• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bionic Attitude Transformation Combined with Closed Motion for a Free Floating Space Robot

    2018-04-16 06:50:01ZhanpengSunYongjinLuLixianXuandLiangWang

    Zhanpeng Sun, Yongjin Lu, Lixian Xu and Liang Wang,

    (1.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; 2.704 Research Institute, China Shipbuilding Industry Corporation, Shanghai 200120, China; 3.8359 Research Institute, China Astronautic Science and Industrial Group, Beijing 100039, China)

    With the rapid development in the aerospace industry field, space robots in free floating state attracts the attention of many countries, and the attitude transformation is an important research direction. Its realization methods mainly include reaction jet devices and reaction wheels at present. The reaction jet works by carrying the propellant. The propellant in the space is not renewable and has limited carrying capacity, so the life of the space robot will be obviously shorten by heavy use of spray. The inertia parameters of the reaction wheel are much smaller than those of the space robot, momentum saturation easily occurred in the attitude transformation, which leads to the delay of the target task. The reaction wheel has the quality that can not be ignored, that will greatly increase the cost of launching and maintaining the space equipment[1-4]. The phenomenon that a free-falling cat can rotate in the air has been studied since the end of the 19th century[5-6], which has attracted widespread attention of academics for exploring the rotation movement of a space robot under the condition of weightlessness. There has been many relevant analysis and research results since then. The bending theory brought up by Kane et al. is the most persuasive one[7]. Symmetric double rigid bodies analysis model was established based on the bending theory[8-10], the analysis results of the model explain the phenomenon very well.

    In the joint space,the adjustment of the joint angle of the manipulator can affect the attitude of the base, and requirements of saving energy and reducing cost are satisfied. However, when the base attitude in this method satisfies the target, the pose of each link is not consistent with the initial state of the body[11-13]. Closed motion can ensure the consistency of attitude, but the efficiency of closed motion for attitude adjustment is relatively low. Even if the overall attitude transformation range is small, multiple closed motions are needed to achieve the target pose. The combination joint created by the bionic joint and closed motion can solve the problem in the overall attitude transformation, and deal with the situation that the link’s attitude is not consistent with the initial state. When there is an asymmetric case in the bionic joint, a certain disturbance is generated for the attitude transformation, so the correlation analysis is done in the attitude transformation, and the method of reducing interference is proposed.

    1 Modeling

    1.1 Bionic mechanism

    The cat in the falling process bends at first, then the upper body does a similar cone movement relatively to the lower body (but the bodies do not twist relatively), so as to achieve the rotation. For the theory of bending, the double rigid bodies model proposed by Yanzhu Liu and others can well explain this phenomenon[14-15]. The modeling process is shown in Fig.1.The detailed analysis process can be checked in our previous articles referring to Refs. [16-17].

    Fig.1 Modeling process

    1.2 FFSR modeling

    The free falling cat model is established in weightlessness conditions, and the overall attitude transformation of mechanism can be realized by a model with double rigid bodies. Therefore, the model can be applied to the attitude transformation of a free floating space robot (FFSR).

    Fig.2 General model of the space robot

    For the convenience of calculation and analysis, the origin of the inertial coordinate system is located at the center of mass system. It is easy to get linear velocity and angular velocity at mass center of each link as follows:

    (1)

    (2)

    Put Eqs.(1),(2) into a matrix form, we have

    (3)

    The movement of the linkiis related to the position, attitude and speed of the base and to the rotation of the manipulator joints. The kinematics of linkican be derived from the kinematics of link 0 and joints angle movement.

    Ignore the gravity and external force (torque), and assuming that the initial linear and angular momentum of the system are O,v0andω0can be calculated according to the law of linear and angular momentum conservation.

    (4)

    The studied specific attitude transformation belongs to the overall attitude transformation, and the base attitude is represented as the expression of the overall attitude transformation. Eq.(4) can be expressed as follows:

    (5)

    Put Eq.(5) into Eq.(3), the linear and angular velocities of other links can be obtained:

    (6)

    Theoretically, numerical integration of Eq.(6) leads to a position level solution. And then the numerical solution of the speed level of each link is obtained by an iterative method.

    1.3 Closed motion

    Firstly, the attitude transformation in the plane is analyzed, Supposing there is a planar mechanism with two degrees of freedom (TDF), as shown in Fig. 3.

    Fig.3 Planar mechanism with TDF

    The overall attitude changes can be found given a certain law of motion between joint 1 and joint 2. The joint 1 rotatesαangle first, then the joint 2 rotatesβangle, then the joint 1 recovers, finally the joint 2 recovers[22-23]. Repeat these movements for convenient observation, and then get the body’s posture as shown in Fig.4.

    Fig.4 Attitude change of planar mechanism with TDF

    Fig.4 shows a certain angle between the final and initial attitude which is different from a fixed base robot. This series of motion can be called closed motion. Closed motion requires at least two or more directional joints to achieve, and it cannot went exactly back with the application of the original inverse motion. Otherwise, the overall attitude changes will not be occurred.

    So then, the overall transformation of planar robot can be realized by closed motion, and its rotation direction is the same as the joint pointing and perpendicular to the plane of the mechanism.

    2 Combination Model and It’s Closed Motion

    Can the double rigid bodies joint model be combined with closed motion? It is found that any two joints of the joint model cannot be parallel to each other or vertical to the robot plane formed by the axis of links 1 and 4. Therefore, it is necessary to try to increase a rotational joint on the joint model. The joint 2 is selected to cooperate with the new freedom in order to achieve the closed motion in that joints 1 and 3 can never be perpendicular to the robot plane. A 3D model is designed as shown in Fig.5.

    The rotational joint 4 is added below the link 4 so that it is parallel to the joint 2 and perpendicular to the robot plane. Applying the closed motion of the space robot, the joint drive (joints 1 and 3 are not driven) is shown in Fig.6.

    Fig.5 Combination model

    The closed motion resultis obtained by simulation, as shown in Fig.7.The body axisX-Z-Xis adopted to represent the attitude, and the Euler angle parameters are namedX1,Z2andX3respectively in order to distinguish their order. As a result of the closed motion, only the attitude angleX1has changed and the other results are 0. The overall attitude of the space robot rotates about -3.23° around theXaxis.

    Fig.6 Joints 2 and 4 drive settings

    Fig.7 Attitude parameter X1 of link 1

    Fig.8 Joints drive settings

    The analysis results show that the overall attitude rotates a certain angle, but the angle is small, which is determined by the structure parameters of the space robot , the motion order and size of the joint angles.

    The rotation range of single closed motion is limited due to the limitation of physical properties. Even if the motion is planned to have the maximum rotation angle, the desired rotation angle may not be achieved. So it needs several times before arriving at the target. For instance, if the rotation angle requires 105°, and each closed motion up to 5°, to achieve the target position needs 21 times of closed movements. In fact, the rotation angle of the closed motion is small but highly controllable, so it is of great practical significance.

    3 Two DOF Attitude Transformation

    First of all, two movements need to be defined:

    ① Joint motions of the two rotating joints (joints 1 and 4) in the same plane causes the overall attitude of the space robot to rotate about an angle in the vertical direction of the plane, which is called X rotation.

    Fig.9 Attitude parameters of link1

    ② Joints motion(joints 1,2 and 3)causes the attitude to rotate about a central axis by a certain angle, which is called theZrotation.

    The driving law of the joints in the ADAMS simulation model is shown in Fig.8.

    The simulation is represented by the body axisX-Z-XEuler angles, as shown in Fig.9.

    Ignoring the perturbation of theZrotation in the second stage, the overall attitude of the space robot can be completely determined by the two parameters which consist of attitude change angleφ1generated by closing movementXin the first stage andφ2generated around the center axis of rotationZin the second stage. Therefore, the TDF attitude transformation scheme is verified by the simulation.

    4 Three DOF Attitude Transformation

    The two DOF attitude transformation based on a bionic spatial mechanism is still very narrow for space robot applications. We will further analyze the implementation scheme of three DOF.

    4.1 Attitude transformation

    There are 12 ways to represent Euler angles of three DOF attitude transformation. In the TDF scheme, the motion of the attitude transformation consists of theXrotation and theZrotation. So there are two schemes for applying two kinds of rotation to three DOF, that is, the body axisX-Z-XandZ-X-Zwhich are consistent with the Euler angle representation. Therefore, the two schemes can realize arbitrary transformation of attitude. The three DOF attitude transformation based on the bionic mechanism is analyzed by taking the body axisX-Z-Xas an example.

    The value of the target attitude has been given in the form of body axisX-Z-XEuler angle, and its implementation will be divided into three stages as follows:

    ① The rotationX1is achieved by joints 2 and 4 closed motion method;

    ② The rotationZ2is achieved by the bionic mechanism joints 1, 2, and 3;

    ③ TheX3rotation is achieved again by joints 2 and 4.

    In the third phase, theX3rotation can be achieved, the second stage is about the central axis of rotation, in the calculation of the best rotation angle and bending angle, the rotation angle is calculated up to a multiple of 180 °, and let the bending angle slightly reduced small to reach the second stage of the target corner and keep axes of the joints 2 and 4 parallel.

    Through the three stages of the rotation, not considering the second stage possible attitude disturbance, the space robot can realize the attitude transformation of body axisX-Z-Xwhich is a kind of generalized Euler angle. Any attitude in space can be represented by Euler anglesX-Z-X, consequently, the scheme is feasible.

    Adopt the same simulation model as shown in Fig.3. The new closed motion still implemented by joints 2 and 4 is added to the combination model based on two rotation stages. And the rotation angles of the joints 1 and 3 are a multiple of 180°, so that the three DOF attitude transformation of the space robot can be realized. Set the drive for each joint as shown in Fig.10.

    The simulation is represented by the body axisX-Z-XEuler angles, as shown in Fig.11.

    Fig.10 Drive settings

    Fig.11 Attitude parameter of link 1

    Ignoring the perturbation in the second stage, it can be observed that in the first stage only the value ofX1changes, and the second stage only see changes in the value ofZ2, and only the value ofX3changes in the third stage. Therefore, it can be seen that the three DOF scheme is feasible and coincides with the form of the body axisX-Z-XEuler angles.

    4.2 Disturbance canceling

    4.2.1Method

    The related terms are explained firstly.

    ① The transformZrefers to the transformation of the Euler angle and does not produce any disturbance, while the rotationZrefers to the rotation of the double rigid bodies model joints, and there will be additional attitude perturbations.

    ② The transformXis the transformation in the sense of Euler angles, which is the same as the rotation of theXproduced by the closed motion.

    In the three DOF attitude transformation scheme, the perturbation of the body axisX-Z-Xis only generated in the second stage. In the motion planning, rotationXoccurs in the first and third stages in the three DOF attitude transformation scheme. On the basis of satisfying the moving target, make rotationXcooperate with the rotationZ, that is, the rotationXis superimposed with a certain offset to balance the disturbance of the second stage. There will be no disturbance to produce finally in theory. The deduction is listed as follows:

    RotationX1of the third stage:

    (7)

    RotationX3of the third stage:

    (8)

    The rotationZ2of the second stage is expressed as the form of body axisX-Z-Xtransformation:

    (9)

    where Rot is the rotationX; Rotation is the composite movement,rotationZ. So the overall attitude transformation is:

    (10)

    Combine the first and two term matrices on the right of Eq.(10):

    (11)

    Then combine the fourth and five matrices on the right of Eq.(10):

    (12)

    So, it can be obtained according to Eq.(10):

    (13)

    It can be seen from Eq.(13) that the disturbance can be counteracted by the rotationXin thefirst and third stages respectively. Specific applications are as follows.

    It is assumed that corresponding Euler angles areX1,Z2andX3respectively in the attitude transformation by the body axisX-Z-X. Firstly, planning the second stage of motion, so that the motion can reach the angleZ2, and calculate disturbance anglesα21andα23in the second stage. Then,before the start of the first and three stages of the motion planning, the first phase and the third phase have initial values ofα21andα23, Therefore, the value after planning should subtract the initial value, that is, the first stage planning value isα1=X1-α21, and the third stage planning value isα3=X3-α23.

    Through the above analysis,it is found that the disturbance generated by the body axisX-Z-Xmode can be completely counteracted by motion planning. Theoretically, the attitude transformation without disturbance can be realized. This is of great significance for practical applications.

    4.2.2Simulation

    The purpose of combination joint is to complete the attitude transformation of the body axisX-Z-X, and the corresponding Eulerian angles areX1,Z2andX3respectively. The implementation process belongs to the motion planning. The key simulation results are only limited to the presentation and validation of the new structure. Motion planning research belongs to the following problems, and the related research results will be displayed soon.

    Firstly, the second stage motion of the plan is set to reach theZ2angle which is displayed in the 5.1 solution. Then the perturbation angles corresponding to theX1andX3are separated, and they are superimposed on the first and third stages. Finally, the angle changes ofX1andX3can be observed as shown in Fig. 12 after the simulation. It can be found that when theZ2changes, the attitudes of theX1,X2at the corresponding motion are stable, and the useless disturbance has been eliminated. Therefore, the method of eliminating disturbance proposed is verified.

    Fig.12 Attitude parameter of link 1 under disturbance cancellation processing

    5 Conclusion

    Space robot has a unique closed motion phenomenon, and the motion can only realize one DOF attitude transformation. The model with double rigid bodies based on bending theory can eventually achieve a rotation of the overall attitude. A new combination model is established by interweaving their characteristics, which can realize attitude transformation in planar, two DOF and three DOF space by simulation. However the rotation of the joint results in an additional perturbation. Therefore, a scheme to eliminate attitude perturbation is proposed, and resulting effects are derived in theory. The concrete realization of the scheme may need further study, and thus the application of the spatial attitude transformation of a bionic mechanism will may be a research direction in the near future.

    [1] Dan K. Space servicing: past, present and future[C]∥ Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: iSAIRAS 2001, 2001.

    [2] Gmbh A U F A. Reaction wheels arranging device for use on Pico satellites, has gyroscopic wheels mounted on tetrahedron-shaped base body: DE202006000022[P]. 2006-03-09.

    [3] Nobahari H, Bandikenari H, Darabi D, et al. Optimization of the reaction jet attitude control system using multi-objective adaptive real-coded memetic algorithm[J]. Journal of Aeronautical Engineering, 2011, 13(1):1-22.

    [4] Wang B, Gong K, Yang D, et al. Fine attitude control by reaction wheels using variable-structure controller[J]. Acta Astronautica, 2003, 52(8):613-618.

    [5] McDonald D A. How does a falling cat turn over[J]. Amer J Physiol, 1955, 129: 34-35.

    [6] McDonald D. How does a cat fall on its feet[J]. New Scientist, 1960, 7(189): 1647-1649.

    [7] Kane T R, Scher M P. A dynamical explanation of the falling cat phenomenon[J]. International Journal of Solids & Structures, 1969, 5(7):663-670.

    [8] Liu Y Z. On the turning motion of a free-falling cat [J]. Acta Mechanica Sinica, 1982(4):388-393.

    [9] Zhong F. A two-rigid-body model of the free-falling cat [J]. Acta Mechanica Sinica, 1985, 17(1):72-77.

    [10] Guo M Z. A discussion on the shifting transformation and rotating transformation of inertial prouduct[J]. College Physics, 2004,23(6):23-31.

    [11] Yamada K. Attitude control of space robot by arm motion[J]. Journal of Guidance Control & Dynamics, 2012, 17(5):1050-1054.

    [12] Vafa Z. Space manipulator motions with no satellite attitude disturbances[C]∥ IEEE International Conference on Robotics and Automation, 1990 Proceedings, 1990,3:1770-1775.

    [13] Yamada K, Yoshikawa S. Feedback control of space robot attitude by cyclic arm motion[J]. Journal of Guidance Control & Dynamics, 1997, 20(4): 715-720.

    [14] Liu Yanzhu. Mechanical model of sports biomechanics[J]. Mechanics and Practice, 1983, 5(3):8-11.

    [15] Ge X S, Liu Y Z. Nonholonomic motion planning for free-falling cat using Quasi-Newton method[J]. Journal of System Simulation, 2006, 18(5):1123-1126.

    [16] Xu L, Wang L. Study on bionic rotation of a free-floating space robot[C]∥ International Conference on Fluid Power and Mechatronics, 2015:859-865.

    [17] Sun Z, Xu L, Wang L. Study on bionic attitude transformation of free-floating space robot[C]∥ IEEE International Conference on Aircraft Utility Systems, IEEE, 2016:13-19.

    [18] Xu Y, Root D K. Space robotics: dynamics and control[M]. New York:Springer, 1993.

    [19] Umetani Y, Yoshida K. Continuous path control of space manipulators mounted on OMV [J]. Acta Astronautica, 1987, 15(12):981-986.

    [20] Xin P, Rong J, Yang Y, et al. Inverse kinematics analysis of a 7-DOF space manipultor for trajectory design[J]. Journal of Beijing Institute of Technology, 2017, 26(3): 285-291.

    [21] Wang H, Hong B. The general kinematic model and its simulation of free-flying space robot[J]. Journal of Astronautics, 2000, 21(3): 45-51.

    [22] Yan J, Wu J. Screw motion analysis of a robot and spatial mechanism[J]. Journal of South China University of Technology(Natural Science Edition), 1991(1):93-99.

    [23] Suzuki T, Nakamura Y. Planning spiral motion of nonholonomic space robots[C]∥ IEEE International Conference on Robotics and Automation, 1996 Proceedings, 1996,1:718-725.

    尤物成人国产欧美一区二区三区| 最新在线观看一区二区三区| 久久久国产成人精品二区| 国产精品一区二区免费欧美| 亚洲av成人精品一区久久| 两性午夜刺激爽爽歪歪视频在线观看| 99视频精品全部免费 在线| 欧美丝袜亚洲另类 | 日韩欧美国产在线观看| 中文字幕av在线有码专区| 成熟少妇高潮喷水视频| 国产欧美日韩精品亚洲av| 久久久久久久久大av| 亚洲精品色激情综合| 欧美精品国产亚洲| 日本a在线网址| 一本久久中文字幕| 久9热在线精品视频| 午夜精品在线福利| 亚洲精品久久国产高清桃花| 一级黄片播放器| 午夜福利成人在线免费观看| 99热精品在线国产| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线观看免费| 欧美bdsm另类| 哪里可以看免费的av片| 国国产精品蜜臀av免费| 久久亚洲真实| 国产精品一区www在线观看 | 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 国产探花极品一区二区| 成年女人看的毛片在线观看| 国产 一区精品| 国产蜜桃级精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 高清在线国产一区| 国产精品国产高清国产av| 国产av在哪里看| 综合色av麻豆| 真人一进一出gif抽搐免费| 国产在视频线在精品| 国产乱人伦免费视频| 午夜福利欧美成人| 最近最新免费中文字幕在线| 一本精品99久久精品77| 国产黄片美女视频| 国产免费av片在线观看野外av| 91久久精品国产一区二区成人| 蜜桃亚洲精品一区二区三区| 伦理电影大哥的女人| 五月伊人婷婷丁香| 亚洲精华国产精华精| 免费看光身美女| 国产精品无大码| 国产黄a三级三级三级人| 两个人视频免费观看高清| 不卡一级毛片| 国产淫片久久久久久久久| 欧美日韩乱码在线| 欧美日韩乱码在线| 日韩高清综合在线| 欧美zozozo另类| a在线观看视频网站| 午夜爱爱视频在线播放| 国产精品一区www在线观看 | 国内精品一区二区在线观看| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区免费观看 | 欧美色欧美亚洲另类二区| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久免费视频| 久久热精品热| 超碰av人人做人人爽久久| 成人二区视频| av福利片在线观看| 国产男人的电影天堂91| 午夜激情福利司机影院| 日韩国内少妇激情av| 美女大奶头视频| 国产黄色小视频在线观看| 久久草成人影院| 欧美精品啪啪一区二区三区| 日日撸夜夜添| 日本欧美国产在线视频| 免费在线观看日本一区| 国产男靠女视频免费网站| av在线天堂中文字幕| 国产亚洲欧美98| 中国美白少妇内射xxxbb| 国产三级在线视频| 欧美一区二区亚洲| 亚洲精品456在线播放app | 高清毛片免费观看视频网站| 窝窝影院91人妻| 国产乱人视频| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 在线国产一区二区在线| 欧美bdsm另类| 1024手机看黄色片| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 国产精品女同一区二区软件 | 村上凉子中文字幕在线| 亚洲精华国产精华精| 十八禁国产超污无遮挡网站| 欧美日韩黄片免| 精品乱码久久久久久99久播| 免费观看的影片在线观看| 精品99又大又爽又粗少妇毛片 | 久99久视频精品免费| 欧美高清成人免费视频www| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 亚洲成人久久性| 久久久久久国产a免费观看| 免费在线观看成人毛片| 亚洲av二区三区四区| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 欧美bdsm另类| 亚洲av免费高清在线观看| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| 亚洲乱码一区二区免费版| 69人妻影院| 亚洲精品乱码久久久v下载方式| 日本成人三级电影网站| 欧美性猛交黑人性爽| 久久草成人影院| 变态另类成人亚洲欧美熟女| 男女下面进入的视频免费午夜| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 久久人人精品亚洲av| 一区二区三区四区激情视频 | 极品教师在线视频| 成年女人看的毛片在线观看| 舔av片在线| 极品教师在线视频| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人av在线观看| 波多野结衣高清作品| 少妇人妻精品综合一区二区 | 人妻久久中文字幕网| av天堂中文字幕网| 国产精品人妻久久久影院| 51国产日韩欧美| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看 | 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱 | 在线观看免费视频日本深夜| 欧美精品国产亚洲| 免费看av在线观看网站| 人人妻人人看人人澡| 无遮挡黄片免费观看| 欧美在线一区亚洲| 午夜视频国产福利| 国产高清激情床上av| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 搡老岳熟女国产| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 久久久精品欧美日韩精品| 在线看三级毛片| 日韩,欧美,国产一区二区三区 | 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av| 日韩欧美精品v在线| 精品久久久久久久久亚洲 | 欧美高清成人免费视频www| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 欧美日韩国产亚洲二区| 天堂动漫精品| 成人亚洲精品av一区二区| 久久精品91蜜桃| 亚洲精品国产成人久久av| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 18禁在线播放成人免费| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 最近在线观看免费完整版| 91狼人影院| www.色视频.com| 人妻少妇偷人精品九色| 欧美最新免费一区二区三区| 亚洲国产欧美人成| 十八禁国产超污无遮挡网站| avwww免费| 精品一区二区三区视频在线| 精品福利观看| 舔av片在线| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 久久久久国内视频| 亚洲精华国产精华液的使用体验 | 国产午夜精品久久久久久一区二区三区 | or卡值多少钱| 国产综合懂色| 一a级毛片在线观看| 久久午夜亚洲精品久久| 内射极品少妇av片p| 国产私拍福利视频在线观看| 老司机午夜福利在线观看视频| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 毛片女人毛片| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 成年免费大片在线观看| 不卡一级毛片| www.www免费av| 亚洲午夜理论影院| 欧美精品国产亚洲| 免费黄网站久久成人精品| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 久久国内精品自在自线图片| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 日韩一本色道免费dvd| 啪啪无遮挡十八禁网站| 国产在线男女| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| or卡值多少钱| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 熟女电影av网| videossex国产| 亚洲精华国产精华液的使用体验 | 国产精品av视频在线免费观看| 久久久久性生活片| av.在线天堂| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办 | 嫁个100分男人电影在线观看| 亚洲在线观看片| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3| 国产精品福利在线免费观看| 国产成人影院久久av| 国产伦一二天堂av在线观看| 97超视频在线观看视频| 久久99热6这里只有精品| 免费观看在线日韩| 偷拍熟女少妇极品色| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 美女cb高潮喷水在线观看| 中文资源天堂在线| 亚洲av美国av| 老司机福利观看| 国产乱人视频| 最后的刺客免费高清国语| netflix在线观看网站| 丰满的人妻完整版| 51国产日韩欧美| 国产视频一区二区在线看| 亚洲av一区综合| 国产综合懂色| 97人妻精品一区二区三区麻豆| 别揉我奶头~嗯~啊~动态视频| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 中出人妻视频一区二区| 欧美区成人在线视频| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式| 免费在线观看影片大全网站| 校园人妻丝袜中文字幕| 联通29元200g的流量卡| 欧美又色又爽又黄视频| 国产精品女同一区二区软件 | 自拍偷自拍亚洲精品老妇| 一边摸一边抽搐一进一小说| av在线亚洲专区| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 婷婷亚洲欧美| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 欧美日韩瑟瑟在线播放| 日韩欧美三级三区| 精品欧美国产一区二区三| 日本一本二区三区精品| av在线蜜桃| 国产精品精品国产色婷婷| 国产精品永久免费网站| 国产在线男女| 大型黄色视频在线免费观看| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满 | 精品一区二区免费观看| 日韩欧美精品免费久久| 美女被艹到高潮喷水动态| 亚洲美女黄片视频| 亚洲四区av| 久久久久免费精品人妻一区二区| 一本久久中文字幕| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件 | 久久久精品欧美日韩精品| 校园春色视频在线观看| 两个人的视频大全免费| 桃红色精品国产亚洲av| 免费观看在线日韩| 男人和女人高潮做爰伦理| 熟女电影av网| 免费观看的影片在线观看| 一级黄色大片毛片| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添av毛片 | 内射极品少妇av片p| av在线天堂中文字幕| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 91狼人影院| 国产精品精品国产色婷婷| 色综合婷婷激情| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 久久人人爽人人爽人人片va| 国产探花在线观看一区二区| 国国产精品蜜臀av免费| 欧美高清成人免费视频www| 91久久精品国产一区二区三区| 看片在线看免费视频| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 国产男人的电影天堂91| 久久国产精品人妻蜜桃| 精品久久久久久,| a在线观看视频网站| 日日摸夜夜添夜夜添av毛片 | 国产色爽女视频免费观看| 22中文网久久字幕| 99九九线精品视频在线观看视频| 欧美极品一区二区三区四区| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 国产成人影院久久av| 久久精品国产亚洲av涩爱 | 久久国内精品自在自线图片| 天堂av国产一区二区熟女人妻| 日本与韩国留学比较| 日本免费a在线| 女的被弄到高潮叫床怎么办 | 日本爱情动作片www.在线观看 | 欧美色欧美亚洲另类二区| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 乱系列少妇在线播放| 成人永久免费在线观看视频| 久久精品久久久久久噜噜老黄 | 午夜激情欧美在线| 日本黄色视频三级网站网址| 免费大片18禁| 九色国产91popny在线| 欧美日韩精品成人综合77777| 国产成人av教育| av.在线天堂| 久久亚洲真实| 亚洲成av人片在线播放无| 欧美黑人欧美精品刺激| 免费看av在线观看网站| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 老司机福利观看| 久久久久久九九精品二区国产| videossex国产| 91狼人影院| 国产精品三级大全| 级片在线观看| 国产 一区精品| 18禁黄网站禁片午夜丰满| av天堂中文字幕网| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片 | 女人被狂操c到高潮| 日韩,欧美,国产一区二区三区 | 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 99热精品在线国产| 亚州av有码| 欧美高清性xxxxhd video| 亚洲真实伦在线观看| 在现免费观看毛片| 日韩欧美免费精品| 中文在线观看免费www的网站| 国产三级在线视频| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 国产精品一区二区三区四区久久| 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 成人无遮挡网站| 亚洲,欧美,日韩| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片 | 可以在线观看的亚洲视频| .国产精品久久| 亚洲七黄色美女视频| 国产成人一区二区在线| 黄色视频,在线免费观看| 免费人成在线观看视频色| 在线免费观看的www视频| 免费黄网站久久成人精品| 日韩欧美精品v在线| 国产成人av教育| 99久久久亚洲精品蜜臀av| 国模一区二区三区四区视频| 老司机深夜福利视频在线观看| 露出奶头的视频| 成人美女网站在线观看视频| avwww免费| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 成人二区视频| 一进一出好大好爽视频| 免费在线观看日本一区| 男人舔奶头视频| 两人在一起打扑克的视频| 亚洲自拍偷在线| 欧洲精品卡2卡3卡4卡5卡区| 亚州av有码| 中文字幕高清在线视频| 欧美zozozo另类| 全区人妻精品视频| 一级黄片播放器| 国产 一区精品| 在线播放国产精品三级| 成年女人永久免费观看视频| 久久精品国产鲁丝片午夜精品 | 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放| 在线观看66精品国产| 麻豆成人午夜福利视频| 少妇人妻一区二区三区视频| 国产又黄又爽又无遮挡在线| or卡值多少钱| 亚洲经典国产精华液单| 人妻少妇偷人精品九色| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| 免费电影在线观看免费观看| 在线国产一区二区在线| 性插视频无遮挡在线免费观看| 一区二区三区激情视频| 美女 人体艺术 gogo| 少妇被粗大猛烈的视频| 国内精品久久久久精免费| 黄色视频,在线免费观看| 国产白丝娇喘喷水9色精品| 真人一进一出gif抽搐免费| 国产三级在线视频| 天堂影院成人在线观看| 国国产精品蜜臀av免费| 婷婷亚洲欧美| av女优亚洲男人天堂| 亚洲欧美日韩无卡精品| 国产在视频线在精品| 丰满乱子伦码专区| 国产黄片美女视频| 久99久视频精品免费| av国产免费在线观看| 99热这里只有是精品50| 乱人视频在线观看| 欧美日韩综合久久久久久 | 在线天堂最新版资源| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线| av专区在线播放| 两个人视频免费观看高清| 成年女人看的毛片在线观看| 欧美丝袜亚洲另类 | 日韩一区二区视频免费看| 日本a在线网址| 国产极品精品免费视频能看的| 国产中年淑女户外野战色| 欧美bdsm另类| 欧美潮喷喷水| 色播亚洲综合网| 色哟哟哟哟哟哟| 久久草成人影院| 欧美黑人欧美精品刺激| 老司机深夜福利视频在线观看| 春色校园在线视频观看| 亚洲自拍偷在线| 最近最新中文字幕大全电影3| 最近视频中文字幕2019在线8| 亚洲专区国产一区二区| x7x7x7水蜜桃| 国产免费av片在线观看野外av| 波多野结衣巨乳人妻| 中文字幕熟女人妻在线| 国产精品98久久久久久宅男小说| 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 看片在线看免费视频| 毛片一级片免费看久久久久 | 给我免费播放毛片高清在线观看| 午夜福利在线在线| 国产大屁股一区二区在线视频| 亚洲精品粉嫩美女一区| 内射极品少妇av片p| 一本一本综合久久| eeuss影院久久| 日本一本二区三区精品| 一夜夜www| 国产熟女欧美一区二区| 亚洲欧美激情综合另类| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线观看免费| 中出人妻视频一区二区| 亚洲熟妇熟女久久| 久久久久国产精品人妻aⅴ院| 国产精品嫩草影院av在线观看 | bbb黄色大片| 久久99热这里只有精品18| 国产精品人妻久久久久久| 嫩草影院入口| 精品人妻偷拍中文字幕| 久久久久精品国产欧美久久久| a级毛片免费高清观看在线播放| 又紧又爽又黄一区二区| 国产69精品久久久久777片| 国产精品人妻久久久影院| 亚洲最大成人中文| 久9热在线精品视频| 亚洲精品成人久久久久久| 可以在线观看毛片的网站| 欧美成人a在线观看| 99国产极品粉嫩在线观看| 久久人妻av系列| 一夜夜www| ponron亚洲| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影院精品99| 动漫黄色视频在线观看| 一级黄片播放器| 日韩欧美三级三区| 欧美日韩瑟瑟在线播放| 欧美xxxx性猛交bbbb| 国产高清激情床上av| 国产精品不卡视频一区二区| 一本久久中文字幕| 自拍偷自拍亚洲精品老妇| 精品久久久久久成人av| 色吧在线观看| 国产精品野战在线观看| 欧美性感艳星| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 小说图片视频综合网站| 亚洲四区av| 一进一出抽搐gif免费好疼| 最新在线观看一区二区三区| 日本 av在线| 人妻丰满熟妇av一区二区三区| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 亚洲欧美清纯卡通| 欧美一区二区精品小视频在线| 成年免费大片在线观看| 草草在线视频免费看| 免费在线观看日本一区| 嫩草影院新地址| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9| 色吧在线观看| 尾随美女入室| 嫁个100分男人电影在线观看| 久久欧美精品欧美久久欧美| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| 欧美日韩瑟瑟在线播放| 亚洲国产色片|