• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physicochemical characterization,the Hirshfeld surface,and biological evaluation of two meloxicam compounding pharmacy samples

    2018-04-17 02:45:50LuinRomniMriYoshiElioniGomesRenesMhoFelipeRoriguesrioCoelhoMreloOliveirMriFreitsMrquesRosneSnGilWgnerMussel
    Journal of Pharmaceutical Analysis 2018年2期

    Luin F.A.Romni,Mri I.Yoshi,Elioni C.L.Gomes,Renes R.Mho,Felipe F.Rorigues,Mário M.Coelho,Mrelo A.Oliveir,Mri B.Freits-Mrques,Rosne A.S.Sn Gil,Wgner N.Mussel,*

    aDepartment of Chemistry,Institute of Exact Sciences,Federal University of Minas Gerais,Av.Ant?nio Carlos 6627,Belo Horizonte,MG,Brazil

    bDepartment of Pharmaceutical Products,Faculty of Pharmacy,Federal University of Minas Gerais,Av.Ant?nio Carlos 6627,Belo Horizonte,MG,Brazil

    cHealth Science Department,Federal University of Espírito Santo,Campus S?o Mateus,ES,Brazil

    dInstitute of Chemistry,Federal University of Rio de Janeiro,Campus Fund?o,RJ,Brazil

    1.Introduction

    Meloxicam(MLX,Fig.1),a non-steroidal anti-inflammatory drug(NSAID)and a partially selective cyclooxygenase(COX-2)inhibitor,belongs to the class of enolic acids and is derived from oxicam.Owing to its anti-inflammatory and analgesic effects as well as good safety profile,characterized by a low incidence of gastrointestinal side effects[1],it is widely prescribed.MLX,[4-hydroxy-2-methyl-N-(5-methyl-2-thiaolyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide](C14H13N3O4S2;351.40 g mol-1),is a yellow powder,practically insoluble in water,and slightly soluble in organic solvents,and well soluble in strong acids and bases[2,3].

    In 2003,Coppi,Sanmarti,and Clavo[4]described five crystalline forms of MLX associated with the corresponding processes for preparation and interconversion.The forms have distinct network structures that may differ in biopharmaceutical aspects and compromise their own functions.Luger and colleagues[5]described the crystalline form I as the most suitable for the preparation of pharmaceutical products.The interconversion between different polymorphs may occur during the storage,as a consequence of the synthetic route,or in improper storage conditions with variations in humidity and temperature.As raw pharmaceutical materials are susceptible to variations and transitions,their full crystallographic analysis is important and should be adopted as a routine practice for adequate quality control.Only proper control will ensure the efficacy and safety of public health[6–10].

    In the present study,we characterized and evaluated the biological activity of meloxicam raw material that is freely used in compounding pharmacies.

    2.Experimental

    MLX samples were obtained from three compounding pharmacies,and anonymized as A,B,and C,which corresponded to different routine batches of Indian origin:TDM/ML/002/11/12–13,ALC/MLX/120102,and MLAH16081112#5,respectively.

    Fig.1.The chemical structure of meloxicam.

    2.1.Powder X-ray diffraction(PXRD)

    PXRD data were collected by a XRD-7000 diffractometer(Shimadzu)at 22 °C at 40 kV and 30 mA,using CuKα(λ =1.54056 ?)equipped with a polycapillary focusing optics under parallel geometry coupled with a graphite monochromator.The sample was subjected to spinning at 60 rpm,scanned over an angular range of 4 60°(2θ)with a step size of 0.01°(2θ)and a time constant of 2 s/step.The software Crystal Explorer v 3.1 was used for the Hirshfeld surface analysis.

    2.2.Differential scanning calorimetry(DSC)

    DSC experiments were performed on a Shimadzu DSC60.The equipment cell was calibrated with indium(mp 156.6 °C;ΔHfus=28.54 J/g)and lead(mp 327.5°C).Aluminum pans,containing approximately 1 mg of sample,were used under a dynamic N2atmosphere(50 mL/min)and a heating rate of 10°C/min in the temperature range between 25 and 300°C.As form III showed different thermal behavior,an isothermal experiment was conducted at 175°C for periods of 15,30,and 45 min.

    2.3.Fourier transformed infrared spectroscopy(FTIR)

    All experiments were conducted on a Perking Elmer IR spectrometer,with samples measured in KBr pressed pellets in the wavenumber range between 400 and 3400 cm-1at room temperature,with a resolution of 4 cm-1.

    2.4.1H and13C-NMR analysis

    Solution 1D and 2D NMR experiments(1H,13C,DEPT-135,HSQC,and HMBC)spectra were performed by using a Bruker Avance DRX 400 spectrometer in DMSO-d6(deutered dimethyl sulfoxide,up to 99.9%)solution at 300 K,which was used as an internal standard(1H:δ =2.50 ppm;13C:δ =39.50 ppm).

    Solid-state13C-NMR(ssNMR)spectra were collected by using a Bruker Avance DRX 400(9.4T)running at rotation of 10 kHz with cross polarization and using glycine(C=O:δ=176.03 ppm)as an internal standard.

    2.5.UV spectrophotometry

    Spectral scans were performed between the wavelengths of 200 and 400 nm on MLX samples dissolved at 10μg/mL in ethanol by using a Shimadzu 1800 spectrophotometer.Ethanol was used as the blank sample to correct for the instrumental background.Origin software(version 9.1)was used to analyze the data.

    All described analyses were conducted within the validity period of all samples.

    2.6.Evaluation of the biological activity

    2.6.1.Animals

    The anti-inflammatory activity was evaluated through the use of the carrageenan-induced paw edema test.Female Swiss mice(25–30 g)with free access to food and water were used.The animals were kept in a room with a 12 h light/dark cycle for a minimum of 3 days prior to the experiment,to allow acclimatization.The room temperature was maintained at 27°C,which corresponds to the thermoneutral zone for mice[11].This study was approved by the Ethics Committee on Animal Experimentation of the Federal University of Minas Gerais(Protocol 233/2016)and conducted in accordance with the S7A guide of the International Conference on Harmonization[12].

    2.6.2.Paw edema induced by carrageenan

    To measure paw volume,a plethysmometer(Model 7140,Ugo Basile,Italy)was used.The basal volume of the right hind paw was measured before the administration of any drug.Next,the animals were divided into the experimental groups in such a way that the mean volumes of each groups was similar.Carrageenan(400μg/20μL)was injected via the intraplantar(i.pl.)route.The vehicle(carboxymethylcellulose;CMC 1%),meloxicam A 15 mg/kg,meloxicam B 15 mg/kg,meloxicam A 30 mg/kg,meloxicam B 30 mg/kg,or dexamethasone(10 mg/kg;positive control)were administered per os(p.o.)30 min prior to the carrageenan injection.The volume of p.o.administration was 10 mL/kg.The paw volume of each animal was again measured at 2,4,and 6 h after injection of the inflammatory stimulus.The results are expressed as the change in paw volume(μL)relative to the basal values[13].

    2.6.3.Statistical analysis

    The results are presented as the mean±standard error mean(S.E.M.).Two-way ANOVA followed by Bonferroni's post hoc test was used to analyze paw volumes differences,with P values of<0.05 considered significant.Statistical analyses were performed by using GraphPrism 5.0(San Diego,USA)for Windows.

    3.Results and discussion

    As the samples from A and C showed identical X-ray diffraction patterns(form I;Fig.2),we considered them to be the same material.Therefore,all other chemical and biological analyses were performed with samples from A(form I)and B(indicated by XRD as a mixture of some of form I and predominantly form III).The significant differences in peak positions and observed reflection planes,shown in Fig.2,confirmed that there were two different polymorphs of the same material.

    Thermal analysis was performed on separate aliquots.The DSC curves of samples from A and B are shown in Fig.3.In the curve of the sample from pharmacy B,there is an incipient exothermal peak(4.47 J/g),at 206.6°C.This peak was suggestive of crystallization or crystal transition,and was not present in the sample from pharmacy A(form I).After the melting point at approximately 260.0°C,in both samples,similar behavior was observed.

    Based on the observed thermal behavior,an isotherm at 175.0°C,just below the beginning of the broad large transition peak,was analyzed to check the crystal transition observed at 206.6°C.The XRD patterns shown in Fig.4 were obtained after the isotherm,under tightly temperature control,after 15,30,and 45 min.In all three distinct aliquots,we confirmed the occurrence of one phase transition.After 15 min,we observed the beginning of the conversion;after 45 min,the phenomenon was completed(Fig.4).

    Fig.2.X-ray diffraction patterns of samples from compounding pharmacies A,B,and C.

    Fig.3.DSC curves of samples from compounding pharmacies A and B superimposed,showing the presence of a small exothermic peak in the B sample.The y axis is broken for better visualization.

    Fig.4.Powder X-ray diffraction of compounding pharmacy B isotherm at 175°C.The structures were fitted by using the Rietveld algorithm.The quotes indicate the sample from compounding pharmacy B,heated at 175°C for 15,30,and 45 min and the final product of the isotherm experiment(form I).

    Through the comparison of the FTIR spectra from the samples from pharmacies A and B(Fig.5),the absorptions were assigned to distinct peaks for each chemical functional group within the structure.The observed and assigned changes in the functional groups occurred at 1184–1176 cm-1,1526–1520 cm-1,and 1550–1552 cm-1related to the stretching vibration of the thiazole ring,the asymmetric stretching vibration at 1264–1286 cm-1of the sulfone,and amide III bands for the-CO-NH-C-group.

    Fig.5.Comparison of Fourier transform infrared spectra between form I and form III.

    As observed in ssNMR(Fig.6),C14 showed a double signal centered at 13.9 and 9.7 ppm for sample B;however,only one signal at 12.8 ppm was observed for sample A(form I;Fig.6,Table 1).

    The1H and13C-NMR spectra of meloxicam were collected in DMSO-d6(Supplementary material).After the material was solubilized in DMSO-d6,all polymorphic characteristics were lost through the dissolution process.In solution,the NMR spectra were identical for both samples.Thus,the discussion of these results is valid for both samples.

    The 1D and 2D NMR spectra(1H,13C,DEPT-135,HSQC,and HMBC)were obtained under standard conditions(shown in Supplementary material).In the13C spectrum,the aromatic carbons C2,C3,C4,C5,C6,C7,and C16 resonated between 123.2 and 134.4 ppm,as expected.The methyl carbons C10 and C18 resonated at 37.9 and 11.7 ppm,respectively.The quaternary carbon C9 resonated at 114.2 ppm,whereas C8,which was connected to the OH group,resonated at 115.7 ppm.Finally,the carbonyl resonated at 168.4 ppm.These results were obtained through direct comparison with published data[4].

    Fig.6.ssNMR spectra for samples from compounding pharmacies A(form I)and B(form I plus form III).

    Table1 ssNMR assignment for13C signals.

    The solid-state13C-NMR spectra of the samples from compounding pharmacies A and B are shown in Fig.6.All13C peaks were properly indexed and a higher number of carbon atoms for sample from B was found compared with the expected spectrum.Through comparison with the spectrum of form I,this provided evidence of the existence of a mixture that contained some of form I and mainly form III(Table 1).This result was corroborated by the XRD measurements,which showed that form III was the major component of the mixture.

    The UV analysis indicated common absorption maxima for forms I and III in ethanol solution at 205,269 and 363 nm(Fig.7).Special structural features may promote different solvation interactions that favor the appearance of tautomeric structures.This would be the case for forms I and III in water owing to the observed turn in the thiazole ring.However,the UV measurement conditions eliminate this possibility,as in standard literature procedures,the UV spectral measurement is obtained in ethanol,for solubility reasons.The contribution of each functional group to the absorption spectra of forms I and III is shown in Fig.7.

    In the UV spectra,a bathochromic shift from 215 nm to 219 nm and a hypsochromic displacement from 297 nm to 278 nm were observed.The Hirshfeld surface was calculated with the projection of the electrostatic potential highlighted by Spackman and Jayatilaka[14],Bojarska and Maniukiewicz[15],which allowed the complete assignment of UV spectra for both forms,I and III,respectively,in ethanol solution.There is a higher probability of interactions between the aromatic rings in form III,which favors theπ→ π*transitions.The hydrogen on the OH group at C3 remains at a distance of approximately 1.69 ? in form I.In form III,the interaction is partial,mainly owing to the difficulties imposed by the increased distance to the same groups and atoms,now approximately 1.88 ?.This longer distance interaction justifies the hypsochromic displacement,as it requires higher energy to occur.

    Fig.7.Total UV-spectra assignments of forms I and III associated with surface potentials obtained from the Hirshfeld surface analysis.

    The carrageenan injection induced a marked and long-lasting paw edema that was already evident at 2 h after injection.Dexamethasone 10 mg/kg resulted in the strongest anti-edematogenic effect(P<0.001),as expected,because it is a steroidal anti-inflammatory agent that acts in the early stages of the inflammatory process;this drug is often used as a positive control in comparative studies[16–19].Nevertheless,owing to the side effects observed in the medicinal uses of this class of materials,it is necessary to obtain effective drugs that result in fewer adverse events.At present,the oxicams play an important role as anti inflammatory agents[19,20].

    Another hypothesis from the results of the biological evaluation for a sample B refers to its identity.As the analyses by XRD and ssNMR indicated the presence of a certain amount of polymorph I in a mixture with polymorph III in the sample from the compounding pharmacy B,the anti-edematogenic effect may be associated with the amount.This result shows the importance of the study of the biological activity of different polymorphs in drugs usually present in raw materials of pharmaceutical interest,both mistral or industrial,as well as for proper characterization in quality control steps[9,10].

    Both meloxicam samples(from pharmacies A and B)reduced paw edema when administered 30 min before carrageenan.Meloxicam from pharmacy A(15 mg/kg)reduced paw edema at 4 h(P< 0.001)and 6 h(P< 0.001).The highest dose of meloxicam from pharmacy A(30 mg/kg)reduced paw edema at 2 h(P< 0.01),4 h(P< 0.001)and 6 h(P< 0.001).Meloxicam from pharmacy B was not as effective as meloxicam from pharmacy A.Both doses of meloxicam from pharmacy B(15 and 30 mg/kg)reduced paw edema,but only at 4 h(P<0.001).The differences between the two samples were more pronounced at the highest dose at 4 h(P< 0.001)and 6 h(P< 0.01)after the injection of carrageenan(Fig.8).

    To study the effects of the two meloxicam samples on the carrageenan-induced paw edema,the positive control of dexamethasone 10 mg/kg,which is frequently used in preclinical assays[16–19],was used,and resulted in the highest anti-edematogenic activity,as expected.This steroidal anti-inflammatory drug markedly inhibits the early stages of the inflammatory process,but may also induce many side effects.Thus,there is an ongoing search for other anti-inflammatory drugs with a safer pro file and oxicams appear to be good candidates[20,21].

    Fig.8.Effect of meloxicam(MLX)from A and B compounding pharmacies(15 and 30 mg/kg,p.o.)or dexamethasone(Dexa;10 mg/kg,p.o.)administered 30 min prior to the induction of the paw edema by i.pl.injection of carrageenan(Cg,400 μg/paw).Each point represents the mean±S.E.M.of six animals.**and***indicate significantly differences from the vehicle(P<0.01 and P<0.001,respectively).##and###indicate significantly difference from meloxicam B 30 mg/kg(P<0.01 and P<0.001,respectively).

    The i.pl.injection of carrageenan induced an acute and marked inflammatory response,characterized mainly by edema formation.This acute response most likely resulted from neutrophil migration and activation and also from the production of a variety of inflammatory mediators that induce vasodilation and increase vascular permeability[22,23].In the present study,pre-treatment with both meloxicam samples reduced carrageenan-induced paw edema in mice.Others investigators have demonstrated the antiinflammatory and analgesic activities of meloxicam in preclinical assays.These effects may result from reduced leukocyte migration and the reduced production of inflammatory mediators,as it has been shown that meloxicam attenuated the activation of nuclear factor-κB,inhibited COX-2 expression,and increased IL-10 production[24–26].

    Meloxican form I was isolated from commercial samples from compounding pharmacies A and C.The sample from compounding pharmacy B,a mixture of forms I and III,was directly identified through the comparison of the X-ray diffraction patterns in patent US 20030109701 A1,[4].Therefore,the sample from B was convoluted by the respective counterparts.Their Bragg reflections were independently indexed and extracted by the Pawley method.Once isolated and treated as one mixture,the crystallographic information for form III was extracted and used in order to obtain the Hirshfeld surface analysis for this polymorph alone(Fig.9).

    The Hirshfeld surface analysis assigns intermolecular interactions inside the unit cell packing.The analysis helps to understand the differences that were observed in the biological evaluation between samples from A(form I)and from the mixture in B(form I plus form III).The atomic distribution of form I,as shown in Fig.9,contributes 89%of the overall interaction's distances(de×di)to the potential surface,starting from as low as 1.2 ? up to 2.4 ?(Fig.9;form I).All expected interactions are π…π,between 5-(thiazole)and 6-membered rings and N-H…S=O internally.In contrast,the overall interactions calculated for form III,were present in(de × di),as low as 1.0 ? and rose to over 2.8 ? (Fig.9;form III)[14–26].The observed turn around the thiazole ring in polymorph III increased the amount of interactions that contributed to different dissolution behavior.These observations not only explained the double signal of C14,but corroborated the increased intermolecular interactions seen for form III.From this data,we inferred that the intramolecular forces occurring at lower and also at higher distance in form III promoted stronger intermolecular interactions within and between the molecules inside the unit cell arrangement.This effect will result in a lower solubility(higher interactions inside the unit cell),as experimentally observed.In agreement with the observed behavior,meloxican was classified as class II in the Biopharmaceutical Classification System[27,28].

    Through those observations,we related the results of the biological evaluation found for sample B(form I plus form III,lower activity),with adverse pharmacokinetic parameters,such as bioabsorption and distribution.As form III presents intramolecular interactions at a lower distance(1.0 ?)in addition to higher distances(over 2.8 ?),when compared with the same parameters for pure form I,the internal cell packing forces will be increased,which results in a more difficult solubilization process.The Hirshfeld surface analysis showed C14 close to S in the thiazole ring on one side and to the hydroxyl group in the six-membered ring in the middle of the structure.For form I,only the hydroxyl group interaction was observed,which explained the ssNMR single signal for C14.In this case,a reduction of the amount of solubilized form III in comparison with form I,over the same solubilization time,will affect the available drug amount after administration differently for both forms.

    Fig.9.Fingerprint plots:intermolecular interactions within the samples from compounding pharmacies A and B that show the total Hirshfeld surface area.

    4.Conclusion

    X-ray diffraction,DSC,and ssNMR analysis indicated the presence of two polymorphs of meloxicam,forms I and III,in the sample from pharmacy B,freely sold in compounding pharmacies from which the samples were acquired.

    The biological test indicated a lower degree of anti-edema activity for the polymorph III when present as major component in the sample from compounding pharmacy B,which also contained form I in the mixture.The Hirshfeld surface analysis of forms I and III provided an explanation of the solubility difference,which was experimentally observed for both compounds;form III is less soluble than form I.

    Although less active,form III is a major component freely sold in compounding pharmacy B,which justified the difference in biological activity between the sample from compounding pharmacy A(form I)and the sample from pharmacy B(form I plus III)observed during the paw edema test conducted in female Swiss mice.

    Our results highlighted the need for full crystallographic characterization and separation of freely used raw material in compounding pharmacies as an indispensable quality control protocol to ensure the desired drug dose/effect.The main concern over the lack of an adequate quality control was demonstrated to be unexpected differences in biological activity that could compromise human health.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    The authors are grateful to Funda??o de Amparo à Pesquisa do Estado de Minas Gerais project APQ-01083-11,Conselho Nacional de Desenvolvimento Científico e Tecnológico grant 245914/2012-9,Coordena??o de Aperfei?oamento de Pessoal de Nível Superior grant PNPD 1648694 and Pró-Reitoria de Pesquisa/UFMG IE 27/2010 for financial support.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jpha.2017.12.006.

    [1]I.I.Roberts,J.D.Morrow in:J.G.Hardman,L.E.Limbird,Goodman&Gilman's the pharmacological basis of therapeutics,McGraw-Hill,New York,2001:713–714.

    [2]British Pharmacopoeia Commission,British Pharmacopoeia,Medicines&Healthcare products Regulatory Agency,TSO,London,2013.

    [3]The United States Pharmacopoeia,third fourth ed.,United States Pharmacopeial Convention,Rockville:3403–3405,2011.

    [4]L.Coppi,M.B.Sanmarti,M.C.Clavo,Crystalline forms of meloxicam and processes for their preparation and interconversion.Patent US 20030109701 A1,2003.

    [5]P.Luger,K.Daneck,W.Engel,et al.,Structure and physicochemical properties of meloxicam,a new NSAID,Eur.J.Pharm.Sci.4(1996)175–187.

    [6]A.Burger,R.Ramberger,On the polymorphism of pharmaceuticals and other molecular crystals.I,Microchim.Acta 72(1979)259–271.

    [7]A.Burger,R.Ramberger,On the polymorphism of pharmaceuticals and other molecular crystals.II,Microchim.Acta 72(1979)273–316.

    [8]J.Haleblian,W.McCrone,Pharmaceutical applications of polymorphism,Pharm.Sci.58(1969)911–929.

    [9]E.H.Lee,A practical guide to pharmaceutical polymorph screening&selection,Asian J.Pharm.Sci.9(I4)(2014)163–175.

    [10]M.Descamps,J.F.Willart,Perspectives on the amorphisation/milling relationship in pharmaceutical materials,Adv.Drug Deliv.Rev.100(2016)51–66.

    [11]C.J.Gordon,Thermal biology of the laboratory rat,Physiol.Behav.47(1990)963–991.

    [12]International Conference on Harmonization,Safety pharmacology studies for human pharmaceuticals(S7A),2000:13.

    [13]S.H.Ferreira,A new method for measuring variations of rat paw volume,J.Pharm.Pharmacol.31(1979)648.

    [14]M.A.Spackman,D.Jayatilaka,Hirshfeld surface analysis,CrystEngComm 11(2009)19–32.

    [15]J.Bojarska,W.J.Maniukiewicz,Investigation of intermolecular interactions infinasteride drug crystals in view of X-ray and Hirshfeld surface analysis,Mol.Struct.1099(2015)419–426.

    [16]H.J.Koo,K.H.Lim,H.J.Jung,et al.,Anti-inflammatory evaluation of gardenia extract,geniposide and genipin,J.Ethnopharmacol.103(2006)496–500.

    [17]M.Fezai,L.Senovilla,M.Jemaà,et al.,Analgesic,anti-inflammatory and anticancer activities of extra virgin olive oil,J.Lipids 2013(2013)1–7.

    [18]D.G.Soares,A.M.Godin,R.R.Menezes,et al.,Anti-inflammatory and antinociceptive activities of azadirachtin in mice,Planta Med.80(2014)630–636.

    [19]T.G?ncü,E.O?uz,H.Sezen,et al.,Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats,Arq.Bras.Oftalmol.79(2016)357–362.

    [20]H.Sch?cke,W.-D.D?cke,K.Asadullah,Mechanisms involved in the side effects of glucocorticoids,Pharmacol.Ther.96(2002)23–43.

    [21]S.Xu,C.A.Rouzer,L.J.Marnett,Oxicams,a class of nonsteroidal anti-inflammatory drugs and beyond,IUBMB Life 66(2014)803–811.

    [22]D.A.R.Valério,T.M.Cunha,N.S.Arakawa,et al.,Anti inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice:inhibition of cytokine production-dependent mechanism,Eur.J.Pharmacol.562(2007)155–163.

    [23]A.C.Rocha,E.S.Fernandes,N.L.Quint?o,et al.,Relevance of tumour necrosis factor-α for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw,J.Pharmacol.148(2006)688–695.

    [24]G.Engelhardt,D.Homma,K.Schlegel,et al.,Anti-inflammatory,analgesic,antipyretic and related properties of meloxicam,a new non-steroidal anti inflammatory agent with favourable gastrointestinal tolerance,Inflamm.Res.44(1995)423–433.

    [25]G.Engelhardt,Pharmacology of meloxicam,a new non-steroidal anti-inflammatory drug with an improved safety pro file through preferential inhibition of COX-2,Br.J.Rheumatol.35(1996)4–12.

    [26]N.A.El-Shitany,E.A.El-Bastawissy,K.El-desoky,Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B,inducible cyclooxygenase and pro inflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism,Int.Immunopharmacol.19(2014)290–299.

    [27]F.P.A.Fabbiani,L.T.Byrne,J.J.McKinnon,et al.,Solvent inclusion in the structural voids of form II carbamazepine:single-crystal X-ray diffraction,NMR spectroscopy and Hirshfeld surface analysis,CrystEngComm 9(2007)728–731.

    [28]D.R.Weyna,M.L.Cheney,N.Shan,et al.,Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation,Mol.Pharm.9(2012)2094–2102.

    国产 一区精品| 久久久久久国产a免费观看| 人妻夜夜爽99麻豆av| 成人午夜精彩视频在线观看| 秋霞在线观看毛片| 国语对白做爰xxxⅹ性视频网站| 国产视频首页在线观看| 3wmmmm亚洲av在线观看| 欧美xxⅹ黑人| a级一级毛片免费在线观看| 欧美一级a爱片免费观看看| 最近2019中文字幕mv第一页| 91精品伊人久久大香线蕉| 国产亚洲最大av| 久久热精品热| 亚洲性久久影院| 亚洲人成网站在线播| 一本久久精品| 国产成人福利小说| 亚洲熟女精品中文字幕| 九九在线视频观看精品| 国产日韩欧美在线精品| 欧美xxxx性猛交bbbb| 噜噜噜噜噜久久久久久91| 亚洲欧美精品自产自拍| 老女人水多毛片| 亚洲精品第二区| 91精品伊人久久大香线蕉| 日韩av免费高清视频| 国产精品无大码| 日本免费在线观看一区| 精品久久久久久久人妻蜜臀av| 蜜桃亚洲精品一区二区三区| 丝袜美腿在线中文| 大码成人一级视频| 久久久午夜欧美精品| 精品酒店卫生间| 日本欧美国产在线视频| av在线天堂中文字幕| 美女国产视频在线观看| 免费看a级黄色片| 欧美精品一区二区大全| 久热这里只有精品99| 超碰97精品在线观看| 日本一二三区视频观看| 精品久久国产蜜桃| 久久精品久久久久久噜噜老黄| 国产老妇女一区| 秋霞伦理黄片| 久久久久久久大尺度免费视频| 日韩免费高清中文字幕av| 舔av片在线| 国产成人免费观看mmmm| 国产真实伦视频高清在线观看| 插逼视频在线观看| 国产伦理片在线播放av一区| 免费黄频网站在线观看国产| 欧美成人精品欧美一级黄| 男人爽女人下面视频在线观看| 最近中文字幕高清免费大全6| 久久久久久国产a免费观看| 亚洲美女视频黄频| 国产一区二区亚洲精品在线观看| 又大又黄又爽视频免费| 国产亚洲5aaaaa淫片| 日本-黄色视频高清免费观看| 看免费成人av毛片| 中文资源天堂在线| 在线播放无遮挡| 99热这里只有是精品在线观看| 国产精品久久久久久av不卡| 最近最新中文字幕免费大全7| 亚洲精品aⅴ在线观看| 欧美+日韩+精品| 亚洲不卡免费看| 国语对白做爰xxxⅹ性视频网站| 久久人人爽人人爽人人片va| 国产黄频视频在线观看| 免费大片黄手机在线观看| 国产综合懂色| 久久久久精品性色| 欧美一区二区亚洲| 国产一区二区在线观看日韩| 在线a可以看的网站| 欧美潮喷喷水| 国产成人aa在线观看| 最后的刺客免费高清国语| av国产精品久久久久影院| 又粗又硬又长又爽又黄的视频| 2022亚洲国产成人精品| 男女边摸边吃奶| av网站免费在线观看视频| 边亲边吃奶的免费视频| 天堂中文最新版在线下载 | 成年av动漫网址| 建设人人有责人人尽责人人享有的 | 亚洲四区av| 丝袜美腿在线中文| 久久精品久久精品一区二区三区| 丰满乱子伦码专区| 亚洲av福利一区| 亚洲av男天堂| 久久久久久伊人网av| 日韩伦理黄色片| 黄片wwwwww| 日本午夜av视频| 国产黄频视频在线观看| 亚洲精品,欧美精品| 男女啪啪激烈高潮av片| 国产老妇女一区| 三级经典国产精品| 国产毛片在线视频| 99re6热这里在线精品视频| 国产成人精品福利久久| av天堂中文字幕网| 日韩欧美 国产精品| 亚洲精品亚洲一区二区| 熟女电影av网| 久热这里只有精品99| 青春草视频在线免费观看| 国产久久久一区二区三区| 国产乱来视频区| 国产精品99久久99久久久不卡 | 成人黄色视频免费在线看| 日韩一本色道免费dvd| av国产免费在线观看| 男女边摸边吃奶| 人妻夜夜爽99麻豆av| h日本视频在线播放| 国产精品不卡视频一区二区| 80岁老熟妇乱子伦牲交| 秋霞伦理黄片| 亚洲三级黄色毛片| 国产 一区 欧美 日韩| 国产日韩欧美亚洲二区| 精品99又大又爽又粗少妇毛片| av黄色大香蕉| 97精品久久久久久久久久精品| 国产片特级美女逼逼视频| 精品久久久久久久末码| 欧美日韩视频高清一区二区三区二| 少妇丰满av| av.在线天堂| 人妻制服诱惑在线中文字幕| 中文在线观看免费www的网站| 国内精品宾馆在线| 久久久久网色| 国产精品精品国产色婷婷| av免费在线看不卡| 男女边吃奶边做爰视频| 中国国产av一级| 国产成年人精品一区二区| 色吧在线观看| 丰满人妻一区二区三区视频av| 少妇人妻久久综合中文| 久久精品国产自在天天线| 大香蕉久久网| 网址你懂的国产日韩在线| 亚洲色图av天堂| 国产黄片美女视频| 少妇高潮的动态图| 亚洲经典国产精华液单| 白带黄色成豆腐渣| 国产成人精品福利久久| av天堂中文字幕网| 夜夜看夜夜爽夜夜摸| 久久久久久九九精品二区国产| av.在线天堂| 我的老师免费观看完整版| 欧美xxⅹ黑人| 一区二区三区精品91| 男女边摸边吃奶| 亚洲欧美精品专区久久| av免费观看日本| 亚洲av成人精品一二三区| 亚洲国产精品专区欧美| 草草在线视频免费看| 国产av不卡久久| 777米奇影视久久| 高清av免费在线| 欧美另类一区| 国产精品久久久久久av不卡| 国产亚洲av嫩草精品影院| 建设人人有责人人尽责人人享有的 | 永久网站在线| 日韩人妻高清精品专区| 只有这里有精品99| 久久99精品国语久久久| 少妇丰满av| 成人国产av品久久久| 九九在线视频观看精品| 国产成人精品福利久久| 一级av片app| 国产亚洲精品久久久com| 最后的刺客免费高清国语| 一本一本综合久久| 天天躁日日操中文字幕| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 黑人高潮一二区| 精品午夜福利在线看| 亚洲怡红院男人天堂| 大码成人一级视频| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件| 国产精品成人在线| 在线观看一区二区三区| 久久精品国产亚洲av涩爱| 免费看光身美女| 老司机影院毛片| 在线观看av片永久免费下载| 白带黄色成豆腐渣| 三级国产精品欧美在线观看| 日产精品乱码卡一卡2卡三| 日韩中字成人| 国产国拍精品亚洲av在线观看| 亚洲高清免费不卡视频| 激情 狠狠 欧美| 中国国产av一级| 一区二区三区免费毛片| 国产精品熟女久久久久浪| 亚洲最大成人手机在线| 在线免费观看不下载黄p国产| 久久精品久久久久久久性| 水蜜桃什么品种好| 中文字幕制服av| 亚洲在线观看片| 国产精品不卡视频一区二区| 久久女婷五月综合色啪小说 | 男人舔奶头视频| 亚洲美女视频黄频| 国产精品三级大全| 免费观看无遮挡的男女| 色婷婷久久久亚洲欧美| 少妇人妻精品综合一区二区| 热re99久久精品国产66热6| 欧美日韩亚洲高清精品| 久久精品国产亚洲av天美| 日韩成人伦理影院| 色5月婷婷丁香| 色视频www国产| 久久99热6这里只有精品| 超碰97精品在线观看| 九九爱精品视频在线观看| 免费黄网站久久成人精品| 亚洲精品中文字幕在线视频 | 狠狠精品人妻久久久久久综合| 欧美极品一区二区三区四区| 国产乱人偷精品视频| 最近最新中文字幕大全电影3| 美女视频免费永久观看网站| 久久精品国产亚洲av天美| 又黄又爽又刺激的免费视频.| 国产乱人偷精品视频| 亚洲国产精品国产精品| 秋霞伦理黄片| 天天一区二区日本电影三级| 亚洲精品aⅴ在线观看| 少妇人妻一区二区三区视频| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 大香蕉97超碰在线| 亚洲美女搞黄在线观看| 尾随美女入室| 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 啦啦啦在线观看免费高清www| 国产av国产精品国产| 韩国av在线不卡| 成人综合一区亚洲| 九九在线视频观看精品| 少妇人妻一区二区三区视频| 欧美另类一区| 亚洲四区av| 国产爽快片一区二区三区| 中国美白少妇内射xxxbb| 亚洲精品aⅴ在线观看| 久久久久久伊人网av| 久久97久久精品| 韩国高清视频一区二区三区| 日韩一区二区视频免费看| 老司机影院毛片| 国产一区二区在线观看日韩| 免费大片18禁| 国产成人aa在线观看| 老女人水多毛片| 亚洲成色77777| 自拍偷自拍亚洲精品老妇| 一本色道久久久久久精品综合| 99九九线精品视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 亚洲精品乱久久久久久| 一本一本综合久久| 午夜精品一区二区三区免费看| 久久精品国产亚洲av涩爱| 22中文网久久字幕| 久久久成人免费电影| 男女国产视频网站| 在线观看免费高清a一片| 精品人妻熟女av久视频| 亚洲av在线观看美女高潮| 国产伦在线观看视频一区| 在线看a的网站| 精品久久久久久电影网| 观看美女的网站| 国产黄色视频一区二区在线观看| av黄色大香蕉| 人人妻人人看人人澡| 成人毛片60女人毛片免费| 日韩制服骚丝袜av| 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久丰满| 国产精品国产av在线观看| 亚洲色图av天堂| 欧美亚洲 丝袜 人妻 在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美精品国产亚洲| av国产精品久久久久影院| 国产精品一二三区在线看| 人妻 亚洲 视频| 国产免费一级a男人的天堂| 亚洲综合色惰| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 免费av不卡在线播放| 少妇人妻 视频| 69av精品久久久久久| 久久久久网色| 99热这里只有是精品50| 少妇高潮的动态图| 国产高清不卡午夜福利| 国产黄色免费在线视频| 亚洲欧美日韩无卡精品| 大片电影免费在线观看免费| 国模一区二区三区四区视频| 亚洲图色成人| 大香蕉久久网| 3wmmmm亚洲av在线观看| 国产黄片视频在线免费观看| 三级国产精品片| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 午夜激情久久久久久久| 久久久久久久精品精品| 日韩中字成人| 七月丁香在线播放| 久久久精品94久久精品| 六月丁香七月| 欧美3d第一页| 99热这里只有是精品50| 国产伦理片在线播放av一区| 身体一侧抽搐| 成人漫画全彩无遮挡| 午夜老司机福利剧场| 成年免费大片在线观看| 直男gayav资源| 成人综合一区亚洲| 国产高清不卡午夜福利| 中文欧美无线码| 一二三四中文在线观看免费高清| 国产精品伦人一区二区| 岛国毛片在线播放| av播播在线观看一区| 亚洲欧美日韩卡通动漫| 热re99久久精品国产66热6| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 欧美xxⅹ黑人| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| 精品久久久久久久久亚洲| 久久午夜福利片| 男女那种视频在线观看| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 国产视频内射| 搞女人的毛片| 美女主播在线视频| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 天堂中文最新版在线下载 | 久久99热这里只有精品18| 日韩免费高清中文字幕av| 青春草视频在线免费观看| 国产精品一区二区性色av| 丰满乱子伦码专区| 成人鲁丝片一二三区免费| 看免费成人av毛片| 3wmmmm亚洲av在线观看| 97热精品久久久久久| 可以在线观看毛片的网站| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 亚洲无线观看免费| 亚洲av福利一区| 亚洲不卡免费看| 国内精品美女久久久久久| 亚洲色图综合在线观看| 免费人成在线观看视频色| 日韩精品有码人妻一区| 久久久久精品性色| 中国美白少妇内射xxxbb| 五月伊人婷婷丁香| 成人无遮挡网站| 97在线人人人人妻| 天堂中文最新版在线下载 | 午夜老司机福利剧场| 黄色欧美视频在线观看| 神马国产精品三级电影在线观看| 观看美女的网站| 中文字幕免费在线视频6| 国产有黄有色有爽视频| 亚洲欧洲日产国产| a级毛色黄片| 成人亚洲精品一区在线观看 | 欧美最新免费一区二区三区| 在线观看三级黄色| 久久99热6这里只有精品| 伦理电影大哥的女人| 各种免费的搞黄视频| 国产人妻一区二区三区在| 欧美+日韩+精品| 亚洲国产av新网站| 亚洲国产色片| 熟女av电影| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看| 3wmmmm亚洲av在线观看| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 老师上课跳d突然被开到最大视频| 国内精品美女久久久久久| 一级a做视频免费观看| 在线观看一区二区三区| 免费观看性生交大片5| av在线app专区| 亚洲一区二区三区欧美精品 | 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添av毛片| 精品国产三级普通话版| av国产久精品久网站免费入址| 精品一区二区三卡| 男女啪啪激烈高潮av片| 国产av国产精品国产| 又爽又黄a免费视频| 国产有黄有色有爽视频| 在线观看一区二区三区| 婷婷色综合www| 久久久a久久爽久久v久久| 国产成人精品久久久久久| av国产免费在线观看| 国产一区亚洲一区在线观看| 男女啪啪激烈高潮av片| 有码 亚洲区| 亚洲精品中文字幕在线视频 | 尾随美女入室| 国产 一区精品| 日日摸夜夜添夜夜爱| 欧美97在线视频| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 国产高清三级在线| 国产精品国产三级专区第一集| 免费大片18禁| 国产免费又黄又爽又色| 观看美女的网站| 搡老乐熟女国产| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 久久久久久久午夜电影| 亚洲av在线观看美女高潮| 国产高潮美女av| 天天躁日日操中文字幕| 免费少妇av软件| 26uuu在线亚洲综合色| 国产黄色视频一区二区在线观看| 欧美xxⅹ黑人| 69av精品久久久久久| 国产欧美亚洲国产| 国产av不卡久久| 熟妇人妻不卡中文字幕| av网站免费在线观看视频| 搡老乐熟女国产| 一级毛片aaaaaa免费看小| 亚洲无线观看免费| 亚洲国产av新网站| 91精品国产九色| 免费看光身美女| 国产黄a三级三级三级人| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 人妻制服诱惑在线中文字幕| 免费av毛片视频| 最后的刺客免费高清国语| 免费少妇av软件| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 久久久久国产网址| 国内揄拍国产精品人妻在线| 人妻系列 视频| 色综合色国产| 国产精品精品国产色婷婷| 观看免费一级毛片| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 可以在线观看毛片的网站| 亚洲av.av天堂| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 成人鲁丝片一二三区免费| 老司机影院毛片| 天美传媒精品一区二区| 在线观看人妻少妇| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美| 特级一级黄色大片| 综合色av麻豆| 直男gayav资源| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩卡通动漫| 免费av观看视频| 亚洲国产av新网站| 极品教师在线视频| 国内精品美女久久久久久| 最后的刺客免费高清国语| 欧美变态另类bdsm刘玥| 国产亚洲91精品色在线| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品 | 国产亚洲av片在线观看秒播厂| 制服丝袜香蕉在线| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产一级毛片在线| 制服丝袜香蕉在线| 在线观看免费高清a一片| 国产在线男女| 久久久国产一区二区| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 日韩免费高清中文字幕av| 欧美人与善性xxx| 综合色av麻豆| av黄色大香蕉| 久久久成人免费电影| 亚洲精品中文字幕在线视频 | 久久久亚洲精品成人影院| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 国产精品福利在线免费观看| 欧美激情在线99| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 国产淫片久久久久久久久| 在线看a的网站| 亚洲四区av| 欧美日韩综合久久久久久| 毛片女人毛片| 一级片'在线观看视频| 婷婷色综合www| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 少妇 在线观看| 白带黄色成豆腐渣| 亚洲精品久久午夜乱码| 国产探花在线观看一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久ye,这里只有精品| 欧美潮喷喷水| 99久久精品热视频| 日本三级黄在线观看| 国产极品天堂在线| 亚洲综合精品二区| 亚洲,欧美,日韩| 国产精品女同一区二区软件| 欧美97在线视频| 亚洲自偷自拍三级| 国产美女午夜福利| 欧美精品人与动牲交sv欧美| 日本一二三区视频观看| 看十八女毛片水多多多| 久久99热这里只频精品6学生| 最近最新中文字幕大全电影3| 99久久中文字幕三级久久日本| 亚洲人成网站在线播| eeuss影院久久| 久久女婷五月综合色啪小说 | 中国国产av一级| 久久亚洲国产成人精品v| 欧美少妇被猛烈插入视频| 国产精品麻豆人妻色哟哟久久| 国产欧美另类精品又又久久亚洲欧美| 香蕉精品网在线| 视频区图区小说| 国产精品久久久久久久久免|