• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural confirmation of sulconazole sulfoxide as the primary degradation product of sulconazole nitrate

    2018-04-17 02:45:50QunXuAshrafKhanDiGaoKristieAdamsFatkhullaTadjimukhamedovShaneTanJohnSimpson
    Journal of Pharmaceutical Analysis 2018年2期

    Qun Xu,Ashraf Khan,Di Gao,Kristie M.Adams,Fatkhulla Tadjimukhamedov,Shane Tan,John T.Simpson

    Compendial Development Laboratory,United States Pharmacopeia,Rockville,MD 20852,USA

    1.Introduction

    Sulconazole,1-[2,4-dichloro-β-[(4-chlorobenzyl)thio]phenethyl]-imidazole,is an azole antifungal drug belonging to the family of the imidazole class,and is typically used as a topical antifungal cream or solution for the treatment of dermatomycoses,pityriasis versicolor,and cutaneous candidiasis[1].Sulconazole nitrate was among the drug substances that were undergoing United States Pharmacopeia(USP)monograph modernization[2].The USP sulconazole nitrate monograph describes an HPLC procedure for assay,but lacks any organic impurity procedures[3].Sulconazole nitrate is currently not included in other major pharmacopeias.

    A literature search indicated that limited information is available regarding the stability and chromatographic analysis of this drug substance.HPLC methods have been reported for the analysis of sulconazole in biological samples or drug products[4–7],but sulconazole related compounds were not included for method development or evaluation.In terms of stability studies,comprehensive degradation studies under various stress conditions have not been reported.Chen et al.[8]investigated the kinetics of oxidation of sulconazole with peracetic acid and hydrogen peroxide;sulconazole sulfoxide and sulfone were assumed to be the oxidation products.Iwasawa et al.[9]reported the pharmacological studies of the metabolites of sulconazole and highlighted the liability of the molecule towards oxidative conditions.However,no structural information was disclosed in either of those papers.

    Oxidation of organic sulfides(thioethers)to sulfoxides is an important degradation and metabolic pathway for a variety of sulfurcontaining pharmaceutical agents,such as montelukast[10],ranitidine[11],penicillin[12],pergolide[13],and methionine-or cysteine-containing peptides[14].The oxidation process could be complicated as N-or S-oxidation might occur[11],and over-oxidation of a sulfoxide to the corresponding sulfone is frequently a competing reaction[15].To gain a better understanding of the stability of sulconazole nitrate and incorporate the impurity profile into USP monographs,it is critical to differentiate the oxidation pathways and conf i rm the structures of the degradation products[16].

    Here we report the structural determination of a major degradation product of sulconazole nitrate,sulconazole sulfoxide,which was generated under oxidative conditions.In addition,this material was subsequently employed as an impurity reference for compendial procedure development and validation.The monograph modernization efforts have eventually culminated in an off i cial compendial procedure and a newly introduced impurity,sulconazole related compound A[17,18].

    2.Material and methods

    2.1.Chemicals and reagents

    The drug substance sulconazole nitrate was obtained from the USP Reference Standard.Commercial samples of sulconazole nitrate were purchased from Sigma-Aldrich(St.Louis,MI,USA),Spectrum Chemical(New Brunswick,NJ,USA),Glentham Life Sciences(Corsham,UK),and Erregierre(Sovere,Italy).Hydrochloric acid(37%),glacial acetic acid(≥99.7%),sodium hydroxide solution(10 N,J.T.Baker),trifluoroacetic acid(TFA,99.5%,Acros Organics),ammonium acetate(LC/MS),methanol(LC/MS),and acetonitrile(HPLC and LC/MS)were purchased from Fisher Scientific(Waltham,MA,USA).Hydrogen peroxide(~30%)was obtained from Sigma-Aldrich.Water was purif i ed with a Milli-Q plus system from Millipore(Bedford,MA,USA).

    2.2.Instrument and analytical parameters

    2.2.1.UHPLC/HPLC

    UHPLC–UV analyses were performed on an Agilent Infinity 1290 UHPLC system(Santa Clara,CA,USA).Separation was carried out on an Acquity BEH C18column(2.1 mm × 100 mm,1.7 μm)from Waters(Milford,MA,USA)using a mobile phase system consisting of mobile phase A:methanol and ammonium acetate buffer(pH 5.0;0.1 mM)(20:80,v/v);and mobile phase B:methanol and acetonitrile(40:60,v/v).Analyses were performed at ambient temperature with a flow rate of 0.5 mL/min and a gradient elution varied according to the following program:0 min,40%B;8min,90%B;8.1 min,40%B;and 10 min,40%B.UV detection wavelength was set at 230 nm.The injection volume was 5μL.

    HPLC–UV analyses were performed on a Waters Alliance 2695 HPLC system using a Waters Atlantis C18column(4.6 mm×150 mm,5 μm)and a mobile phase system consisting of 0.05%TFA in water and acetonitrile.Separations were achieved at ambient temperature with a f l ow rate of 1.0 mL/min and an isocratic program of 0.05%TFA in water and acetonitrile(50:50,v/v).UV detection wavelength was set at 210nm.The injection volume was 10μL.

    Preparative chromatography was performed on a Waters semipreparative HPLC system consisting of a 2335 quaternary gradient module,a 2998 photodiode array detector,a 2707 autosampler,and a Waters fraction collector III.Separations were carried out on an Agilent Prep-C18column(20.1 mm × 150 mm,5μm)using a mobile phase system consisting of 0.05%TFA in water and acetonitrile(65:35,v/v).The f l ow rate was 10.0 mL/min and the run time was 13 min.UV detection was performed at 210nm.The injection volume was 0.4 mL.Fractions were collected based on time mode.

    Waters Empower 2 for chromatography software was used for instrument operation control and data acquisition and processing.

    2.2.2.NMR analysis

    NMR experiments were recorded using a Bruker Avance III NMR Spectrometer(Billerica,MA,USA)with operating frequencies of 600.13 MHz(1H)and 150.90 MHz(13C).Samples were dissolved in DMSO-d6and all NMR spectra were recorded at 25°C.Chemical shifts were reported in ppm down field from tetramethylsilane(TMS,δ=0)as the internal reference.

    2.2.3.LC–MS/MS analysis

    The LC–MS/MS was performed on an Agilent 6540 UHD Accurate-Mass QTOF LC–MS using an Agilent 1290 UHPLC as an inlet with UV detection at 210nm prior to the mass spectrometer.Data acquisition and analysis were performed using Agilent MassHunter software.ESI was used in positive ion mode.Except for the injection volume(2μL),LC conditions were the same as those used for UHPLC–UV analysis in Section 2.2.1.The mass spectrometer was tuned in 2 GHz extended dynamic range mode(24,350 FWHM resolution at m/z 1521.9715)for accurate mass analyses.Mass accuracy was less than 0.2 ppm for reference masses across the mass range of m/z 100–1700.The mass range analyzed was m/z 100–1200.

    2.3.Solution and sample preparation for UHPLC method

    A solution of water and methanol(60:40,v/v)was used as the diluent.A resolution solution was prepared by dissolving sulconazole nitrate and sulconazole sulfoxide in the diluent to give a solution having a concentration of 0.15 mg/mL for sulconazole and 1.5μg/mL for sulconazole sulfoxide.The standard solution was prepared at a concentration of 1.5 μg/mL for sulconazole and sulconazole sulfoxide.The sample solution at a concentration of 1.5 mg/mL was prepared by dissolving a sulconazole nitrate bulk material in the diluent.

    3.Results and discussion

    3.1.HPLC method development

    In light of the structural similarities between sulconazole and econazole(another azole antifungal drug),the mobile phases used in the European Pharmacopeia econazole monographs(econazole and econazole nitrate)were directly adopted as a starting point for UHPLC method development[19].Column optimization led to the identification of ethylene bridged hybrid(BEH)C18silica as the choice of stationary phase.The effective chromatographic separation between sulconazole and the major degradant was achieved using a Waters Acquity BEH column(2.1mm×100 mm,1.7 μm)and a mobile phase of methanol-ammonium acetate buffer and methanol-acetonitrile in a gradient elution.In addition to the separation of the major degradant and sulconazole,the method was also capable of separating the major degradant from a minor secondary degradant with a resolution of 1.4.

    An HPLC method was also developed as a guiding method for subsequent preparative HPLC operation(Section 2.2.1).Complete separation was achieved for sulconazole and the major degradant using a Waters Atlantis column and a mobile phase of acetonitrile and 0.05%TFA.Although the method did not provide sufficient resolution for the major degradant and the secondary degradant,our initial scale-up experiments on preparative HPLC revealed that the lack of resolution did not pose a problem for the overall purification.

    3.2.Forced degradation of sulconazole nitrate

    Forced degradation studies of sulconazole nitrate were performed under thermal,thermal and humidity,photolytic,hydrolytic(acid and base),and oxidative conditions(Fig.1).The degradation was monitored and analyzed using the UHPLC method with UV and MS detection and both detection techniques revealed that degradation of sulconazole only occurred under oxidative conditions(Table S1 and Fig.S1).In addition to the major degradant,a trace amount of secondary degradant was also detected when the stress time was prolonged or the concentration of the oxidant was increased(Fig.2).PDA peak purity testing and LC–MS were performed for the sulconazole peak and no co-elution of impurities was detected.

    Fig.1.Oxidative stress of sulconazole nitrate.

    Fig.2.Overlaid chromatograms of oxidative stress of sulconazole nitrate(from bottom to top:chromatogram of sulconazole,chromatograms of sulconazole under oxidative stress for 3 days and 12 days).

    The LC–MS analysis showed that the masses of sulconazole and a major oxidation product were m/z 397.0094 and 413.0045,respectively(Fig.S1).The major oxidative degradant showed a protonated molecule that had a delta of 16amu difference from sulconazole,suggesting a single N or S oxidation.A minor ion at m/z 428.9997 with a mass change from sulconazole of 32amu indicated that a secondary degradation,the possible oxidation of sulfoxide to sulfone,or S-oxidation followed by N-oxidation,might occur.

    N-oxidation of the imidazole of miconazole nitrate,a similar imidazole antifungal drug,has been reported under hydrogen peroxide-mediated oxidation conditions[20].It is well-documented that both N-and S-oxidation could be competing pathways for drug substances containing both N and S sites susceptible to oxidation,such as ranitidine[21].More importantly,S-oxidation is not always inherently favored over N-oxidation[22].For instance,zofenopril was recently demonstrated to undergo N-oxidation selectively using hydrogen peroxide as an oxidant[23].On the basis of these precedents,the possibility of N-oxide products of sulconazole cannot be excluded at this stage.

    3.3.Synthesis and preparative isolation of the degradation product

    The scale-up oxidation experiment was performed in a concentrated sample solution using 30%hydrogen peroxide.Complete conversion of sulconazole nitrate to the major degradant was achieved within 20 h(Fig.S2).The experiment was halted when an over-oxidation started to occur.As the reaction proceeded to 100%conversion,the challenge of the purification step was the removal of the minor degradant,which had a retention time close to that of the major peak.

    The injection and loading amount were carefully evaluated on an analytical column(Waters Atlantis C18,4.6 mm×150 mm,5μm)to ensure the sufficient separation of the two peaks on the similar preparative column(Prep-C18,20.1 mm × 150 mm,5 μm)while maintaining separation efficiency.To this end,the heartcutting technique was applied and multiple injections of the crude reaction mixture at an appropriate concentration were performed(Fig.S3).The isolated compound was re-analyzed on both analytical HPLC and UHPLC to confirm the identity and purity(Fig.S4).The degradant was isolated as a colorless oil in 93%yield and 98%purity based on HPLC.

    3.4.Structural characterization of the major degradation product

    3.4.1.NMR studies of sulconazole and sulconazole sulfoxide

    Samples of sulconazole nitrate and the isolated major degradation product were subjected to NMR spectroscopic analyses including one-and two-dimensional NMR such as gradient-selected correlation spectroscopy(gCOSY),heteronuclear singlequantum coherence(HSQC)and heteronuclear multiple bond correlation(HMBC)experiments.The NMR spectroscopic data were consistent with the proposed structures of sulconazole and sulconazole sulfoxide(Supplementary material).The1H and13C assignments were made based on characteristic chemical shifts(1D NMR)and were supported by2D NMR data.The1H and13C NMR data and proposed assignments for the two compounds are presented in Table 1 for comparison.

    Direct assignments for protons of the two substituted aromatic rings were difficult due to the high degree of similarity inthe1H and13C chemical shifts.In the1H NMR spectrum,a significant chemical shift was observed for methine 5 and methylene 12 protons(Table 1).The change of the splitting pattern indicated the corresponding conformational change after the oxidation of the sulfur[24].More drastic down field shifts of methine 5 and methylene 12 were detected in the13C NMR.In contrast,negligible changes of chemical shifts(1H and13C)on the imidazole ring were observed,indicating that the N-oxidation of imidazole did not occur.Notably,a slight down field shift was detected for methylene 4 in the1H NMR,and a slight upf i eld shift was observed for the same methylene in the13C NMR.These results were in good agreement with NMR data for alkyl groups in a beta orientation to sulfur.The HMBC data showed connections between H1 and C2 and C3,H4 and C5,and H5 and C12(Fig.3).The1H and13C NMR data,in combination with the LC–MS results,provided reasonable evidence in support of the S-oxidation.However,the NMR data alone were not conclusive to differentiate sulfoxide from sulfone,the potential over-oxidation byproduct,as the influence of aliphatic sulfoxide and sulfone groups on the chemical shifts of theα,β,and γ substitutes is very similar[25,26].

    Table 1 Comparative1H NMR and13C NMR data of sulconazole nitrate and sulconazole sulfoxide(DMSO-d6,25°C).

    Fig.3.Key1H–13C HMBC correlations of sulconazole sulfoxide.Correlations are shown with arrows.The numbering system is based on the NMR assignments presented in Table 1.

    3.4.2.LC–MS/MS studies

    The LC–MS/MS analysis was performed using the same UHPLC method(Section 2.2.1).The presence of multiple chlorine atoms in the molecules allows for more precise determination of the fragment ions based not only on the exact mass but also the isotope abundance ratio.The LC–MS spectrum of the oxidative degradant of sulconazole showed a protonated molecule[M+H]+at m/z 413.0048(Fig S5),suggesting an elemental composition of C18H16Cl3N2OS,which is consistent with the structure resulting from S-or N-oxidation.The MS/MS spectrum and possible fragmentation pathways are shown in Fig.4.The MS/MS fragmentation of the[M+H]+ion exhibited a diagnostic fragment ion at m/z239.0136(elemental composition of C11H9N2Cl2),which can be derived from the syn-elimination of alkyl sulfenic acid via a 5-membered cyclic transition state.This McLafferty-type fragmentation has been revealed as a dominant fragmentation pathway for peptides containing oxidized methionine or cysteine residues[27,28].In addition,it was verified as the most facile fragmentation for the styryl-and alkyl-propenyl sulfoxides by deuterium labeling studies[29].Mechanistically,for sulfur-containing molecules this fragmentation only occurs for sulfoxides with aβ-hydrogen atom,and it was indeed observed in numerous reported cases[30–33].The McLaffertytype fragmentation might be a characteristic fragmentation pathway for sulfoxides with aβ-hydrogen atom and could also be used here to distinguish the sulfoxide from the sulfone.Initial examination of the isotopic pattern of this fragment ion indicated that there may be overlapping ion distributions,and a possible fragment b at m/z 240.0212 resulting from a proposed sulfinyl radical cleavage may be contributing to the overall isotopic pattern(Fig.4).Another major fragment at m/z 171.9841(d)may be derived from fragment b via loss of the imidazole ring.The fragment c at m/z 205.0527 was also generated via a McLafferty-type fragmentation after dechlorination of the[M+H]+ion[34–36].In addition to major fragments,the ions at m/z 125.0147(C7H6Cl,e)and 287.9879(C11H10Cl2N2OS,f),generated from cleavage of S-CH2bond were also observed,but were much less abundant(0.05%and 0.02%,respectively),suggesting that this disassociation pathway is not favored.

    The MS/MS results of sulconazole nitrate were significantly different from those of sulconazole sulfoxide(Fig.S6).As expected,McLafferty-type fragmentation corresponding to the cleavage of S–CH bond was not observed.The ion g at m/z 125.0158 is predominant under similar activation conditions,suggesting that the cleavage of S–CH2bond is the favored dissociation process resulting in the stable carbocation(Fig.S7).Another main fragment ion j at m/z 183.0030 was generated as a result of the consecutive loss of imidazole and chlorobenzene,which also led to the formation of a stable benzyl thiirane methyl carbocation j.In addition,the intermediate ion h at m/z 328.9717 resulting from the loss of imidazole was also detected.

    Fig.4.(A)MS/MS spectrum of protonated molecular ion[M+H]+at m/z 413.0048 of sulconazole sulfoxide.(B)proposed fragmentation pathway.The isotope pattern of ion cluster at m/z 239.0136 matches the results of superimposition of two species of a and b as shown in the inserted frame.

    As shown in Table 2,all fragmentation assignments were supported by accurate mass data.The accuracy for the masses of these ions,determined relative to the values calculated from their assigned structures,was within 5ppm error.

    The comparative MS/MS studies provided compelling evidence that the oxidation occurred on the sulfur atom only,and that the sulfoxide was the primary degradant.Sulconazole sulfone is most likely the product of over-oxidation.Moreover,previous investigations on N-oxides indicated that the mass spectrum of an N-oxide is in general similar to that of parent compound[20],which is also in agreement with our conclusion in support of S-oxidation.

    3.5.UHPLC method validation

    With the sulconazole sulfoxide in hand,the UHPLC method was validated for specif i city,linearity,accuracy,precision androbustness.System suitability was verified by determining the%RSD of six injections of the standard solution.Retention time,tailing factor and resolution between the sulconazole and sulconazole sulfoxide were also determined(Table S2).The specif i city of the method was established by determining peak purity of sulconazole nitrate subjected to a series of stressed conditions using photodiode array detection.Linearity of the detector responses was determined at five concentration levels of sulconazole nitrate and sulconazole sulfoxide covering 0.75,1.125,1.50,1.875 and 2.25 μg/mL for each compound.To study method accuracy,recovery experiments were carried out by applying the standard addition method.Known quantities of sulconazole sulfoxide of 0.75,1.50 and 2.25 μg/mL—corresponding to 50%,100%and 150%impurity levels—were spiked into a 1.5 mg/mL sulconazole nitrate solution.Accuracy was expressed as the percentage of sulfoxide recovered by the HPLC analysis.Repeatability was studied by carrying out method precision,and determined from results of six independent injections of the 100%spiked solutions.Method robustness was evaluated by analyzing five replicate injections of the robustness solution,sulconazole nitrate(150 μg/mL)and sulconazole sulfoxide(1.5 μg/mL),under each of the varied conditions including temperatures,flow rates,buffer pH,mobile phase B initial compositions,mobile phase B final compositions,and different columns on different instruments.

    Table 2 Accurate mass measurement of the molecular ions observed from the MS/MS data of sulconazole sulfoxide and sulconazole.The MS/MS spectrum of sulconazole nitrate and proposed fragmentation pathway are provided in Figs.S6 and S7.

    The validation results are summarized in Table S3.The results demonstrated that the method is specif i c as sulconazole sulfoxide was separated from sulconazole and no interfering peak appeared at the retention time of the two peaks.Linear responses over the range of concentrations of 0.75–2.25 μg/mL were observed for both sulconazole and sulconazole sulfoxide(Fig.S8).Spike recoveries close to 100%at different levels indicated an acceptable accuracy of the method(Table S4).The low values of%RSD for method precision indicate that the method is reproducible.Finally,robustness studies showed that variations of the operating parameters did not significantly change the chromatographic profiles or the result,indicating that the method was robust under the experimental conditions(Table S5).

    4.Conclusions

    In summary,a systematic UHPLC study was conducted on sulconazole nitrate.The study included stress testing of sulconazole nitrate,preparative HPLC isolation of the major degradation product,structural confirmation of the degradant,and UHPLC method validation.Based on NMR and LC–MS/MS analysis,the S-oxidation of sulconazole to sulconazole sulfoxide was confirmed as the predominant degradation pathway.In addition,the generated degradation product was utilized as a reference standard for organic impurity HPLC method development and validation.This work displays a typical approach used to support USP monograph modernization.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    We thank USP colleagues,Doug M.Podolsky,James R.Austgen,Praveen K.Pabba,Marcela Nefliu,and Sitaram Bhavaraju for help with preparing the manuscript.

    Disclaimer

    Certain commercial equipment,instruments,vendors,or materials may be identified in this manuscript to specify adequately the experimental procedure(s).Such identification does not imply approval,endorsement,or certification by USP of a particular brand or product,nor does it imply that the equipment,instrument,vendor,or material is necessarily the best available for the purpose or that any other brand or product was judged to be unsatisfactory or inadequate.All product names,logos,and brands are property of their respective owners.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jpha.2017.12.007.

    [1]R.A.Fromtling,Overview of medically important antifungal azole derivatives,Clin.Microbiol.Rev.1(1988)187–217.

    [2]L.M.Santos,B.Davani,C.M.Anthony,et al.,USP monograph modernization initiative,Am.Pharm.Rev.18(2)(2015).

    [3]USP35–NF30 monograph,Sulconazole Nitrate,2012.

    [4]M.Fass,B.Zaro,M.Chaplin,et al.,Reversed-phase high-pressure liquid chromatographic analysis of sulconazole in plasma,J.Pharm.Sci.70(1981)1338–1340.

    [5]H.Y.Aboul-Enein,I.Ali,Comparison of the chiral resolution of econazole,miconazole,and sulconazole by HPLC using normal-phase amylose CSPs,Fresenius J.Anal.Chem.370(2001)951–955.

    [6]H.Y.Aboul-Enein,I.Ali,Comparative study of the enantiomeric resolution of chiral antifungal drugs econazole,miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode,J.Pharm.Biomed.Anal.27(2002)441–446.

    [7]E.J.Benjamin,D.L.Conley,On-line HPLC method for clean-up and analysis of hydrocortisone and sulconazole nitrate in a cream,Int.J.Pharm.13(1983)205–217.

    [8]S.H.Chen,R.A.Kenley,J.S.Winterle,Sulconazole reactions with peracetic acid and hydrogen peroxide,Int.J.Pharm.72(1991)89–96.

    [9]Y.Iwasawa,H.Tamaki,I.Yamaguchi,et al.,Pharmacological studies on sulconazole nitrate(RS44872;SCZ)and its metabolites(2):effects on the cardiovascular,the respiratory,the digestive systems,and the renal and other functions,Oyo Yakuri 27(1984)717–727.

    [10]M.M.Al Omari,R.M.Zoubi,E.I.Hasan,et al.,Effect of light and heat on the stability of montelukast in solution and in its solid state,J.Pharm.Biomed.Anal.45(2007)465–471.

    [11]P.Viňas,N.Campillo,C.López-Erroz,et al.,Use of postcolumn fluorescence derivatization to develop a liquid chromatographic assay for ranitidine and its metabolites in biological f l uids,J.Chromatogr.B:Biomed.Sci.Appl.693(1997)443–449.

    [12]P.G.J.Nieuwenhuis,Conversion of penicillins and cephalosporins to 1(S)-sulfoxides,US Patent 5442058,1995 Aug.15.

    [13]D.J.Sprankle,E.C.Jensen,Pergolide mesylate,in:H.G.Brittain(Ed.),Analytical Profiles of Drug Substances and Excipients,21,Academic Press,New York,1992:375.

    [14]J.M.Froelich,G.E.Reid,Mechanisms for the proton mobility-dependent gasphase fragmentation reactions of S-alkyl cysteine sulfoxide-containing peptide ions,J.Am.Soc.Mass Spectrom.18(2007)1690–1705.

    [15]G.Caron,P.Gaillard,P.Carrupt,et al.,Lipophilicity behavior of model and medicinal compounds containing a sulfide,sulfoxide,or sulfone moiety,Helv.Chim.Acta 80(1997)449–462.

    [16]ICH,Guidance for Industry Q1A(R2)Stability Testing of New Drug Substances and Products,2003.

    [17]Pharmacopeial Forum,41(5)In-Process Revision:Sulconazole Nitrate,2016.

    [18]USP40–NF35,Monograph:Sulconazole Nitrate,2017.

    [19]European Pharmacopeia,8.4,Econazole Monograph,and Econazole Nitrate Monograph,2015.

    [20]T.S.Belal,R.S.Haggag,Gradient HPLC-DAD stability indicating determination of miconazole nitrate and lidocaine hydrochloride in their combined oral gel dosage form,J.Chromatogr.Sci.50(2012)401–409.

    [21]USP40–NF35,Ranitidine Hydrochloride,2017.

    [22]G.H.Loew,Y.T.Chang,Theoretical studies of the oxidation of N-and S-containing compounds by cytochrome P450,Int.J.Quantum Chem.48(1993)815–826.

    [23]T.Ramesh,P.N.Rao,R.N.Rao,LC–MS/MS characterization of forced degradation products of zofenopril,J.Pharm.Biomed.Anal.88(2014)609–616.

    [24]H.Shin,H.Song,S.Cho,et al.,The structure of 1-[2-[[(4-chlorophenyl)-methyl]thio]-2-(2,4-dichlorphenyl)ethyl]-1H imidazole(sulconazole)nitrate,C18H16Cl3N3O3S,Bull.Korean Chem.Soc.18(1997)14–18.

    [25]P.S.Beauchamp,R.Marquez,A general approach for calculating proton chemical shifts for methyl,methylene and methine protons when there are one or more substituents within three carbons,J.Chem.Educ.74(1997)1483–1484.

    [26]R.J.Abraham,J.J.Byrne,L.Griffiths,1H chemical shifts in NMR.Part 27:proton chemical shifts in sulfoxides and sulfones and the magnetic anisotropy,electric field and steric effects of the SO bond,Magn.Reson.Chem.46(2008)667–675.

    [27]X.Jiang,J.B.Smith,E.C.Abraham,Identif i cation of a MS-MS fragment diagnostic for methionine sulfoxide,J.Mass Spectrom.31(1996)1309–1310.

    [28]H.Steen,M.Mann,Similarity between condensed phase and gas phase chemistry:fragmentation of peptides containing oxidized cysteine residues and its implications for proteomics,J.Am.Soc.Mass Spectrom.12(2001)228–232.

    [29]L.K.Liu,C.Y.Su,W.S.Li,Hydrogen rearrangement in alkyl-,styryl-and alkyl propenyl sulfoxides,Org.Mass Spectrom.24(1989)338–342.

    [30]R.Smakman,T.J.de Boer,The mass spectra of some aliphatic and alicyclic sulphoxide and sulphones,Org.Mass Spectrom.3(1970)1561–1588.

    [31]P.Wright,A.Alex,D.Gibson,et al.,Characterisation of sulphoxides by atmospheric pressure ionization mass spectrometry,Rapid Commun.Mass Spectrom.19(2005)2005–2014.

    [32]S.Kern,R.Baumgartner,D.E.Helbling,et al.,A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment,J.Environ.Monit.12(2010)2100–2111.

    [33]G.S.Prasad,S.Girisham,S.M.Reddy,Studies on microbial transformation of albendazole by soil fungi,Indian J.Biotechnol.8(2009)425–429.

    [34]K.P.Madhusudanan,V.S.Murthy,D.Fraisse,Dehalogenation reactions in chemical ionization mass spectrometry,J.Chem.Soc.,Perkin Trans.II 9(1989)1255–1260.

    [35]H.Budzikiewicz,Reactions between substrate molecules and chemical ionization reagent gases prior to ionization,Org.Mass Spectrom.23(1988)561–565.

    [36]D.Volmer,L.Karsten,Mass spectrometric analysis of nitrogen-and phosphorus-containing pesticides by liquid chromatography–mass spectrometry,J.Am.Soc.Mass Spectrom.5(1994)655–675.

    国产精品综合久久久久久久免费| 精品久久久久久久久久免费视频| 免费观看人在逋| 3wmmmm亚洲av在线观看| 伊人久久精品亚洲午夜| 18禁黄网站禁片午夜丰满| 亚洲18禁久久av| 12—13女人毛片做爰片一| 午夜免费男女啪啪视频观看 | 亚洲av熟女| 国产主播在线观看一区二区| 精品人妻偷拍中文字幕| 亚洲一区二区三区不卡视频| 午夜激情欧美在线| 搡老妇女老女人老熟妇| 哪里可以看免费的av片| av天堂在线播放| 国产精品1区2区在线观看.| 国产在线精品亚洲第一网站| 女人被狂操c到高潮| 黄片大片在线免费观看| 亚洲狠狠婷婷综合久久图片| 波野结衣二区三区在线 | 国产伦精品一区二区三区四那| 欧美一级毛片孕妇| 一本一本综合久久| 黄色视频,在线免费观看| 欧美日本亚洲视频在线播放| www日本在线高清视频| 免费观看精品视频网站| 午夜精品在线福利| 国产黄a三级三级三级人| 国产午夜精品久久久久久一区二区三区 | 欧美不卡视频在线免费观看| 午夜精品在线福利| 偷拍熟女少妇极品色| 成人av一区二区三区在线看| 国产欧美日韩精品一区二区| 中文字幕精品亚洲无线码一区| 琪琪午夜伦伦电影理论片6080| 99国产极品粉嫩在线观看| 国产精品1区2区在线观看.| 一级毛片高清免费大全| 亚洲av不卡在线观看| 久久九九热精品免费| 色播亚洲综合网| 久久香蕉国产精品| 色吧在线观看| 五月玫瑰六月丁香| av天堂在线播放| 在线天堂最新版资源| 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| 99热这里只有精品一区| 真人一进一出gif抽搐免费| 国模一区二区三区四区视频| 床上黄色一级片| 男女做爰动态图高潮gif福利片| 日韩欧美国产一区二区入口| 国产一级毛片七仙女欲春2| 一级黄色大片毛片| netflix在线观看网站| 国内久久婷婷六月综合欲色啪| 在线看三级毛片| 一边摸一边抽搐一进一小说| or卡值多少钱| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 免费在线观看亚洲国产| 色综合站精品国产| 动漫黄色视频在线观看| 国产欧美日韩一区二区精品| 中文字幕人成人乱码亚洲影| 亚洲成人久久性| 一区二区三区激情视频| 黄色日韩在线| 一个人看的www免费观看视频| 久久精品亚洲精品国产色婷小说| 亚洲av中文字字幕乱码综合| 免费在线观看日本一区| 精品久久久久久久久久久久久| 欧美另类亚洲清纯唯美| 桃色一区二区三区在线观看| 国内精品久久久久久久电影| 国产亚洲精品久久久com| 嫩草影院入口| 亚洲精华国产精华精| 在线观看午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 性色av乱码一区二区三区2| av在线天堂中文字幕| 欧美日韩乱码在线| 亚洲av日韩精品久久久久久密| 亚洲av电影在线进入| 97超视频在线观看视频| 久久精品国产亚洲av香蕉五月| 欧美在线黄色| 成人三级黄色视频| 午夜影院日韩av| 老汉色∧v一级毛片| 亚洲国产高清在线一区二区三| 在线天堂最新版资源| 久久香蕉精品热| 国产免费一级a男人的天堂| 身体一侧抽搐| 日韩人妻高清精品专区| 国产三级中文精品| av在线天堂中文字幕| 18禁在线播放成人免费| 琪琪午夜伦伦电影理论片6080| 久久99热这里只有精品18| 国产私拍福利视频在线观看| 国产男靠女视频免费网站| 精品国产三级普通话版| 无遮挡黄片免费观看| 亚洲真实伦在线观看| 日韩人妻高清精品专区| 伊人久久大香线蕉亚洲五| 亚洲成人精品中文字幕电影| 国产主播在线观看一区二区| 丁香欧美五月| 欧美午夜高清在线| 久久欧美精品欧美久久欧美| 亚洲成人免费电影在线观看| 亚洲精品在线美女| 婷婷精品国产亚洲av| 日韩国内少妇激情av| 在线国产一区二区在线| 看片在线看免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲成人中文字幕在线播放| 老汉色∧v一级毛片| 亚洲中文字幕一区二区三区有码在线看| 99久久久亚洲精品蜜臀av| 夜夜看夜夜爽夜夜摸| 免费av不卡在线播放| 欧美日韩瑟瑟在线播放| 少妇的逼水好多| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩东京热| 色老头精品视频在线观看| 国产免费男女视频| 精品福利观看| 免费av观看视频| 午夜视频国产福利| 99精品在免费线老司机午夜| 精品久久久久久久久久免费视频| 丰满人妻熟妇乱又伦精品不卡| 在线播放国产精品三级| 老司机福利观看| 非洲黑人性xxxx精品又粗又长| 桃色一区二区三区在线观看| 麻豆成人午夜福利视频| 久久久久性生活片| 亚洲久久久久久中文字幕| 最近最新中文字幕大全电影3| 一级毛片高清免费大全| 国产午夜精品论理片| 少妇熟女aⅴ在线视频| 国产精品亚洲一级av第二区| 国产乱人视频| 他把我摸到了高潮在线观看| 亚洲狠狠婷婷综合久久图片| 51午夜福利影视在线观看| 嫁个100分男人电影在线观看| 亚洲人与动物交配视频| 一卡2卡三卡四卡精品乱码亚洲| 精品国内亚洲2022精品成人| 午夜激情福利司机影院| 国产麻豆成人av免费视频| 成人鲁丝片一二三区免费| 亚洲第一欧美日韩一区二区三区| 色综合欧美亚洲国产小说| 久久国产精品人妻蜜桃| 真人做人爱边吃奶动态| 欧美日韩瑟瑟在线播放| 身体一侧抽搐| 午夜影院日韩av| 丰满的人妻完整版| 久久久久久久午夜电影| 亚洲七黄色美女视频| 夜夜爽天天搞| 欧美日韩一级在线毛片| 欧美另类亚洲清纯唯美| 99热精品在线国产| 国产精品1区2区在线观看.| 好男人电影高清在线观看| 国产一区二区在线观看日韩 | 19禁男女啪啪无遮挡网站| 欧美成人性av电影在线观看| 成人av在线播放网站| 亚洲国产中文字幕在线视频| 99久久99久久久精品蜜桃| 精品福利观看| 人人妻,人人澡人人爽秒播| 免费电影在线观看免费观看| 一个人免费在线观看的高清视频| 亚洲aⅴ乱码一区二区在线播放| 三级毛片av免费| 精品久久久久久久久久久久久| 精品国内亚洲2022精品成人| 少妇熟女aⅴ在线视频| 麻豆久久精品国产亚洲av| 亚洲精品成人久久久久久| 亚洲av电影在线进入| 十八禁人妻一区二区| 亚洲欧美激情综合另类| 一本精品99久久精品77| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 19禁男女啪啪无遮挡网站| 99国产精品一区二区蜜桃av| 99精品久久久久人妻精品| 国产v大片淫在线免费观看| 中文字幕高清在线视频| 中文亚洲av片在线观看爽| 丁香欧美五月| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 日本在线视频免费播放| 久久精品亚洲精品国产色婷小说| 1000部很黄的大片| 一区福利在线观看| 午夜福利免费观看在线| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 99热这里只有精品一区| 久久精品国产综合久久久| 成人特级黄色片久久久久久久| 精品人妻1区二区| 九九久久精品国产亚洲av麻豆| 国产一区二区激情短视频| 男插女下体视频免费在线播放| 亚洲一区高清亚洲精品| 黄色丝袜av网址大全| 亚洲无线观看免费| 久久精品91蜜桃| 女人高潮潮喷娇喘18禁视频| 老汉色av国产亚洲站长工具| 亚洲aⅴ乱码一区二区在线播放| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 亚洲成av人片在线播放无| 熟女电影av网| 91av网一区二区| 国产精品日韩av在线免费观看| 一本一本综合久久| 精品久久久久久久久久久久久| 欧美+日韩+精品| 又粗又爽又猛毛片免费看| 宅男免费午夜| av视频在线观看入口| 亚洲一区高清亚洲精品| 怎么达到女性高潮| 日韩中文字幕欧美一区二区| 少妇丰满av| 男女之事视频高清在线观看| 给我免费播放毛片高清在线观看| 精品久久久久久久久久久久久| 欧美绝顶高潮抽搐喷水| 国产精品综合久久久久久久免费| 亚洲,欧美精品.| 18美女黄网站色大片免费观看| 久久精品国产99精品国产亚洲性色| 夜夜躁狠狠躁天天躁| 一级黄色大片毛片| 3wmmmm亚洲av在线观看| av在线天堂中文字幕| aaaaa片日本免费| 免费av观看视频| 嫩草影视91久久| 国产av不卡久久| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播| 成人永久免费在线观看视频| 午夜福利在线在线| 哪里可以看免费的av片| 午夜精品在线福利| 国产高清三级在线| 欧美最新免费一区二区三区 | 真人做人爱边吃奶动态| 日韩欧美 国产精品| 国产三级黄色录像| 亚洲欧美日韩高清专用| 九色国产91popny在线| 九九在线视频观看精品| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 午夜福利成人在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| av专区在线播放| 亚洲 国产 在线| 综合色av麻豆| 国产成人av教育| 午夜精品一区二区三区免费看| 国产老妇女一区| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 欧美+日韩+精品| 美女大奶头视频| 日日干狠狠操夜夜爽| 亚洲国产中文字幕在线视频| 精品不卡国产一区二区三区| 日韩欧美三级三区| www.www免费av| 亚洲人成网站高清观看| 国产高潮美女av| 久久久久久久午夜电影| 51国产日韩欧美| 中文字幕高清在线视频| 日本五十路高清| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 成年版毛片免费区| 免费电影在线观看免费观看| 欧美成狂野欧美在线观看| 国产伦精品一区二区三区四那| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站 | 成人特级av手机在线观看| 97超级碰碰碰精品色视频在线观看| 国产探花极品一区二区| 久久婷婷人人爽人人干人人爱| 久久九九热精品免费| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 亚洲性夜色夜夜综合| 亚洲精品456在线播放app | 午夜精品一区二区三区免费看| 九九在线视频观看精品| 国产私拍福利视频在线观看| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 精品人妻1区二区| 91久久精品国产一区二区成人 | 在线a可以看的网站| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 久久精品亚洲精品国产色婷小说| 精华霜和精华液先用哪个| 一个人观看的视频www高清免费观看| 色尼玛亚洲综合影院| 国产精品久久久久久久电影 | 欧美大码av| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| 丰满人妻一区二区三区视频av | 日韩欧美国产在线观看| 国产免费一级a男人的天堂| or卡值多少钱| 狂野欧美激情性xxxx| 黄色日韩在线| 国产91精品成人一区二区三区| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 最好的美女福利视频网| 丝袜美腿在线中文| 国产高清三级在线| 欧美又色又爽又黄视频| 超碰av人人做人人爽久久 | 欧美日韩国产亚洲二区| 少妇丰满av| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| 此物有八面人人有两片| av在线天堂中文字幕| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 亚洲av电影在线进入| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 九九热线精品视视频播放| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 有码 亚洲区| 国产成人欧美在线观看| 国产亚洲精品久久久久久毛片| 亚洲无线在线观看| 熟女少妇亚洲综合色aaa.| 我的老师免费观看完整版| 欧美性感艳星| 成人18禁在线播放| 国产高清视频在线播放一区| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 亚洲精品在线观看二区| 中亚洲国语对白在线视频| 看黄色毛片网站| 亚洲美女视频黄频| 在线观看免费午夜福利视频| 内射极品少妇av片p| 搡老岳熟女国产| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 看黄色毛片网站| 欧美av亚洲av综合av国产av| 午夜福利在线观看吧| 怎么达到女性高潮| 国产成人系列免费观看| 好男人在线观看高清免费视频| 熟妇人妻久久中文字幕3abv| av欧美777| 午夜精品久久久久久毛片777| 国产探花极品一区二区| 中文字幕人妻丝袜一区二区| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 亚洲精品国产精品久久久不卡| 亚洲久久久久久中文字幕| 12—13女人毛片做爰片一| 亚洲av熟女| 日韩大尺度精品在线看网址| 在线视频色国产色| tocl精华| 亚洲国产精品合色在线| 天堂动漫精品| 在线观看66精品国产| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 一级毛片高清免费大全| 99久久精品热视频| 国产视频内射| 全区人妻精品视频| 免费看美女性在线毛片视频| 亚洲在线观看片| eeuss影院久久| av女优亚洲男人天堂| 亚洲色图av天堂| 天天添夜夜摸| 国产色爽女视频免费观看| 日韩欧美精品v在线| 99在线视频只有这里精品首页| 国产亚洲精品一区二区www| 免费电影在线观看免费观看| 国产日本99.免费观看| 久久国产精品影院| 久久久精品欧美日韩精品| av黄色大香蕉| 国产一区在线观看成人免费| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 亚洲avbb在线观看| 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 国产伦一二天堂av在线观看| 18美女黄网站色大片免费观看| 丁香六月欧美| 久久中文看片网| 精品99又大又爽又粗少妇毛片 | 亚洲精华国产精华精| 99热这里只有精品一区| 99国产精品一区二区三区| 精品人妻偷拍中文字幕| 久久精品国产清高在天天线| 久久久精品欧美日韩精品| 亚洲欧美日韩高清专用| 级片在线观看| 日韩免费av在线播放| 亚洲av一区综合| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 国产午夜精品久久久久久一区二区三区 | 国产蜜桃级精品一区二区三区| 国产日本99.免费观看| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 91九色精品人成在线观看| 九色成人免费人妻av| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 热99re8久久精品国产| 亚洲精品在线美女| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 叶爱在线成人免费视频播放| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 精品人妻一区二区三区麻豆 | 我的老师免费观看完整版| 91久久精品国产一区二区成人 | 搡老岳熟女国产| 夜夜夜夜夜久久久久| av在线蜜桃| 午夜老司机福利剧场| 岛国在线观看网站| 国产精品自产拍在线观看55亚洲| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| 国产久久久一区二区三区| 美女大奶头视频| 国产日本99.免费观看| 精品一区二区三区人妻视频| 一本久久中文字幕| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站 | 别揉我奶头~嗯~啊~动态视频| 在线天堂最新版资源| 精品久久久久久久末码| 激情在线观看视频在线高清| 18禁在线播放成人免费| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 一本精品99久久精品77| 婷婷六月久久综合丁香| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 久久草成人影院| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品999在线| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 在线观看免费视频日本深夜| 老鸭窝网址在线观看| 亚洲av五月六月丁香网| 欧美zozozo另类| www日本在线高清视频| 少妇裸体淫交视频免费看高清| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 国产高清三级在线| 深夜精品福利| 国产精品一区二区免费欧美| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 最好的美女福利视频网| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 免费在线观看成人毛片| av天堂在线播放| 国产69精品久久久久777片| 久久欧美精品欧美久久欧美| 午夜激情福利司机影院| 大型黄色视频在线免费观看| 美女cb高潮喷水在线观看| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 国产视频一区二区在线看| 国产成人影院久久av| 午夜两性在线视频| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| av在线蜜桃| 99精品久久久久人妻精品| 一进一出抽搐gif免费好疼| 在线观看免费午夜福利视频| 久久久久久九九精品二区国产| 99精品久久久久人妻精品| 午夜福利高清视频| 美女 人体艺术 gogo| av中文乱码字幕在线| 国产视频内射| 国产真实伦视频高清在线观看 | 亚洲精品成人久久久久久| 色av中文字幕| 亚洲美女视频黄频| 色av中文字幕| 国产主播在线观看一区二区| 精品久久久久久久久久久久久| 欧美午夜高清在线| 国产成人a区在线观看| 国产黄a三级三级三级人| 成人精品一区二区免费| 叶爱在线成人免费视频播放| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 小说图片视频综合网站| 国产亚洲精品久久久com| 1000部很黄的大片| 三级毛片av免费| 日韩成人在线观看一区二区三区| 99久国产av精品| 黄色女人牲交| 亚洲av成人精品一区久久| 亚洲精品国产精品久久久不卡| 国产欧美日韩精品一区二区| 俄罗斯特黄特色一大片| 岛国在线观看网站| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 热99re8久久精品国产| 日韩欧美精品v在线| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱| 亚洲人成网站高清观看| 亚洲精品粉嫩美女一区| 在线播放无遮挡| 91在线精品国自产拍蜜月 | 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 人人妻,人人澡人人爽秒播|