,Ltd.(Shanghai,China).A conventional three-electrode system was used with a glassy carbon electrode(3 mm diameter)as the working electrode,a saturated calomel reference electrode(SCE)and a Pt wire as the counter electrode.The differential pulse voltammetry scans ranged from-0.4 V to-1.0 V with amplitude of 0.05 V,pulse width of 0.05 s,pulse period of 0.5 s,sampling width of 0.0167,and increment of 0.004 V.For CV,scan rate was 50 mV/s,sample interval was 0.001 V.Electrochemical impedense spectroscopy was obtained in 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl under open circuit potential with frequency range from 0.1 Hz to 100 kHz and 5 mV amplitude.The surface morphology was characterized using a field emission scanning electron microscope(FE-SEM;Zeiss Ultra55,Germany).

    For the determination of metronidazole,the detection limit(Cm)was obtained using the following equation:

    Where m is the slope of the calibration plot in the linear range,and Sbis the standard deviation of the blank response which was obtained from 20 replicate measurements of the blank PBS buffer solution.

    3.Results and discussion

    3.1.Characterization of polydopamine/MWCNTs–COOH nanocomposites modified GCE

    The SEM images of MWCNTs–COOH/GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE are shown in Fig.2.The MWCNTs–COOH can be obviously observed in Fig.2A,when the polydopamine was electropolymerized onto the electrode surface,a rough polymer film could be obviously observed on the surface of MWCNTs–COOH,indicating the successful preparation of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor(Fig.2B).

    Fig.3A shows cyclic voltammograms of bare GCE,MWCNTs–COOH/GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE in the presence of 5 mmol/dm3K3Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl.A pair of reversible oxidation and reduction peaks were observed at 0.26 and 0.17 V,respectively,for the bare GCE(curve a).After being modified with the MWCNTs–COOH(curve b),it showed obvious increased redox peak currents because MWCNTs–COOH can dramatically increase the electrode surface area and possesses good electrical conductivity[47].Moreover,the polydopamine/MWCNTs–COOH nanocomposites/GCE(curve c)showed further enhanced redox peak currents compared with MWCNTs–COOH/GCE because polydopamine can accelerate the electron transfer eff i ciency between the electrode surface and solution.

    Fig.2.SEM images of(A)MWCNTs–COOH/GCE and(B)polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.3.(A)Cyclic voltammograms and(B)Electrochemical impedance spectroscopy obtained at(a)bare GCE,(b)MWCNTs–COOH/GCE and(c)polydopamine/MWCNTs–COOH nanocomposites/GCE in 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl.

    Fig.4.(A)CVs and(B)DPVs of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at(a)bare GCE and(b)polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.5.(A)CVs of 500 μmol/dm3metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE in 0.1 M PBS(pH=10)buffer solution at different scan rates.(B)The relationship between the reduction peak currents and scan rates.

    Fig.6.The effect of(A)accumulation time and(B)accumulation potential on the reduction peak current of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at the polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.7.(A)CVs of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at different pH values at the polydopamine/MWCNTs–COOH nanocomposites/GCE.The relationship of(B)reduction peak potentials vs.pH values and(C)reduction peak currents vs.pH values.

    Electrochemical impedance spectroscopy(EIS)is a powerful tool for studying the surface-modified electrode.Fig.3B shows the EISplotsofbareGCE,MWCNTs–COOH/GCE,polydopamine/MWCNTs–COOH nanocomposites/GCE at 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]in 0.1 M KCl.The bare GCE(curve a)possesses a small resistance.When MWCNTs–COOH was modified onto the bare GCE surface(curve b),it displayed a straight line in the Nyquist plot because the resistance was significantly decreased.Moreover,thepolydopamine/MWCNTs–COOHnanocomposites/GCE(curve c)also displayed a straight line in the Nyquist plot,which almost showed the resistance same as MWCNTs–COOH/GCE,because polydopamine/MWCNTs–COOH nanocomposites also possess excellent electron transfer efficiency.Therefore,both the CV and EIS plots proved the successful preparation of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor.

    3.2.Electrochemical behavior of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    The electrochemical behavior of bare GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE for determination of 500 μmol/dm3metronidazole in 0.1 M PBS(pH 10.0)buffer solution is shown in Fig.4A.The reduction peak current and peak potential of metronidazole at the bare GCE(curve a)were Ip=-8.44 μA and Ep=-0.749 V.However,compared to the bare GCE,the polydopamine/MWCNTs–COOH nanocomposites/GCE(curve b)exhibited significantly increased reduction peak current(Ip=-41.12 μA)and significantly increased reduction peak potential(Ep=-0.721 V)of metronidazole.The significantly increased reduction peak potential and significantly increased reduction peak current both confirmed the polydopamine/MWCNTs–COOH nanocomposites possess strong catalytic activity towards the reduction of metronidazole.Moreover,the DPVs results in Fig.4B correspond with the CVs in Fig.4A.Therefore,the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor can be successfully utilized for the determination of metronidazole.

    3.3.The effect of scan rate

    The CVs of polydopamine/MWCNTs–COOH nanocomposites/GCE in 500 μmol/dm3metronidazole at different scan rates are shown in Fig.5A,where the reduction peak currents showed linearity with the scan rates.And the linear regression equation can be expressed as Ip(μA)=-0.363ν(mV/s)-32.399(R=-0.9914)in Fig.5B,indicating that the reduction of the metronidazole is a typical adsorption controlled process.Therefore,it is necessary to study the effect of accumulation time and accumulation potential in order to obtain more sensitive determination for metronidazole.

    3.4.The effect of accumulation time and accumulation potential

    The effect of accumulation time and accumulation potential for the determination of metronidazole was studied by DPVs in Fig.6.As shown in Fig.6A,at the accumulation potential of-0.5 V,the reduction peak current increased gradually with the accumulation time and reached the maximum value when the accumulation time was 200 s.However,the reduction peak current almost remained the same after 200 s due to the saturation of surface active catalytic sites of polydopamine/MWCNTs–COOH nanocomposites/GCE.Thus,the optimal accumulation time of 200 s was employed in our experiments.With the optimal accumulation time determined above,we further studied the effect of accumulation potential on reduction peak current of metronidazole.As shown in Fig.6B,the reduction peak current decreased gradually with the increase of accumulation potential;therefore,the accumulation potentialwaschosen at-0.5 V fordetermination ofmetronidazole in our later experiments.

    3.5.The pH effect

    The effect of pH value on the electrochemical response of 500 μmol/dm3metronidazole in 0.1 M PBS with pH value ranging from 5.0 to 11.0 at the polydopamine/MWCNTs–COOH nanocomposites/GCE was investigated by CV(Fig.7A).The reduction peak potentials showed linearity with pH values ranging from 5.0–9.0 and 9.0–11.0,with the linear regression equations of Ep=-0.0518pH–0.266(R=-0.9687)and Ep=-0.008pH–0.658(R=-0.9462),respectively(Fig.7B),indicating two different reaction mechanisms of metronidazole.According to previous reports[39,48],the reaction mechanisms of metronidazole are listed below:

    Fig.8.DPVs of metronidazole at(A)5–800 μmol/dm3and(C)800–5000 μmol/dm3in 0.1 M PBS(pH=10)buffer solution at the polydopamine/MWCNTs–COOH nanocomposites/GCE.Linear relationships between reduction peak currents and concentrations at(B)5–800 μmol/dm3and(D)800–5000 μmol/dm3.

    Table 1 Linear regression equations of metronidazole under different concentration rangs.

    In pH values of 5·0–9·0:

    In pH values of 9·0–11·0:

    Moreover,as shown in Fig.7C,because the reduction peak current achieved the maximum value in pH=10.0,the pH value of 10.0 was chosen as the best pH value for the determination of metronidazole.

    3.6.The quantitative determination of metronidazole

    The quantitative determination of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE was achieved by DPV under optimal conditions addressed above.As shown in Fig.8,the reduction peak currents of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE increased linearly with concentration ranges of 5–300 μmol/dm3,300–800 μmol/dm3and 800–5000 μmol/dm3,and their corresponding linear regression equations are listed in Table 1.

    The detection limit of metronidazole was determined to be 0.25 μmol/dm3(S/N=3).Moreover,compared with recently most reported electrochemical sensors[49–55]for determination of metronidazole,our proposed nanocomposites sensor could fi nish the ultrasensitive determination of metronidazole with a much widerlinearrangesand a much lowerdetection limits(Table 2).

    Table 2 Comparison of performances of the polydopamine/MWCNTs–COOH nanocomposites/GCE with other modif i ed electrodes.

    Table 3 Practical determination of metronidazole in real drug samples(n=3).(Sample responses are expressed as a confidence interval of 95%probability).

    3.7.Selectivity,stability and reproducibility of the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    Selectivity,stability and reproducibility of the proposed sensors are key factors for their practical application.The proposed sensor was not affected by additions of 100-fold concentrations of various inorganic ions(K+,Mg2+,Zn2+,Na+,Ca2+,PO43-,SO42-,F-,CO32-,NO3-and Cl-,signal change below 3%)and 10-fold concentrations of some organic compounds(oxalic acid,ascorbic acid,glucose,citric acid,cystine,alanine and tartaric acid,signal change below 6%).This results suggested that the proposed sensor possesses excellent selectivity for the determination of metronidazole.After the prepared electrode was stored at 4°C in a refrigerator for 1 month,the reduction peak current of metronidazole remained 95.2%of its initial value,indicating that the proposed sensor possesses good stability.Moreover,four modified electrodes were fabricated to estimate the sensor's reproducibility,and the relative standard deviation(RSD)of detection measurements was calculated to be 2.5%for metronidazole,suggesting that the proposed sensor possesses high reproducibility.Therefore,the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor is promising for determination of metronidazole with excellent selectivity,stability and reproducibility.

    3.8.Real samples determination

    The practical analytical application of the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor was evaluated by determination of metronidazole in real drug samples by standardaddition technique.Three parallel experiments were performed on all measurements.As shown in Table 3,the recovery of the real samples ranged between 93.4%and 118.3%,and the RSD values were less than 4%,indicating that the our proposed sensor can be successfully applied forthepracticaldetermination ofmetronidazole in real samples.

    4.Conclusions

    In summary,we successfully develop an ultrasensitive electrochemical sensor for metronidazole determination,which was based on polydopamine/MWCNTs–COOH nanocomposites.Moreover,the fabrication of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor was simple,where polydopamine can coat on the surface ofMWCNTs–COOH via asimple electropolymerization process.Under optimized conditions,the proposed sensorshowed widerlineardetection range from 5 to 5000 μmol/dm3and a low detection limit of 0.25 μmol/dm3(S/N=3)for metronidazole,and was successfully applied for the practical determination of metronidazole in real drug samples.The proposed sensor shows broad potential in application of real pharmaceutical and biological samples analysis.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21475046,21427809).

    [1]N.C.Desai,A.S.Maheta,K.M.Rajpara,et al.,Green synthesis of novel quinolone based imidazole derivatives and evaluation of their antimicrobial activity,J.Saudi Chem.Soc.18(2014)963–971.

    [2]A.M.Jarrad,T.Karoli,A.Debnath,et al.,Metronidazole–triazole conjugates:activity against Clostridium difficile and parasites,Eur.J.Med.Chem.101(2015)96–102.

    [3]L.A.Dunn,K.T.Andrews,J.S.McCarthy,et al.,The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis,Int.J.Antimicrob.Agents 29(2007)98–102.

    [4]A.H.Davies,J.A.Mafadzean,S.Squires,Treatment of Vincent's stomatitis with metronidazole,Br.Med.J.5391(1964)1149–1150.

    [5]N.Dione,S.Khelai fi a,J.C.Lagier,et al.,The aerobic activity of metronidazole against anaerobic bacteria,Int.J.Antimicrob.Agents 45(2015)537–540.

    [6]A.Katsandri,A.Avlamis,A.Pantazatou,et al.,In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece,including metronidazole-resistant strains,Diagn.Microbiol.Infect.Dis.55(2006)231–236.

    [7]A.V.Scorza,M.R.Lappin,Metronidazole for the treatment of feline giardiasis,J.Feline Med.Surg.6(2004)157–160.

    [8]M.W.Carroll,D.Jeon,J.M.Mountz,et al.,Ef fi cacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis,J.Antimicrob.Agents Chemother.57(2013)3903–3909.

    [9]A.Etxeberria,S.Lonneville,M.P.Rutgers,et al.,Metronidazole-cerebellopathy associated with peripheral neuropathy,downbeat nystagmus and bilateral ocular abduction de fi cit,Rev.Neurol.168(2012)193–195.

    [10]N.M.McGrath,B.Kent-Smith,D.M.Sharp,Reversible optic neuropathy due to metronidazole,Clin.Exp.Ophthalmol.35(2007)585–586.

    [11]M.P.Prabhakaran,M.Zamani,B.Felice,et al.,Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile,Mater.Sci.Eng.C 56(2015)66–73.

    [12]A.K.Mishra,A.Kumar,A.Mishra,et al.,Development of ultraviolet spectroscopic method for the estimation of metronidazole benzoate from pharmaceutical formulation,J.Nat.Sci.Biol.Med.5(2014)261–264.

    [13]G.O.El-Sayed,Polarographic determination of metronidazole in pharmaceutical formulations and urine,Microchem.J.55(1997)110–114.

    [14]W.Tian,L.Gao,Y.Zhao,et al.,Simultaneous determination of metronidazole,chloramphenicol and 10 sulfonamide residues in honey by LC–MS/MS,Anal.Methods 5(2013)1283–1288.

    [15]C.Ho,D.W.M.Sin,K.M.Wong,et al.,Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography–electron capture negative ionization mass spectrometry,Anal.Chim.Acta 530(2005)23–31.

    [16]H.M.Maher,R.M.Youssef,R.H.Khalil,et al.,Simultaneous multi residue determination of metronidazole and spiramycin in fi sh muscle using high performance liquid chromatography with UV detection,J.Chromatogr.B 876(2008)175–181.

    [17]J.Li,Y.B.Wang,L.Wu,et al.,Fabrication of multi-walled carbon nanotubes/oxide reinforced hollow fi bers by sol–gel technique for rapid determination of metronidazole in milk,Anal.Methods 6(2014)1401–1411.

    [18]M.M.Ardakani,H.Beitollahi,Z.Taleat,et al.,Selective voltammetric determination of D-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2nanoparticles and quinizarine,J.Electroanal.Chem.644(2010)1–6.

    [19]M.M.Ardakani,Z.Taleat,H.Beitollahi,et al.,Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum(VI)complex-TiO2nanoparticle modified carbon paste electrode,J.Electroanal.Chem.624(2008)73–78.

    [20]S.Tajika,M.A.Taher,H.Beitollahi,Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode,Sens.Actuators B Chem.188(2013)923–930.

    [21]V.Vyskocil,J.Barek,Polarographic and voltammetric study of genetoxic 2,7-dinitro fluoren-9-one and its determination using mercury electrodes,Collect.Czech Chem.C 74(2009)1675–1696.

    [22]O.Yosypchuk,J.Barek,V.Vyskocil,Voltammetric determination of carcinogenic derivatives of pyrene using a boron-doped diamond fi lm electrode,Anal.Lett.45(2012)449–459.

    [23]H.Beitollahi,H.K.Maleh,H.Khabazzadeh,Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N-phenyl-hydrazinecarbothioamide,Anal.Chem.80(2008)9848–9851.

    [24]H.Beitollahi,M.M.Ardakani,H.Naeimi,et al.,Electrochemical characterization of 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid,J.Solid State Electrochem.13(2009)353–363.

    [25]M.M.Ardakani,H.Beitollahi,M.K.Amini,et al.,Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer,J.Electroanal.Chem.651(2011)243–249.

    [26]M.Baghayeri,M.Namadchian,H.K.Maleh,et al.,Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode:application to the analysis of some real samples,J.Electroanal.Chem.697(2013)53–59.

    [27]V.Vyskocil,J.Barek,Mercury electrodes-possibilities and limitations in environmental electroanalysis,Crit.Rev.Anal.Chem.39(2009)173–188.

    [28]V.Vyskocil,J.Barek,Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons,Curr.Org.Chem.15(2011)3059–3076.

    [29]J.Gajdar,E.Horakova,J.Barek,et al.,Recent applications of mercury electrodes for monitoring of pesticides:a critical review,Electroanalysis 28(2016)2659–2671.

    [30]M.L.Lynge,R.van der Westen,A.Posta,et al.,Polydopamine a nature-inspired polymer coating for bilchemical scince,Nanoscale 3(2011)4916–4928.

    [31]Y.Li,Y.Su,X.Zhao,et al.,Antifouling,high-flux nanofiltration membranes enabled by dual functional polydopamine,ACS Appl.Mater.Interfaces 6(2014)5548–5557.

    [32]C.Wang,J.Zhou,P.Wang,et al.,Robust nanoparticle-DNA conjugates based on mussel-inspired polydopamine coating for cell imaging and tailored self-assembly,Bioconjug.Chem.27(2016)815–823.

    [33]Q.Liu,N.Wang,J.Caro,et al.,Bio-inspired polydopamine:a versatile and powerful platform for covalent synthesis of molecular sieve membranes,J.Am.Chem.Soc.135(2013)17679–17682.

    [34]J.Ryu,S.H.Ku,H.Lee,et al.,Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization,Adv.Funct.Mater.20(2010)2132–2139.

    [35]W.Zhang,Y.Tang,J.Liu,et al.,An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite,J.Mater.Chem.B 2(2014)8490–8495.

    [36]M.Amiri,E.Amali,A.Nematollahzadeh,et al.,Poly-dopamine films:voltammetric sensor for pH monitoring,Sens.Actuators B-Chem.228(2016)53–58.

    [37]M.Amiri,E.Amali,A.Nematollahzadeh,Poly-dopamine thin film for voltammetric sensing of atenolol,Sens.Actuators B-Chem.216(2015)551–557.

    [38]L.Zheng,L.Xiong,Y.Li,et al.,Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol,Sens.Actuators B-Chem.177(2013)344–349.

    [39]H.B.Ammar,M.B.Brahim,R.Abdelhedi,et al.,Boron doped diamond sensor for sensitive determination of metronidazole:mechanistic and analytical study by cyclic voltammetry and square wave voltammetry,Mater.Sci.Eng.C 59(2016)604–610.

    [40]J.Z.Huang,X.L.Shen,R.L.Wang,et al.,A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode,RSC Adv.7(2017)535–542.

    [41]E.L.Ciolkowski,B.R.Cooper,J.A.Jankowski,et al.,Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaf fin cells,J.Am.Chem.Soc.114(1992)2815–2821.

    [42]E.L.Ciolkowski,K.M.Maness,P.S.Cahill,et al.,Disproportionation during electrooxidation of catecholamines at carbon- fiber microelectrodes,Anal.Chem.66(1994)3611–3617.

    [43]Y.S.Choi,H.Kang,D.G.Kim,et al.,Mussel-inspired dopamine-and plant-based cardanol-containing polymer coatings for multifunctional filtration membranes,ACS Appl.Mater.Interfaces 6(2014)21297–21307.

    [44]H.Lee,S.M.Dellatore,W.M.Miller,et al.,Mussel-inspired surface chemistry for multifunctional coatings,Science 318(2007)426–430.

    [45]D.Eder,Carbon nanotube-inorganic hybrids,Chem.Rev.110(2010)1348–1385.

    [46]H.Beitollahi,S.Mohammadi,Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modi fi ed carbon nanotube paste electrode,Mater.Sci.Eng.C 33(2013)3214–3219.

    [47]J.Z.Huang,S.L.Bai,G.Q.Yue,et al.,Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(II),lead(II),copper(II),and mercury(II)ions based on polyfurfural film/multi-walled carbon nanotube modified electrode,RSC Adv.7(2017)28556–28563.

    [48]A.Hajkova,J.Hranicek,J.Barek,et al.,Voltammetric determination of trace amounts of 2-amino fl uoren-9-one at a mercury meniscus modi fi ed silver solid amalgam electrode,Electroanalysis 25(2013)295–302.

    [49]V.Vyskocil,T.Navratil,A.Danhel,et al.,Voltammetric determination of selected nitro compounds at a polished silver solid amalgam composite electrode,Electroanalysis 23(2011)129–139.

    [50]P.Bartlett,E.Ghoneim,G.El-Hefnawy,et al.,Voltammetry and determination of metronidazole at a carbon fiber microdisk electrode,Talanta 66(2005)869–874.

    [51]A.Salimi,M.Izadi,R.Hallaj,et al.,Simultaneous determination of ranitidine and metronidazole at glassy carbon electrode modified with single wall carbon nanotubes,Electroanalysis 19(2007)1668–1676.

    [52]A.M.Brett,S.H.Serrano,I.G.Gutz,et al.,Comparison of the voltammetric behavior of metronidazole at a DNA-modified glassy carbon electrode,a mercury thin film electrode and a glassy carbon electrode,Electroanalysis 9(1997)110–114.

    [53]S.A.?zkan,Y.?zkan,Z.?entürk,Electrochemical reduction of metronidazole at activated glassy carbon electrode and its determination in pharmaceutical dosage forms,J.Pharm.Biomed.Anal.17(1998)299–305.

    [54]J.Peng,C.Hou,X.Hu,Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode,Sens.Actuators B-Chem.169(2012)81–87.

    [55]Y.Gu,X.Y.Yan,W.L.Liu,et al.,Biomimetic sensor based on copper-poly(cysteine) film for the determination of metronidazole,Electrochim.Acta 152(2015)108–116.

    深爱激情五月婷婷| 人妻系列 视频| 热re99久久精品国产66热6| 亚洲av福利一区| 久热久热在线精品观看| 国产精品无大码| 国产欧美亚洲国产| 99久久精品国产国产毛片| 大片电影免费在线观看免费| 亚洲美女黄色视频免费看| 视频区图区小说| av在线观看视频网站免费| av网站免费在线观看视频| 精品国产露脸久久av麻豆| 亚洲久久久国产精品| 亚洲丝袜综合中文字幕| 国产精品麻豆人妻色哟哟久久| 久久久久网色| 在线观看美女被高潮喷水网站| 色哟哟·www| 一级毛片我不卡| 欧美成人精品欧美一级黄| 午夜视频国产福利| av播播在线观看一区| 啦啦啦在线观看免费高清www| 精品久久久精品久久久| 日本午夜av视频| 插逼视频在线观看| 亚洲av国产av综合av卡| 亚洲av男天堂| 亚洲国产精品一区三区| 美女cb高潮喷水在线观看| 亚洲精品中文字幕在线视频 | 免费播放大片免费观看视频在线观看| 亚洲欧美精品专区久久| 免费看光身美女| 麻豆成人av视频| 两个人的视频大全免费| 亚洲国产欧美人成| 免费观看的影片在线观看| 又爽又黄a免费视频| 看十八女毛片水多多多| 99热网站在线观看| 一本一本综合久久| av在线app专区| 夫妻性生交免费视频一级片| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 十八禁网站网址无遮挡 | 丰满迷人的少妇在线观看| 51国产日韩欧美| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 麻豆国产97在线/欧美| 久久久久网色| 国产毛片在线视频| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜爱| 亚洲av不卡在线观看| 国产在线视频一区二区| 成人国产麻豆网| 激情 狠狠 欧美| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 日韩国内少妇激情av| 国产真实伦视频高清在线观看| 美女xxoo啪啪120秒动态图| 日本黄色片子视频| 91精品一卡2卡3卡4卡| 91在线精品国自产拍蜜月| 在线观看美女被高潮喷水网站| av线在线观看网站| 国产高潮美女av| 精品人妻一区二区三区麻豆| 欧美性感艳星| 国产精品三级大全| 美女国产视频在线观看| 日韩三级伦理在线观看| 成人国产麻豆网| av免费观看日本| 草草在线视频免费看| 草草在线视频免费看| 亚洲熟女精品中文字幕| 精华霜和精华液先用哪个| 久久精品国产自在天天线| 我的女老师完整版在线观看| 日韩电影二区| 国产成人a区在线观看| 亚洲人成网站在线观看播放| 成人美女网站在线观看视频| 久热这里只有精品99| 特大巨黑吊av在线直播| 性色av一级| 国产亚洲一区二区精品| 少妇 在线观看| 国精品久久久久久国模美| 久久综合国产亚洲精品| 一级二级三级毛片免费看| 偷拍熟女少妇极品色| 伦理电影免费视频| 亚洲国产欧美人成| 国产黄片视频在线免费观看| 搡老乐熟女国产| av免费观看日本| 99热国产这里只有精品6| 我的老师免费观看完整版| 国产成人freesex在线| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 人妻一区二区av| 免费av不卡在线播放| 欧美激情国产日韩精品一区| 中国美白少妇内射xxxbb| 黄色欧美视频在线观看| 精品一区二区三卡| 在线看a的网站| 夫妻午夜视频| 日韩一区二区三区影片| 一个人看的www免费观看视频| 99热网站在线观看| 国产淫片久久久久久久久| 赤兔流量卡办理| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 女的被弄到高潮叫床怎么办| 三级国产精品欧美在线观看| 天堂8中文在线网| 晚上一个人看的免费电影| 亚洲av二区三区四区| 丰满人妻一区二区三区视频av| 三级国产精品欧美在线观看| 午夜福利高清视频| 久久人人爽av亚洲精品天堂 | 九草在线视频观看| 一边亲一边摸免费视频| 欧美丝袜亚洲另类| 免费少妇av软件| 波野结衣二区三区在线| 亚洲国产av新网站| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 久久人人爽人人爽人人片va| 成年av动漫网址| 免费观看av网站的网址| 麻豆国产97在线/欧美| 热re99久久精品国产66热6| av天堂中文字幕网| 啦啦啦在线观看免费高清www| 三级国产精品片| 免费大片黄手机在线观看| 国产成人免费观看mmmm| 欧美3d第一页| 国产高清不卡午夜福利| 青青草视频在线视频观看| 丝瓜视频免费看黄片| 纵有疾风起免费观看全集完整版| 亚洲,一卡二卡三卡| 99热这里只有是精品50| av免费观看日本| 日本一二三区视频观看| 伦精品一区二区三区| 日本wwww免费看| 女性被躁到高潮视频| 国产毛片在线视频| 久久久国产一区二区| 美女高潮的动态| 黄色日韩在线| 舔av片在线| 久久精品国产亚洲av天美| 身体一侧抽搐| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 国产精品一及| 嘟嘟电影网在线观看| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 制服丝袜香蕉在线| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 免费播放大片免费观看视频在线观看| 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 国产精品爽爽va在线观看网站| 亚洲精品乱码久久久v下载方式| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 久久久久视频综合| 极品教师在线视频| 伊人久久精品亚洲午夜| 国产一区二区三区av在线| 偷拍熟女少妇极品色| 久久国内精品自在自线图片| 亚洲av综合色区一区| 女性被躁到高潮视频| 下体分泌物呈黄色| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| kizo精华| av专区在线播放| 内射极品少妇av片p| 女人久久www免费人成看片| 尾随美女入室| 亚洲精品乱码久久久久久按摩| 这个男人来自地球电影免费观看 | 日韩亚洲欧美综合| 国产欧美日韩一区二区三区在线 | 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 成年美女黄网站色视频大全免费 | 亚洲国产欧美人成| 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区| 九九在线视频观看精品| 少妇猛男粗大的猛烈进出视频| 日韩一区二区视频免费看| 免费观看a级毛片全部| 男人和女人高潮做爰伦理| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 欧美日韩一区二区视频在线观看视频在线| 久久6这里有精品| 美女视频免费永久观看网站| 看免费成人av毛片| 夜夜看夜夜爽夜夜摸| 亚洲精品乱码久久久久久按摩| 精品一区二区免费观看| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜添av毛片| 色综合色国产| 日韩伦理黄色片| 国产精品一区二区在线不卡| 我要看黄色一级片免费的| 香蕉精品网在线| 国产色爽女视频免费观看| 伦理电影大哥的女人| av网站免费在线观看视频| 亚洲欧洲日产国产| 欧美成人a在线观看| 韩国av在线不卡| 伊人久久国产一区二区| 国产精品人妻久久久久久| 在线看a的网站| 精品国产乱码久久久久久小说| 国产精品女同一区二区软件| 国产黄色视频一区二区在线观看| 一级爰片在线观看| 色网站视频免费| 美女国产视频在线观看| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的 | 性色avwww在线观看| 亚洲,欧美,日韩| 精品午夜福利在线看| 高清毛片免费看| 男女下面进入的视频免费午夜| 欧美xxxx黑人xx丫x性爽| 亚洲精品一二三| 各种免费的搞黄视频| 亚洲精品乱久久久久久| 在现免费观看毛片| 欧美区成人在线视频| 久久精品久久精品一区二区三区| 欧美日本视频| 亚洲av.av天堂| 人妻少妇偷人精品九色| 国产成人精品福利久久| 嫩草影院新地址| 久久久精品免费免费高清| 十分钟在线观看高清视频www | 久久精品国产a三级三级三级| 欧美精品一区二区免费开放| 麻豆乱淫一区二区| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 三级经典国产精品| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 日韩强制内射视频| 秋霞伦理黄片| 在线观看三级黄色| av在线老鸭窝| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 久热久热在线精品观看| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频 | 久久精品国产自在天天线| 99热6这里只有精品| 成人毛片60女人毛片免费| 最后的刺客免费高清国语| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 国产午夜精品一二区理论片| 色哟哟·www| 日本欧美视频一区| xxx大片免费视频| 成人二区视频| 在线看a的网站| 亚洲va在线va天堂va国产| 久久鲁丝午夜福利片| 偷拍熟女少妇极品色| 国产又色又爽无遮挡免| 搡老乐熟女国产| 午夜免费观看性视频| 国产男人的电影天堂91| 中文字幕久久专区| 国产亚洲欧美精品永久| 日韩电影二区| xxx大片免费视频| 美女视频免费永久观看网站| 亚洲中文av在线| 久久人人爽人人爽人人片va| 超碰97精品在线观看| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 春色校园在线视频观看| 一个人免费看片子| 日韩一本色道免费dvd| 激情 狠狠 欧美| 婷婷色av中文字幕| 亚洲色图av天堂| 十分钟在线观看高清视频www | 青春草亚洲视频在线观看| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久| a级毛色黄片| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 日韩伦理黄色片| 少妇 在线观看| 亚洲国产高清在线一区二区三| 99久久综合免费| 国产成人精品福利久久| 嫩草影院入口| 国产黄片美女视频| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 全区人妻精品视频| 日本欧美国产在线视频| 成人毛片a级毛片在线播放| 麻豆成人午夜福利视频| 边亲边吃奶的免费视频| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| a级毛色黄片| 一区二区三区精品91| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 日韩一本色道免费dvd| 51国产日韩欧美| 男女免费视频国产| 一区二区三区免费毛片| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| freevideosex欧美| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 观看免费一级毛片| 日韩av免费高清视频| 男女无遮挡免费网站观看| 777米奇影视久久| 美女中出高潮动态图| 有码 亚洲区| 80岁老熟妇乱子伦牲交| 免费大片18禁| 国产在线免费精品| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 久久久久网色| 亚洲精品久久久久久婷婷小说| 色视频www国产| 成人黄色视频免费在线看| 亚洲av不卡在线观看| 亚洲欧洲国产日韩| 国产高清三级在线| 色哟哟·www| 欧美高清成人免费视频www| 中国国产av一级| 内射极品少妇av片p| 久久6这里有精品| 亚洲av二区三区四区| 一级毛片我不卡| av福利片在线观看| 综合色丁香网| 欧美日本视频| 国产成人91sexporn| 极品教师在线视频| 国产高清不卡午夜福利| 亚洲精品国产色婷婷电影| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 久久这里有精品视频免费| 99久久精品热视频| 国产成人aa在线观看| 看免费成人av毛片| 成人特级av手机在线观看| 久久精品国产亚洲av天美| 男人舔奶头视频| 国模一区二区三区四区视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美一区二区三区黑人 | videossex国产| 80岁老熟妇乱子伦牲交| 久久影院123| 高清视频免费观看一区二区| 美女内射精品一级片tv| 日本黄大片高清| 久久精品夜色国产| 亚洲天堂av无毛| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 国产欧美日韩精品一区二区| 99久久精品热视频| 蜜桃亚洲精品一区二区三区| 国产亚洲5aaaaa淫片| 久久久久精品性色| 插阴视频在线观看视频| 久久久久网色| 大香蕉久久网| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 国产一区二区三区av在线| 五月天丁香电影| 亚洲中文av在线| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 亚洲欧美日韩无卡精品| 国产黄色视频一区二区在线观看| 欧美xxⅹ黑人| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| av在线app专区| 两个人的视频大全免费| 亚洲精品色激情综合| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 简卡轻食公司| 熟女电影av网| 能在线免费看毛片的网站| 在线天堂最新版资源| 午夜老司机福利剧场| 99视频精品全部免费 在线| 高清不卡的av网站| 亚洲欧美日韩东京热| 亚洲精品国产成人久久av| 免费少妇av软件| 欧美精品国产亚洲| 少妇精品久久久久久久| 99久久精品热视频| 中文字幕亚洲精品专区| 亚洲欧美日韩无卡精品| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 精品亚洲成国产av| 午夜激情久久久久久久| 免费看不卡的av| 久久影院123| 国产免费又黄又爽又色| 一级毛片 在线播放| tube8黄色片| 亚洲精品色激情综合| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 777米奇影视久久| 免费黄频网站在线观看国产| 亚洲av男天堂| 中文字幕人妻熟人妻熟丝袜美| 菩萨蛮人人尽说江南好唐韦庄| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 黄片wwwwww| 晚上一个人看的免费电影| 观看av在线不卡| 美女视频免费永久观看网站| 欧美日韩精品成人综合77777| tube8黄色片| 丰满乱子伦码专区| 色综合色国产| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 一级爰片在线观看| 久久久久久久精品精品| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 亚州av有码| 人人妻人人爽人人添夜夜欢视频 | 视频中文字幕在线观看| 欧美三级亚洲精品| 亚洲av综合色区一区| 高清日韩中文字幕在线| 蜜桃在线观看..| 国模一区二区三区四区视频| av网站免费在线观看视频| 纯流量卡能插随身wifi吗| 2018国产大陆天天弄谢| 国产伦在线观看视频一区| 欧美日韩国产mv在线观看视频 | 在线亚洲精品国产二区图片欧美 | 最近最新中文字幕免费大全7| 亚洲欧美成人精品一区二区| 一区二区三区乱码不卡18| 国产亚洲5aaaaa淫片| videos熟女内射| 成人影院久久| 在线天堂最新版资源| 久久99热6这里只有精品| 日韩大片免费观看网站| 亚洲久久久国产精品| 夜夜骑夜夜射夜夜干| av在线观看视频网站免费| 国产大屁股一区二区在线视频| 噜噜噜噜噜久久久久久91| 黑丝袜美女国产一区| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 麻豆成人av视频| 国产精品熟女久久久久浪| av国产免费在线观看| 精品视频人人做人人爽| 欧美zozozo另类| 日韩人妻高清精品专区| 久久精品国产亚洲av天美| 狂野欧美激情性xxxx在线观看| 亚洲av二区三区四区| 99热全是精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲,欧美,日韩| 五月天丁香电影| 久久久久精品久久久久真实原创| 国产欧美日韩精品一区二区| 亚洲婷婷狠狠爱综合网| 亚洲精品久久久久久婷婷小说| 老女人水多毛片| 国产精品女同一区二区软件| 三级国产精品欧美在线观看| 熟妇人妻不卡中文字幕| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 一级av片app| 麻豆国产97在线/欧美| 久久女婷五月综合色啪小说| 久久久久国产精品人妻一区二区| 久久久久久久久大av| 国产精品99久久久久久久久| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区视频9| 国产午夜精品一二区理论片| 国产在视频线精品| 观看av在线不卡| 少妇的逼水好多| 能在线免费看毛片的网站| 国产真实伦视频高清在线观看| 日韩视频在线欧美| 欧美成人a在线观看| 一区二区三区精品91| 日韩视频在线欧美| 亚洲高清免费不卡视频| 国产精品成人在线| 欧美一级a爱片免费观看看| 一二三四中文在线观看免费高清| 这个男人来自地球电影免费观看 | 在线观看人妻少妇| 国产综合精华液| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 免费大片18禁| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 18禁在线播放成人免费| 纵有疾风起免费观看全集完整版| 精品亚洲乱码少妇综合久久| 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 在线观看人妻少妇| 免费观看无遮挡的男女| 汤姆久久久久久久影院中文字幕| 黄色欧美视频在线观看| 亚洲婷婷狠狠爱综合网| 精品人妻视频免费看| 一级毛片aaaaaa免费看小| 亚洲成人手机| 国产黄频视频在线观看| 男人添女人高潮全过程视频| 亚洲成人手机|