• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameters Sensitivity Analysis and Correction for Concrete Damage Plastic Model

    2018-04-16 07:27:39YaqinJiangPengfeiXuChengzhiWangandDianshuLiu

    Yaqin Jiang, Pengfei Xu, Chengzhi Wang and Dianshu Liu

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083,China; 2.College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China; 3.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)

    Currently,many concrete models have been established to simulate nonlinear responses, which include Geological Damage (MAT25), Concrete Damage Rel3(MAT72R3), Winfrith Concrete(MAT84), Johnson Holmquist Concrete (MAT111), Schwer Murray Cap (MAT145), CSCM Concrete (MAT159) and RHT (MAT272)[1]. Most models are based on plasticity mechanism, damage mechanism, or combination of plasticity and damage[2]. Plasticity models fail to describe stiffness degradation during unloading tests, while isotropic damage models can describe irreversible deformations in experiments. In 2006, Grassl[3]et al. introduced a damage-plastic model for concrete, which combined plastic effective stress and isotropic damage. The plastic part adopts a strength envelope yield surface proposed by Menetrey and Willam[4]. The damage part employs tensile damage variables and compressive principal stress state proposed by Ortiz[5].

    Then LS-DYNA material library added a damage plastic concrete model based on the work of Grassl et al. These model parameters are mainly classified into three categories, which control elastic phase, hardening phase and softening phase of the stress-strain curve, respectively. Most of them have default values from experimental tests[1]. Hardening ductility parameters AH, BH, CH, DH control the hardening phase, while the damage softening phase is controlled by the damage ductility parameter AS and damage ductility exponent BS. However, the effect of these parameters on the mechanical responses of concrete is still not clear[3, 6-7]. Moreover, it is complicated to directly obtain these parameters through experiments, and the sensitivity and reliability of nonlinear finite element analysis is not only determined by the corresponding nonlinear model, parameter setting, but affected by the unit size[8].

    Therefore, herein a cube unit testing through the LS-DYNA finite element software was conducted to analyze the sensitivity of the hardening and softening ductility parameters, and correction of these parameters was eventually made. The study can provide a reliable reference and basis for the concrete structural analysis using the concrete damage plastic model.

    1 Concrete Damage Plastic Model

    The parameters[1]of the concrete damage plastic model are listed in Tab.1.

    Tab.1 Damage plastic concrete model parameters

    Hereρis the mass density;Eis Young’s modulus;υis the Poisson’s ratio;ftis the uniaxial tensile strength (stress);fcis the uniaxial compression strength (stress); HP is the hardening parameter; QH0is the initial hardening defined asfc0/fc, wherefc0is the compressive stress at which the intimal yield surface is reached. AH, BH, CH, DH are hardening ductility parameters 1,2,3,4, respectively; AS is the ductility parameter during damage; BS is the damage ductility exponent during damage; STRFL is the strain rate flag. EQ.1.0 is the strain rate dependent. EQ.0 is no strain rate dependency.

    The stress-strain relation for the concrete damage plastic model is

    (1)

    (2)

    where Deis the elastic stiffness;εis the total strain;εpis the plastic strain.

    The plasticity model of the present model is based on effective stress, described by the yield function, the flow rule, the evolution law for the hardening variable and the loading-unloading conditions.

    The yield function is formulated as

    (3)

    whereqh1(κp) andqh2(κp) are dimensionless functions that determine the size and shape of the yield surface.

    The flow rule is expressed as

    (4)

    The loading-unloading conditions:

    (5)

    The damage model of this model is described by the damage loading function, the evolution law for the damage variable, and the loading-unloading conditions. The damage model is described by

    (6)

    (7)

    ω=gd(κd,κd1,κd2)

    (8)

    2 Sensitivity Analysis

    Fig.2 Relationship between peak strength strain of concrete and hardening parameter AH, BH, CH, DH under uniaxial tension, uniaxial compression, and triaxial compression, respectively

    In order to understand the effect of hardening and softening ductility parameters on the concrete mechanical response, it is necessary to conduct a parameter sensitivity analysis. The cube unit testing method was employed to conduct numerical simulations in three different loading conditions. The sensitivity of AH, BH, CH, DH and AS, BS was analyzed under uniaxial tension, uniaxial compression, triaxial compression, respectively. The cube unit size is 150 mm×150 mm×150 mm. The unit test boundary constraint condition is shown in Fig.1.

    Fig.1 Unit test boundary constraints condition

    2.1 Hardening ductility parameters sensitivity analysis

    According to the work of Grassal et al., hardening ductility parameters control hardening phase of concrete stress-strain curve. To analyze the sensitivity, the peak strength strain under three load conditions was tested against the hardening ductility parameters AH, BH, CH, DH, respectively.It was shown in Fig. 2 that the peak strength strain was sensitive to AH, BH, CH, but independent of DH under three load conditions. Under the uniaxial tension load, the peak strength strain decreased sharply at lower AH values, rapidly increased at higher BH and CH values. Under the uniaxial compression load, the peak strength strain linearly decreased with AH, and linearly increased with BH and CH. Under the triaxial compression, the peak strength strain linearly climbed up with AH and BH, but nonlinearly decreased with CH.

    2.2 Softening ductility parameters sensitivity analysis

    In LS-DYNA, the softening phase of the concrete stress-strain curve was controlled by the softening ductility parameter AS and the softening ductility exponent BS. Herein, a softening modulus was used to reflect concrete softening ductility and calculated by the concrete stress, strain at peak strength and the stress, strain as peak intensity dropping 15%. The softening modulus was collected with different AS, BS values to analyze the sensitivity under three load conditions. The relation between the softening modulus and AS, BS was presented in Fig. 3. It can be seen in Fig. 3a that, only under the uniaxial compression and triaxial compression load, the softening modulus nonlinearly decreased with AS. Under the uniaxial tension load, AS has no effect on the softening modulus. As shown in Fig. 3b, the softening modulus is independent of BS in three load cases.

    Fig.3 Relationship between softening modulus and softening parameter AS and BS under uniaxial tension, uniaxial compression, and triaxial compression, respectively

    3 Model Parameters Correction and Verification

    3.1 Model parameters correction

    According to the designing code of concrete structures[9], the concrete stress-strain curve in the uniaxial compression is expressed by the following formulas:

    σ=(1-dc)Ecε

    (9)

    (10)

    (11)

    (12)

    (13)

    wheredcis the damage evolution parameter in the uniaxial compression;αcis the decreasing phase parameter value of the stress-strain curve in compression;fc,ris the representative value of the uniaxial compressive strength;εc,ris the peak strength strain.

    In the case of C30 concrete, the uniaxial compressive stress-strain curve was simulated by the model with default parameters and optimized parameters, respectively. As shown in Fig. 4, the curve simulated by the default model was in good accordance with the standard curve by concrete code model in elastic phase, but exhibited slight difference in hardening phase. In soften phase, the compressive strength simulated by the default model was much higher than that by the code model, which indicated the failure of default parameter model in describing the soften phase in the concrete stress-strain curve. Considering the result in Fig. 3, the softening phase was mainly affected by the softening ductility parameter AS and independent of the softening ductility exponent BS in the uniaxial compression. An optimized model was developed by adjusting the value of AS. Compared with the default mode (AS=15), the optimized model with AS=2 exhibited good consistence with the standard code model in the softening phase. Thus, the simple optimized model with AS correction could be used for accurate prediction of concrete stress-strain curves.

    Fig.4 Strain-compressive strength curves simulated by the model with default parameter values, the optimized model with parameter correction, and the standard code model

    3.2 Verification

    To verify the feasibility of the model with AS correction, the stress-strain curves of concrete with different grades were compared between the code model and the corrected model. As shown in Fig. 5, the corrected model could describe the stress-strain curves of each grade concrete well , only exhibiting slightly higher compressive strength in softening phase for C60 concrete. Therefore, the corrected model demonstrated high versatility in predicting the stress-strain curves for different grades of concrete.

    Fig.5 Comparison of the strain-compressive strength curvesbetween the standard codemodel and the optimized model with parameter correction for different grade concretes

    In order to further validate the practicability of the corrected concrete model, a conventional triaxial compression test of 5 MPa concrete cylinder was designed with the diameter of 50 mm and the height of 100 mm[10-11]. The testing concrete adopted C20 grade concrete made of 42.5 fast hard sulphate cement, stones (maximum 10 mm) and sand (maximum size 0.5 mm) with the mixed proportion of cement∶sand∶gravel∶water=1.00∶1.91∶2.98∶0.46. The test was carried out on the rock servo triaxial pressure test machine. First, a lateral pressure was applied at the same time with the loading rate of 0.05 MPa/s. After reaching the specified lateral pressure value,the axial pressure continued to be loaded with the loading rate of 0.5-1.0 MPa/s until the specimen was completely destroyed. Fig. 6 exhibited the comparison of the trial curve and simulated curve. It could be seen that the simulated result matched well with the trial result, indicating the accuracy of the corrected model.

    Fig.6 Comparison of axial strain-compressive strength curves between the trial result and simulated result by the optimized model

    4 Conclusion

    In summary, the sensitivity of hardening ductility parameters (AH, BH, CH, DH) and softening ductility parameter and exponent (AS and BS)in the currently-used concrete damage plastic model was investigated in three load conditions (uniaxial tension, uniaxial compression, triaxial compression) through the convenient cube unit test. The results indicated that the peak strength strain was affected by AH, BH, and CH, but independent of DH.The softening modulus was related with AS in uniaxial compression and triaxial compression, but not affected by AS in uniaxial tension and BS in all three load conditions. Considering the large deviation of the current model using default parameters in LS-DYNA from the standard code model in softening phase, an optimized model with AS correction was proposed. The corrected model with AS=2 (default AS=15) matched well with the code model, and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover, the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore, the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.

    [1] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual-Volume Ⅱ material models[M].LS-DYNA R7.1. Livermore, USA: Livermore Software Technology Corporation, 2016.

    [2] Sun Xiaowang, Li Yongchi, Huang Ruiyuan, et al. Viscoplastic damage-softening constitutive model for concrete subjected to uniaxial dynamic compression[J]. Journal of Beijing Institute of Technology, 2017, 26(4): 427-433.

    [3] Grassl Peter, Jirasek Milan. Damage-plastic model for concrete failure [J]. Science Direct, 2006, 43: 7166-7196.

    [4] Menetrey P, Willam K J. A triaxial failure criterion for concrete and its generation [J]. ACI Struct J, 1995, 92: 311-318.

    [5] Ortiz M. Constitutive theory for the inelastic behavior of concrete [J]. Mechanics of Materials, 1985, 4: 67-93.

    [6] Grassl Peter, Xenos Dimitrios, Nystrom Ulrika, et al. CDPM2: a damage-plasticity approach to modelling the failure [J]. International Journal of Solids and Structures, 2013, 50: 3805-3816.

    [7] Kang H, Willam K. Localization characteristics of triaxial concrete model [J]. Journal of Engineering Mechanics, 1999, 125(8):941-950.

    [8] Xenos Dimitrios, Grassl Peter. Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2 [J]. Finite Elements in Analysis and Design, 2016, 57:1-10.

    [9] National Standard of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Building Industry Press, 2010. (in Chinese)

    [10] Jiang Hua, Zhao Jidong. Calibration of the continuous surface cap model for concrete [J]. Finite Elements in Analysis and Design, 2015, 97:1-19.

    [11] Li J, Zhang Y X. Evolution and calibration of a numerical model for modelling of hybrid-fibre ecc panels under high-velocity impact [J]. Composite Structures, 2011, 93:2714-2722.

    99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 很黄的视频免费| 成年女人毛片免费观看观看9| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 日本一本二区三区精品| 天堂av国产一区二区熟女人妻| 日韩在线高清观看一区二区三区 | 99热精品在线国产| 日韩欧美在线乱码| 欧美+日韩+精品| av.在线天堂| 日本免费一区二区三区高清不卡| 精品一区二区免费观看| 免费观看人在逋| 一本久久中文字幕| 毛片一级片免费看久久久久 | 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 观看免费一级毛片| 亚洲精品久久国产高清桃花| 亚洲精品久久国产高清桃花| 国内精品宾馆在线| 夜夜夜夜夜久久久久| 91精品国产九色| 国产亚洲av嫩草精品影院| 韩国av在线不卡| 啦啦啦啦在线视频资源| 国产av一区在线观看免费| 男女那种视频在线观看| 国产亚洲精品综合一区在线观看| 国产精品久久久久久久电影| 国产精品无大码| 国产欧美日韩精品亚洲av| 99国产极品粉嫩在线观看| 亚洲av五月六月丁香网| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 在线免费观看的www视频| 黄色视频,在线免费观看| 色精品久久人妻99蜜桃| x7x7x7水蜜桃| av黄色大香蕉| 亚洲无线观看免费| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| 琪琪午夜伦伦电影理论片6080| 国产精品久久视频播放| 91精品国产九色| 91久久精品电影网| 成人国产一区最新在线观看| 久久亚洲精品不卡| 亚洲熟妇熟女久久| 日本 欧美在线| 韩国av在线不卡| 99久久成人亚洲精品观看| 欧美日本视频| 国产一区二区三区视频了| 97碰自拍视频| 搡女人真爽免费视频火全软件 | 黄色日韩在线| 亚洲av中文av极速乱 | 99热这里只有是精品50| 搞女人的毛片| 99久久久亚洲精品蜜臀av| 久久精品国产自在天天线| 国产av不卡久久| 99国产精品一区二区蜜桃av| 乱系列少妇在线播放| 亚洲人成网站在线播| 欧美潮喷喷水| 国产精品1区2区在线观看.| 亚洲电影在线观看av| 变态另类成人亚洲欧美熟女| 国产极品精品免费视频能看的| 麻豆成人av在线观看| 亚洲精品一区av在线观看| 亚洲一级一片aⅴ在线观看| 少妇裸体淫交视频免费看高清| 久久九九热精品免费| 极品教师在线视频| 免费人成在线观看视频色| 欧美激情久久久久久爽电影| 国产爱豆传媒在线观看| 99久久精品热视频| 一级毛片久久久久久久久女| 在现免费观看毛片| 精品久久久久久成人av| 小蜜桃在线观看免费完整版高清| 国产一区二区三区视频了| 亚洲精品成人久久久久久| 亚洲精品色激情综合| 日本爱情动作片www.在线观看 | 老司机午夜福利在线观看视频| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 久久欧美精品欧美久久欧美| 美女高潮喷水抽搐中文字幕| 国产高清有码在线观看视频| 成人性生交大片免费视频hd| 久久精品国产鲁丝片午夜精品 | 日韩欧美免费精品| 精品欧美国产一区二区三| 亚洲男人的天堂狠狠| 免费av观看视频| 成年女人看的毛片在线观看| 欧美bdsm另类| 国产一区二区三区在线臀色熟女| 国内精品宾馆在线| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 成人av一区二区三区在线看| 免费av毛片视频| 我要搜黄色片| 一进一出抽搐动态| 一本精品99久久精品77| 黄色配什么色好看| av天堂在线播放| 精品午夜福利在线看| 天天躁日日操中文字幕| 中出人妻视频一区二区| 少妇的逼水好多| 永久网站在线| 一进一出好大好爽视频| 久久6这里有精品| 国产亚洲欧美98| a在线观看视频网站| 亚州av有码| 久久6这里有精品| 成年女人毛片免费观看观看9| 国产午夜精品论理片| 中出人妻视频一区二区| 女人十人毛片免费观看3o分钟| 国产精品久久久久久av不卡| 久久99热这里只有精品18| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 久久久久国内视频| 久久精品91蜜桃| 婷婷丁香在线五月| 搞女人的毛片| 人人妻,人人澡人人爽秒播| 国产亚洲91精品色在线| 中国美女看黄片| 成人亚洲精品av一区二区| 看黄色毛片网站| 国产免费一级a男人的天堂| 国产精品免费一区二区三区在线| 亚洲黑人精品在线| 简卡轻食公司| 天堂网av新在线| 一级黄色大片毛片| 黄片wwwwww| 两个人视频免费观看高清| 美女 人体艺术 gogo| 99久久精品一区二区三区| 日本黄大片高清| 国产精品久久久久久精品电影| 琪琪午夜伦伦电影理论片6080| 日韩精品青青久久久久久| 97人妻精品一区二区三区麻豆| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 日韩精品中文字幕看吧| 国产爱豆传媒在线观看| 亚洲av.av天堂| 99久久久亚洲精品蜜臀av| 国产高清不卡午夜福利| 国产三级在线视频| 国产精品国产三级国产av玫瑰| 亚洲综合色惰| 亚洲最大成人av| 午夜福利在线在线| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久成人| 亚洲精品一区av在线观看| 欧美bdsm另类| 色综合站精品国产| 亚洲国产色片| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 黄色配什么色好看| 日日夜夜操网爽| 国产精品一区二区性色av| 日韩欧美三级三区| 我的女老师完整版在线观看| 18禁裸乳无遮挡免费网站照片| 美女 人体艺术 gogo| 人妻久久中文字幕网| 99热这里只有精品一区| 色综合色国产| 美女免费视频网站| 变态另类丝袜制服| 久久久国产成人免费| 最近最新中文字幕大全电影3| 亚洲在线自拍视频| 国产高潮美女av| 少妇的逼好多水| 日本 欧美在线| 毛片一级片免费看久久久久 | 免费av不卡在线播放| 香蕉av资源在线| 人妻制服诱惑在线中文字幕| 精品99又大又爽又粗少妇毛片 | 欧美最黄视频在线播放免费| 不卡一级毛片| АⅤ资源中文在线天堂| 亚洲av.av天堂| 热99在线观看视频| videossex国产| 级片在线观看| 韩国av一区二区三区四区| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图| 两人在一起打扑克的视频| 白带黄色成豆腐渣| 欧美黑人欧美精品刺激| 美女 人体艺术 gogo| 国产精品国产高清国产av| 免费av毛片视频| 欧美黑人巨大hd| av黄色大香蕉| 亚洲成人久久性| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 国产精品电影一区二区三区| 日日啪夜夜撸| 夜夜爽天天搞| 观看免费一级毛片| 国产高清视频在线播放一区| 久久精品国产亚洲av香蕉五月| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 久久久久国产精品人妻aⅴ院| 美女免费视频网站| 午夜福利在线观看吧| 99热这里只有是精品50| 精品国内亚洲2022精品成人| 日本 欧美在线| 真人一进一出gif抽搐免费| 久久久精品大字幕| 日韩精品中文字幕看吧| 亚洲精品日韩av片在线观看| 亚洲av.av天堂| 日韩欧美 国产精品| 亚洲精品在线观看二区| 在线免费观看的www视频| 国产高清有码在线观看视频| 性欧美人与动物交配| 亚洲无线观看免费| 婷婷精品国产亚洲av在线| 露出奶头的视频| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 一区二区三区高清视频在线| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 日本 欧美在线| 桃色一区二区三区在线观看| 窝窝影院91人妻| 国产精品一区二区性色av| 草草在线视频免费看| 成年女人永久免费观看视频| 日本 欧美在线| 亚洲精品456在线播放app | 久久久久免费精品人妻一区二区| 欧美最新免费一区二区三区| 日韩一区二区视频免费看| 在线a可以看的网站| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 亚洲av中文av极速乱 | 黄色一级大片看看| 久久中文看片网| 日本欧美国产在线视频| 国产伦精品一区二区三区四那| 亚洲av二区三区四区| 精品不卡国产一区二区三区| 久久精品91蜜桃| 亚洲国产精品sss在线观看| 18禁在线播放成人免费| 欧美中文日本在线观看视频| 少妇的逼水好多| 午夜福利在线在线| 成人特级av手机在线观看| 韩国av在线不卡| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 日本a在线网址| 亚洲中文日韩欧美视频| 免费av毛片视频| 人妻久久中文字幕网| av在线观看视频网站免费| 欧美色视频一区免费| 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 黄色日韩在线| 最近最新免费中文字幕在线| 国产精品一区二区三区四区免费观看 | 天堂影院成人在线观看| 草草在线视频免费看| 成年女人毛片免费观看观看9| 亚洲精品亚洲一区二区| 欧美xxxx性猛交bbbb| 亚洲中文字幕一区二区三区有码在线看| 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 露出奶头的视频| 成人欧美大片| 麻豆国产97在线/欧美| 九色国产91popny在线| 国产主播在线观看一区二区| 内地一区二区视频在线| 在线观看一区二区三区| 一级av片app| 人人妻人人澡欧美一区二区| 久久99热6这里只有精品| 欧美+亚洲+日韩+国产| 最近在线观看免费完整版| 国产熟女欧美一区二区| 男人的好看免费观看在线视频| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月| 伦精品一区二区三区| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站高清观看| 国产精品人妻久久久影院| 日韩欧美国产在线观看| 在线免费观看的www视频| 尤物成人国产欧美一区二区三区| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| avwww免费| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 桃色一区二区三区在线观看| 少妇人妻一区二区三区视频| 极品教师在线视频| 少妇人妻一区二区三区视频| 欧美成人免费av一区二区三区| 精品人妻视频免费看| 国产视频内射| 亚洲av中文av极速乱 | 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 午夜a级毛片| 欧美日韩亚洲国产一区二区在线观看| 热99在线观看视频| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 日本在线视频免费播放| 日日撸夜夜添| 级片在线观看| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 天堂av国产一区二区熟女人妻| 有码 亚洲区| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| 少妇的逼好多水| 窝窝影院91人妻| 女生性感内裤真人,穿戴方法视频| 美女被艹到高潮喷水动态| 麻豆国产97在线/欧美| 日韩一区二区视频免费看| 亚洲国产欧美人成| 在线观看舔阴道视频| 欧美性感艳星| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩卡通动漫| 国产精品1区2区在线观看.| 一区二区三区免费毛片| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| av在线蜜桃| 简卡轻食公司| av中文乱码字幕在线| 麻豆av噜噜一区二区三区| 2021天堂中文幕一二区在线观| 在线看三级毛片| 日本与韩国留学比较| 一级av片app| 婷婷色综合大香蕉| 在线播放国产精品三级| 天堂动漫精品| 真人做人爱边吃奶动态| 免费观看人在逋| 久久精品国产亚洲av涩爱 | 亚洲最大成人av| 亚洲性久久影院| 91在线精品国自产拍蜜月| 少妇高潮的动态图| 春色校园在线视频观看| 国产精品综合久久久久久久免费| 韩国av在线不卡| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 99久久中文字幕三级久久日本| 国产高清三级在线| 精品久久久久久久久av| 亚洲成av人片在线播放无| 制服丝袜大香蕉在线| 国产伦在线观看视频一区| 香蕉av资源在线| 亚洲av不卡在线观看| 在线播放无遮挡| 久久久久久久久大av| 成人鲁丝片一二三区免费| 国产女主播在线喷水免费视频网站 | 毛片一级片免费看久久久久 | 男女啪啪激烈高潮av片| 最近最新免费中文字幕在线| 欧美日韩国产亚洲二区| 精品午夜福利在线看| 日韩欧美在线二视频| 村上凉子中文字幕在线| 日韩 亚洲 欧美在线| 精品一区二区三区视频在线观看免费| 亚洲av熟女| 特级一级黄色大片| 亚洲无线在线观看| 国产激情偷乱视频一区二区| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 99久久精品热视频| 精品99又大又爽又粗少妇毛片 | 久久久久免费精品人妻一区二区| 亚洲国产精品成人综合色| 亚洲在线观看片| 国产精品无大码| 色视频www国产| 亚洲精品一区av在线观看| 国产亚洲欧美98| 97碰自拍视频| 51国产日韩欧美| 伦理电影大哥的女人| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| a级毛片a级免费在线| 国产综合懂色| 少妇被粗大猛烈的视频| 婷婷丁香在线五月| 少妇被粗大猛烈的视频| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 亚洲欧美清纯卡通| 网址你懂的国产日韩在线| 久久午夜福利片| 欧美区成人在线视频| 国产精华一区二区三区| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 精品福利观看| 国模一区二区三区四区视频| 俄罗斯特黄特色一大片| 亚洲国产色片| 国产免费一级a男人的天堂| 男插女下体视频免费在线播放| 99久久九九国产精品国产免费| 国产伦人伦偷精品视频| 亚洲,欧美,日韩| 嫩草影院精品99| 国产精品野战在线观看| 亚洲熟妇中文字幕五十中出| 国产成人a区在线观看| 亚洲自偷自拍三级| 精品一区二区三区av网在线观看| 国产精品久久久久久精品电影| 校园春色视频在线观看| 村上凉子中文字幕在线| 99热这里只有是精品在线观看| 久久人人精品亚洲av| 99热这里只有是精品在线观看| 99国产极品粉嫩在线观看| 中文字幕精品亚洲无线码一区| 国产精品一区二区性色av| 国产欧美日韩一区二区精品| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 国产精品久久电影中文字幕| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av天美| 国产 一区精品| 99热这里只有是精品在线观看| 大型黄色视频在线免费观看| 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| videossex国产| 天天一区二区日本电影三级| 色综合站精品国产| 联通29元200g的流量卡| 国产精品,欧美在线| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 亚洲欧美清纯卡通| 国产老妇女一区| 午夜福利在线观看吧| 亚洲性久久影院| 91久久精品国产一区二区三区| 精品一区二区三区av网在线观看| 五月伊人婷婷丁香| 免费在线观看成人毛片| 91久久精品电影网| 亚洲精品久久国产高清桃花| 一个人看的www免费观看视频| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看| 日韩强制内射视频| 欧美+日韩+精品| 欧美在线一区亚洲| 变态另类成人亚洲欧美熟女| 久久久久国内视频| 动漫黄色视频在线观看| 麻豆国产av国片精品| 国产爱豆传媒在线观看| 很黄的视频免费| 无遮挡黄片免费观看| 美女高潮的动态| 亚洲美女黄片视频| 99久国产av精品| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 亚洲在线观看片| 亚洲无线在线观看| av在线亚洲专区| 一个人免费在线观看电影| 国产黄片美女视频| 亚洲av免费高清在线观看| 国产乱人视频| 成年人黄色毛片网站| 久久香蕉精品热| 日本欧美国产在线视频| 国产一区二区三区视频了| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 久9热在线精品视频| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 老熟妇仑乱视频hdxx| 能在线免费观看的黄片| 日韩欧美国产一区二区入口| 啦啦啦啦在线视频资源| 99热只有精品国产| 少妇熟女aⅴ在线视频| 99精品久久久久人妻精品| 成人国产麻豆网| 午夜免费男女啪啪视频观看 | 别揉我奶头~嗯~啊~动态视频| av国产免费在线观看| 精品国内亚洲2022精品成人| 色播亚洲综合网| 男人舔奶头视频| 乱码一卡2卡4卡精品| 制服丝袜大香蕉在线| 久久精品91蜜桃| 干丝袜人妻中文字幕| 久久精品影院6| 国产精品一区二区三区四区免费观看 | 成人性生交大片免费视频hd| 搡女人真爽免费视频火全软件 | 婷婷精品国产亚洲av| 少妇人妻精品综合一区二区 | 永久网站在线| 亚洲av电影不卡..在线观看| 九九热线精品视视频播放| 麻豆成人av在线观看| 亚洲一区高清亚洲精品| 免费高清视频大片| 欧美激情久久久久久爽电影| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区 | 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| 九九久久精品国产亚洲av麻豆| 亚洲精华国产精华液的使用体验 | 欧美成人a在线观看| 免费看a级黄色片| 日韩大尺度精品在线看网址| 欧美成人a在线观看| 日本与韩国留学比较| 精品国内亚洲2022精品成人| 久久午夜福利片| 国产真实伦视频高清在线观看 | 狠狠狠狠99中文字幕| 亚洲精品亚洲一区二区| 日本一本二区三区精品| 亚洲国产精品成人综合色| or卡值多少钱| 亚洲电影在线观看av| 久久草成人影院| 成人特级av手机在线观看| 久久精品91蜜桃| 亚洲久久久久久中文字幕| 俄罗斯特黄特色一大片| 一区二区三区高清视频在线| 级片在线观看| 岛国在线免费视频观看| av天堂在线播放|