• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Layer-Constrained Triangulated Irregular Network Algorithm Based on Ground Penetrating Radar Data and Its Application

    2018-04-16 07:27:22ZhenwuWangandJianqiangMa

    Zhenwu Wang and Jianqiang Ma

    (Department of Computer Science and Technology, China University of Mining and Technology (Beijing), Beijing 100083, China)

    With the rapid development of visualization technology in scientific computing, three-dimensional (3D) geological modelling technology has increasingly attracted more and more attention, and has been widely used in the fields of digital geology, petroleum exploration and geotechnical engineering. The 3D geological modelling is the abstract reconstruction and reproduction for the geological bodies through 3D visualization technology[1]. The complexity of geological spatial relation increases the complicacy of data structure, topological relation and corresponding algorithms, which makes geological modelling very difficult[2], and the 3D modelling and visualization of geological data is the hotspot in the domain of geosciences. Surface element model[3]is widely applied to represent the digital geological surface, including regular rectangular grid and triangular irregular network (TIN).Compared with regular rectangular grid, the TIN method can change the size and number of triangular patches according to the complexity of the geological surface, which eliminates the data redundancy in visualization step, and maintain a high fitting accuracy[4]. The current research work[4-16]of TIN construction assumes that the discrete data point set is static and does not discuss how to handle dynamic data points in different levels. From the application view, the research of TIN application in geology field focused on terrain and stratum information, and almost all of them do not involve the 3D modelling of geological disease information according to our knowledge. Geological disease is a disaster phenomenen in geological environment, such as underground cavity, stagnant water and loose soil, and it has a great destructive effect on railway subgrade[17], highway tunnel lining[18]and cultural relics[19-20].

    According to the hierarchical division of the discrete data points, the paper proposes a layer-constrained TIN (named LC-TIN) algorithm, which can construct a closed or non-closed 2D/3D surface model, and the construction procedure is dynamic from layer to layer, which can realize high precision and arbitrary shape. In addition, a detection platform of geological disease has been developed which adopted the LC-TIN algorithm, and the practice proved its validity.

    The rest of this paper is organized as follows. Section 1 presents the related work about TIN algorithm and geological disease detection based on GPR data, some preliminary definitions are given in Section 2 and Section 3 discusses the details of the LC-TIN method. In Section 4, the experimental results are analyzed, and the application of LC-TIN in the detection platform of geological disease is discussed in Section 5, Section 6 concludes this work.

    1 Related Work

    The principle of TIN algorithm is to construct scattered and non-duplication points to form a continuous and non-overlapping irregular triangle network according to certain rules (such as Delaunay criterion) in order to simulate the 2D/3D object surface, and many scholars studied the TIN algorithm. Aiming at dealing with the inefficiency of network construction, Miao[8]rapidly constructed TIN in linear time by making virtual grid, and then adopted a local optimization method to handle the redundancy problem; Zheng[13]proposed a constrained lines embedding method in the TIN model, which first checked the influence domain of every constrained line and then extracted the influence domain boundary; Xuan[14]gave a new method(the sum of the quadratic distance from three vertices to the gravity center) to determine the skinny triangle for LiDAR data, in which the edge points cannot be detected only by the triangle shape variable; Longtin[15]gave a representation method for density elevation data, which transforms digital evaluation data to a TIN expression in order to reduce the quantity of terrain data; Chen[16]proposed a high precision model of digital elevation, which is based on 3D TIN method.

    The TIN method has been widely used to model terrain and stratum information[4-7,9].Xiong[3]used TIN to realize 3D modelling for the fault information, and adopted VTK (Visualization Toolkit) to implement the prototype system; Tan[5]proposed an automatic triangulation algorithm based on the triangular topological relation, and applied this algorithm to develop a 3D TIN platform; Wang[6]used the improved TIN algorithm to merge the adjacent convex shell blocks, which can optimize the sub-TIN data to form a complete topographic data for underwater navigation. Huang[7]emphatically discussed the robustness of Delaunay mesh generation based on the Bowyer-Watson incremental point insertion technology,and also addressed the stripping algorithm of TINs; Mao[9]proposed a new method of morphological analysis for geological interfaces based on TIN model, which used 3D TIN model to simulate geological interfaces and calculate the general geometry parameters. From the view of geological disease, most of research work[17-20]focused on the detailed diagnosis and preventive measures, and didn’t concern how to model them in 3D platform.

    From the above discussion it is obvious that the above algorithms do not constrain discrete data points in TIN model, and do not illustrate how to use TIN algorithm to model geological disease data. This paper gives a layer-constrained TIN method, which can construct TIN layer by layer dynamically, and the proposed algorithm has been applied to detect geological disease information, the details of LC-TIN are described in Section 2.

    2 Preliminaries

    In order to describe the LC-TIN algorithm, some basic conceptions have been given as follows.

    Def1Geological data pointδ=<ζ,γ>

    The geological data pointδis a tuple,ζrepresents a 3D coordinate value, andζ=,γis the attribute value ofδ, for example the reflection value of electromagnetic wave.

    Def2Geological data sliceζ

    (1)

    Def3Pickup line l

    Def4Pickup line setψ

    Def5Adjacent pickup line pairη

    Def6Base line ?

    Def7Base edgeσ

    Def8Pickup triangleT

    Def9Pickup triangle setΦ

    Def10Pickup 3D bodyΩ

    The 3D body constructed byΦb={Φbc|c=1,2,…,Nb} is defined asΩb, andΩ={Ωb|b=1,2,…,t}.

    Def11Cosine value and circumcircle radius

    (2)

    The lengths of the other two edges (A and B) are defined as follows

    (3)

    (4)

    (5)

    (6)

    The above conceptions can be summarized in Tab.1.

    Tab.1 Basic conceptions in LC-TIN algorithm

    3 Principles of LC-TIN Algorithm

    In order to triangulate the finite point sets in three-dimensional space, the Delaunay criterion should satisfy the following rules.

    According to closeness, 3D bodies can be classified into closed and non-closed types, and corresponding toηthere are 4 cases, which are described in Fig. 1.

    Fig.1 Closeness of ηbc

    The LC-TIN algorithm is the greedy algorithm based on Delaunay rules, which is also a local optimum algorithm. The algorithm input isψ, the output isΩ, step (2) represents traversing all theζ, steps (3) and (4) indicate to traverse all the geological disease bodies and their l, and steps (5)(6) can generate the currentηand select ?, step (7) traverses all the points on the ?, steps (8)-(10) selectσand constructTthrough choosing the third point following some rules (such as the sum of circumcircle areas is minimum or the maximum angle), at lastΦis generated and formedΩ. The LC-TIN algorithm, which constructstgeological bodies, is described as follows.

    Algorithm: LC-TIN

    Input:Ψ

    Output:Ω

    (1) ifΨ≠NULL{

    (2) for(b=1;b

    (3) for(c=1;Nb-1;c+){

    (4) for (p=1;p

    (6) select ?bcfromηbc

    (7) for (i=1;Nηbc;i++) {

    (11) Handle other special points to formT

    (12) } ∥end for (7)

    (13) }∥ end for(4)

    (14) }∥end for (3)

    (15) addΦbctoΦb

    (16) }∥end for (2)

    (17) generate the wholeΦand form the wholeΩ

    (18) } ∥ end if

    4 Experimental Results Analysis

    4.1 Comparison of 3D modelling effects

    Fig.2 Application of LC-TIN

    Described in Fig. 2, the LC-TIN algorithm can construct a triangle network under the constraint of triangle non-overlap and satisfy the Delaunay criterion. Fig.2b and Fig.2c show the details of 3D body 1 and 2 in Fig. 2a respectively, and they compare with the corresponding 3D bodies (described by Fig. 2d and Fig.2e) which adopt the method of connecting triangles sequentially and layer by layer.Obviously,the LC-TIN algorithm can draw the 3D body more smoothly and naturally than the compared method.

    4.2 Comparison of time complexity

    Different experiments have been conducted according to differentζamounts, differentσnumbers, no matter whether data points are allocated equally on differentζor not, in order to test the runtime of the LC-TIN algorithm. The hardware and software running environments are specified as follows: CPU is Intel(R) Core(TM) i5-4210H 2.90 GHz, memory is RAM 4.00 GB, the operating system is Windows 8 64 bit, the development platform is VS.NET 2013, programming language is C++, and the rendering method is OpenGL.

    For the construction of one geological body, the amount of total data points is supposed to beN, the number of total layers isM, the amount of data points allocating to every layer ismi,i∈[1,m]. Shown in Fig. 3, this paper gave the running time of LC-TIN algorithm when data points are allocated equally on every layer, andN=1 000, 3 000, 5 000,10 000 andM=10, 20,30,40,50 respectively (m=mi=N/M). From Fig. 3 it can be noted that the data point number is reduced and running time is decreased with the increasing layer amount under the constraint of the same data point amount. DifferentNdescribes the same trend and biggerM, more running time. The running time deceases with the layer increasing on the premise that the total data point amount does not change, the reason is that the time complexity of the LC-TIN isO(Mm2) andM

    Fig.3 Runtime of LC-TIN (points average distribution)

    LayeramountTotalpointamount100030005000100001021166135102012025420210961131019320213302097614110255203044021576201103122032750224762521032620357

    Shown as Tab.2, with the increasing of total points, the generated triangles rise continuously under the same layer amount, with the increasing of total layers, the generated triangles have little changes and the running time decreased under the same total point amount, described as Fig. 3, the decreased point number on each layer leads to the reduced running time, and this characteristic is useful to construct a complex 3D body.

    The amount of triangles is described in Tab. 3 under the inequality allocation situation. Similar to Tab. 2, with the increasing of total points amount, the generated triangles rise gradually at the same layer number, and for the same total point amount, with the increasing of total layer number, the generated triangles little changed, but if the total layer amount increases, the running time reduces at the same data points, described as Fig. 4.

    Fig.4 Runtime of LC-TIN (points non-average distribution)

    TotallayerTotaldatapoints100030005000100001021146145102212023120211661251017920230302127616810273203194021376232103012023950219062401031720336

    5 Application in Geological Disease Recognition

    For geological engineering application, it has important significance that how to quickly identify the geological diseases (such as underground water or empty) and underground landfill (such as underground pipeline), which can prevent and diagnize the public disasters. The paper verified the validity of LC-TIN algorithm based on GPR data, and the GPR instrument is MTGR-4F vehicle borne geological radar which is independently developed by our research team. Its detailed parameters are shown as follows: the detection depth is 5 m, the time window is 100 ns, the sampling number is 512, and the antenna frequency is 200 MHz. The experimental data is obtained from Middle East Third Ring Road, Chaoyang District, Beijing City. The survey targets include: ① the layered structure of the underground; ② whether there are underground pipelines or not; and ③ whether there are empty cavities or not. The value ranges of experimental data is in [-23 679, 15 421], the number of measured lines is 3, the number of sampling paths is 18 632, 18 088 and 18 838 respectively, the experimental data collection work is shown in Fig.5.

    Fig.5 Acquirement of experiment data

    C++ programming language and OpenGL have been adopted to develop the 3D visualization platform based on GPR data, which used LC-TIN algorithm to construct 3D model for geological diseases.

    Shown in Fig. 6a, the GPR data should be organized firstly, which are the original survey line data generated by our MTGR-4F GPR instrument, then the Kriging algorithm has been adopted to interpolate the GPR data, which can generate the spatial data covered all the detection area and is described by Fig. 6b,the paper utilized the disease information on the 1-5 slices in Fig. 6c, which based on geological expert experience through human-computer interaction model, and the LC-TIN algorithm has been used to construct the 3D model of geological diseases in Fig. 6d, this method can not only compute the total or partial volume of disease body accuracy and flexibly, but also can project the 3D disease object onto any 3D plane, which can provide a reliable basis for the prevention and diagnosis of the geological disaster problems. As described in Fig.6d, the geological diseases can be displayed in the detection area totally or partially, which is generated by visualizing different parts between two slices.

    Fig.6 3D visualization platform based on LC-TIN

    6 Conclusion

    The TIN algorithm is widely used in digital geology, petroleum exploration, geotechnical engineering and other fields, which solves a series of problems, such as the formation of terrain modelling, the drainage network extraction, the routes design, and so on. At present, the automatic extraction of geological disease information is very difficult, while it is necessary for geological experts to recognize and extract the information in the process of human-computer interaction. In this process, discrete data points are dynamically changing at different levels. To solve this problem, the paper proposed a layered-constrained TIN algorithm for 3D modelling , and the algorithm is adopted to construct a geological disease model, which can calculate geological diseases (such as underground cavity or water) information conveniently, and provide a reliable basis for accurate treatment of geological disasters. In the future, how to deeply analyze the inner information of 3D geological bodies is an important research topic, which needs to design proper volume element models. In addition GPU-based rendering technology is another research hotpot which can enhance the graphics processing efficiency.

    [1] Wu C L, He Z W, Weng Z P, et al. Property, classification and key technologies of three-dimensional geological data visualization[J]. Geological Bulletin of China, 2011,30(5):642-649. (in Chinese)

    [2] Wu Q, Xu H. Research of three-dimensional geological modeling and visualization method [J]. Science in China Ser.D Earth Sciences, 2004,34(1):54-60. (in Chinese)

    [3] Li Fangxing, Wu Pingdong, Sun Huafei, et al. 3D object recognition based on linear Lie algebra model[J]. Journal of Beijing Institute of Technology, 2009, 18(1): 46-50.

    [4] Xiong Z Q, He H J, Xia Y H. Study on technology of 3D stratum modeling and visualization based on TIN[J]. Rock and Soil Mechanics, 2007,28(9):1954-1958. (in Chinese)

    [5] Tan R C, Du Q Y, Yang P F, et al. Optimized triangulation arithmetic in modeling terrain[J]. Geomatics and Information Science of Wuhan University, 2006,31(5):436-439. (in Chinese)

    [6] Wang L H, Gao X Z, Liang B B, et al. Optimized method of building underwater terrain navigation database based on triangular irregular network[J]. Journal of Chinese Inertial Technology, 2015,23(3):345-349. (in Chinese)

    [7] Huang Z G, Chen J J, Zheng Y. Triangulated irregular network based chunk griddling algorithm for terrain render-ing[J]. Journal of Zhejiang University(Engineering Science), 2009, 43(10):1939-1944. (in Chinese)

    [8] Miao Q G, Shi J J, Liu T G, et al. New efficient DSM gener-ating algorithm based on TIN[J]. Systems Engineering and Electronics, 2014,36(9):1868-1973. (in Chinese)

    [9] Mao X C, Zhao Y, Tang Y H, et al. Three-dimensional morphological analysis method for geological interfaces based on TIN and its application[J]. Journal of Central South University(Science and Technology),2013, 44(4):1493-1499. (in Chinese)

    [10] Liu X J, Wang Y J, Ren Z, et al. Algorithm for extracting drainage network based on triangulated irregular network[J]. Journal of Hydraulic Engineering, 2008, 39(1):27-34. (in Chinese)

    [11] Chen H F, Ye S P, Huang Z C, et al. Ocean scientific sur-vey route designing method syncretizing triangulated ir-regular networks and genetic algorithm[J]. Journal of Zhejiang University(Engineering Science), 2009,43(11) :1951-1957. (in Chinese)

    [12] Ma C H, Dai Q, Wang J M, et al. Based on clump organi-zation rules to construct Triangular Irregular Networks[J]. Computer Engineering and Applications, 2012,48(3):169-172. (in Chinese)

    [13] Zheng J T, Zhang T , He H H, et al. Embedding of a con-strained line into a triangulated irregular network[J]. Journal of Tsinghua University(Science & Technology), 2014,54(12):1155-1159. (in Chinese)

    [14] Xuan H J, Miao Q G, Liu R Y, et al. A novel algorithm based on triangulated irregular network for edge detection from LiDAR data[J]. Acta Optica Sinica, 2014, 34(12):1-7. (in Chinese)

    [15] Longtin, Michael J. Efficient representation of dense ele-vation grids via triangulated irregular networks[C]∥Fall Simulation Interoperability Workshop, Orlando, United States,2014:162-170.

    [16] Chen B S, Fu Z, Ouyang H Y. High accuracy regular grid digital elevation model modeling based on 3D triangulated irregular network using total station measured points[J]. Sensor Letters,2014,12(3-5):499-508.

    [17] Yang X A, Gao Y L. GPR inspection for Shanghai-Nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(1):116-119. (in Chinese)

    [18] Qian R Q, Yang X Y, Wang X H. Control of geological disaster in Huayingshan highway tunnel[J]. Coal Geology & Exploration, 2003,31(2):48-50. (in Chinese)

    [19] He Y. A study of geological disease analyses and renova-tion methods in Lingquan Temple Grotto of Henan, China[J]. Rock and Soil Mechanics, 2000,21(1):56-59. (in Chinese)

    [20] Li Y R, Chen Z X, Zhou L Z. Research on prevention countermeasure and main geoenvironmental cause of large-scale ancient sites in South China[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(Supp.2):3795-3800. (in Chinese)

    中国美女看黄片| 久久影院123| 色播在线永久视频| 超碰97精品在线观看| 国产xxxxx性猛交| 叶爱在线成人免费视频播放| 女警被强在线播放| 人妻丰满熟妇av一区二区三区 | 久久中文看片网| 欧美在线一区亚洲| 中文字幕色久视频| 欧美乱色亚洲激情| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av高清一级| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 国产高清视频在线播放一区| av有码第一页| 亚洲欧美激情综合另类| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 中文欧美无线码| 久久影院123| 一边摸一边做爽爽视频免费| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 婷婷丁香在线五月| 热99国产精品久久久久久7| 午夜福利视频在线观看免费| 一夜夜www| 国产区一区二久久| www日本在线高清视频| 99久久人妻综合| 久久天堂一区二区三区四区| 欧美日本中文国产一区发布| 亚洲人成77777在线视频| 日韩视频一区二区在线观看| 这个男人来自地球电影免费观看| 两性夫妻黄色片| 国产av又大| 在线观看免费午夜福利视频| 日本撒尿小便嘘嘘汇集6| 在线av久久热| 国产精品欧美亚洲77777| 国产人伦9x9x在线观看| 亚洲精品久久午夜乱码| 法律面前人人平等表现在哪些方面| 免费av中文字幕在线| 两个人看的免费小视频| 99久久99久久久精品蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 美女视频免费永久观看网站| 国产精品久久久人人做人人爽| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 9热在线视频观看99| 久热这里只有精品99| 久久久久久久久久久久大奶| 欧美大码av| 一边摸一边做爽爽视频免费| 国产精品九九99| 在线观看免费午夜福利视频| 亚洲一区二区三区不卡视频| 精品亚洲成国产av| av超薄肉色丝袜交足视频| 夫妻午夜视频| 国产成人欧美| 日韩视频一区二区在线观看| www.精华液| 老司机在亚洲福利影院| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 咕卡用的链子| 人妻 亚洲 视频| 又大又爽又粗| 亚洲 欧美一区二区三区| 欧美 日韩 精品 国产| 99在线人妻在线中文字幕 | 久久久国产欧美日韩av| 国产精品久久视频播放| 免费在线观看日本一区| 在线视频色国产色| 18在线观看网站| 国产成人av激情在线播放| 丝袜在线中文字幕| 国内毛片毛片毛片毛片毛片| 成人影院久久| 精品国产亚洲在线| 女人久久www免费人成看片| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 精品人妻在线不人妻| 18在线观看网站| 我的亚洲天堂| videos熟女内射| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 视频区图区小说| 亚洲午夜理论影院| 十八禁高潮呻吟视频| 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 久久香蕉国产精品| 欧美成人免费av一区二区三区 | 91av网站免费观看| 亚洲综合色网址| 久久国产精品影院| 天堂√8在线中文| 精品国产一区二区久久| av免费在线观看网站| 国产欧美日韩一区二区三| 国产色视频综合| 久久国产精品大桥未久av| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区激情| 精品人妻1区二区| 午夜福利欧美成人| 国产一区在线观看成人免费| 丰满的人妻完整版| 免费女性裸体啪啪无遮挡网站| 99riav亚洲国产免费| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 777久久人妻少妇嫩草av网站| 国产精品综合久久久久久久免费 | 中文字幕色久视频| 50天的宝宝边吃奶边哭怎么回事| 一二三四在线观看免费中文在| tube8黄色片| 国产免费av片在线观看野外av| 黑人欧美特级aaaaaa片| 午夜免费鲁丝| 91九色精品人成在线观看| 777久久人妻少妇嫩草av网站| 超碰97精品在线观看| 在线永久观看黄色视频| 久久人妻熟女aⅴ| 久9热在线精品视频| 十分钟在线观看高清视频www| 99精品在免费线老司机午夜| 欧美日韩国产mv在线观看视频| 亚洲欧美日韩另类电影网站| 日韩欧美国产一区二区入口| 欧美黑人精品巨大| 国产三级黄色录像| 一级片免费观看大全| 两人在一起打扑克的视频| 国产精品免费大片| 91在线观看av| 老司机亚洲免费影院| 中文字幕制服av| 国产高清激情床上av| а√天堂www在线а√下载 | 天天操日日干夜夜撸| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 老司机亚洲免费影院| 国产又色又爽无遮挡免费看| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 激情在线观看视频在线高清 | 中文欧美无线码| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 中文欧美无线码| 亚洲欧美一区二区三区久久| 深夜精品福利| 亚洲综合色网址| 亚洲精品国产区一区二| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 精品人妻1区二区| 色精品久久人妻99蜜桃| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 十八禁人妻一区二区| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 真人做人爱边吃奶动态| 一区福利在线观看| 免费在线观看亚洲国产| 久久久久久免费高清国产稀缺| 香蕉丝袜av| 国产精品一区二区在线不卡| 亚洲国产毛片av蜜桃av| 美女 人体艺术 gogo| 97人妻天天添夜夜摸| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 亚洲全国av大片| 大型av网站在线播放| 我的亚洲天堂| 欧美在线黄色| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 午夜福利在线免费观看网站| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 午夜两性在线视频| 亚洲一码二码三码区别大吗| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 久久中文看片网| 少妇的丰满在线观看| 建设人人有责人人尽责人人享有的| 亚洲性夜色夜夜综合| 国产aⅴ精品一区二区三区波| 国产男靠女视频免费网站| 黄片大片在线免费观看| 手机成人av网站| 久久久久久久午夜电影 | 少妇 在线观看| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 国产一卡二卡三卡精品| 国产亚洲欧美精品永久| 99久久人妻综合| 久久精品成人免费网站| 色老头精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 夫妻午夜视频| 久久狼人影院| 十分钟在线观看高清视频www| 国产99白浆流出| 男女免费视频国产| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 色在线成人网| 在线观看免费视频网站a站| 国产成人av教育| 一边摸一边做爽爽视频免费| 电影成人av| 国产在视频线精品| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 精品人妻在线不人妻| 久久久久久亚洲精品国产蜜桃av| av线在线观看网站| 18禁黄网站禁片午夜丰满| 亚洲精品成人av观看孕妇| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| av在线播放免费不卡| 亚洲一区二区三区欧美精品| 久久久水蜜桃国产精品网| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产 | 亚洲第一青青草原| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频 | 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| tube8黄色片| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区mp4| 精品国产乱码久久久久久男人| 一级毛片精品| 亚洲av成人av| 久久热在线av| 欧美午夜高清在线| 免费av中文字幕在线| 亚洲欧美色中文字幕在线| 操出白浆在线播放| 悠悠久久av| 一边摸一边抽搐一进一小说 | 男人操女人黄网站| 日本黄色视频三级网站网址 | 美女视频免费永久观看网站| 成年人黄色毛片网站| 欧美日韩精品网址| 亚洲aⅴ乱码一区二区在线播放 | 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 成年动漫av网址| 久久婷婷成人综合色麻豆| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 麻豆成人av在线观看| 久久久水蜜桃国产精品网| 黄色片一级片一级黄色片| 久久国产亚洲av麻豆专区| 欧美+亚洲+日韩+国产| 免费观看人在逋| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点 | 久久久国产成人精品二区 | 国产亚洲精品久久久久久毛片 | 人妻丰满熟妇av一区二区三区 | 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 高清av免费在线| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 在线观看免费视频日本深夜| a在线观看视频网站| 老司机在亚洲福利影院| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看 | 欧美另类亚洲清纯唯美| av欧美777| 成人三级做爰电影| 国产精品香港三级国产av潘金莲| av网站在线播放免费| 国产亚洲精品第一综合不卡| e午夜精品久久久久久久| 国产在线一区二区三区精| 视频区图区小说| 中文字幕制服av| 欧美色视频一区免费| 亚洲欧美日韩另类电影网站| 国产成人影院久久av| 午夜激情av网站| 亚洲av日韩在线播放| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清 | 久久久精品区二区三区| 后天国语完整版免费观看| 中文亚洲av片在线观看爽 | 韩国精品一区二区三区| 日本vs欧美在线观看视频| 国产精品影院久久| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 亚洲精品乱久久久久久| 亚洲成人免费av在线播放| 国产97色在线日韩免费| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看 | 日韩欧美免费精品| 又黄又粗又硬又大视频| 18禁美女被吸乳视频| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 亚洲va日本ⅴa欧美va伊人久久| 天堂中文最新版在线下载| av不卡在线播放| 久久人妻熟女aⅴ| 两性午夜刺激爽爽歪歪视频在线观看 | 18在线观看网站| 女同久久另类99精品国产91| 国产精品偷伦视频观看了| 国产亚洲精品久久久久久毛片 | av中文乱码字幕在线| 久久久精品国产亚洲av高清涩受| 精品亚洲成国产av| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 国产成人av激情在线播放| www.999成人在线观看| 看免费av毛片| 欧美日韩中文字幕国产精品一区二区三区 | 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 日韩人妻精品一区2区三区| 麻豆成人av在线观看| 亚洲人成电影观看| 欧美 日韩 精品 国产| 操出白浆在线播放| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| 国产蜜桃级精品一区二区三区 | 国产男女超爽视频在线观看| 一本综合久久免费| 在线看a的网站| 国产乱人伦免费视频| 一级片免费观看大全| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| 丝袜美足系列| 香蕉丝袜av| 热99国产精品久久久久久7| 亚洲aⅴ乱码一区二区在线播放 | 老汉色av国产亚洲站长工具| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 国产精品久久久久久人妻精品电影| 国产精品免费视频内射| 男人操女人黄网站| 婷婷精品国产亚洲av在线 | 一本一本久久a久久精品综合妖精| xxxhd国产人妻xxx| 黑丝袜美女国产一区| 欧美乱色亚洲激情| 亚洲精华国产精华精| 国产视频一区二区在线看| 亚洲熟女精品中文字幕| www.自偷自拍.com| 精品久久蜜臀av无| 国产不卡av网站在线观看| 人人妻人人添人人爽欧美一区卜| 日韩熟女老妇一区二区性免费视频| 啦啦啦视频在线资源免费观看| 日韩视频一区二区在线观看| 亚洲一区中文字幕在线| 18在线观看网站| 亚洲国产欧美日韩在线播放| 精品一区二区三区四区五区乱码| 精品一区二区三卡| 夫妻午夜视频| 精品国产一区二区三区四区第35| 黄片大片在线免费观看| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 亚洲中文av在线| xxxhd国产人妻xxx| 校园春色视频在线观看| 国产亚洲精品一区二区www | 国产成人影院久久av| 国产精品国产高清国产av | 精品国内亚洲2022精品成人 | 成人手机av| 亚洲国产精品合色在线| 免费高清在线观看日韩| 国产精品一区二区免费欧美| 欧美黑人精品巨大| 久久久久视频综合| 国产深夜福利视频在线观看| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 青草久久国产| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 欧美黑人精品巨大| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花| 老司机深夜福利视频在线观看| 中亚洲国语对白在线视频| 老汉色∧v一级毛片| 99久久精品国产亚洲精品| 一级a爱片免费观看的视频| 国产高清videossex| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 黄频高清免费视频| 一边摸一边做爽爽视频免费| 国产成人一区二区三区免费视频网站| 久久狼人影院| 看免费av毛片| 精品免费久久久久久久清纯 | 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 丰满迷人的少妇在线观看| 色94色欧美一区二区| 欧美激情久久久久久爽电影 | 欧美精品人与动牲交sv欧美| 身体一侧抽搐| 久久久国产成人精品二区 | 久久精品亚洲av国产电影网| 亚洲少妇的诱惑av| 国产精品欧美亚洲77777| 亚洲熟妇熟女久久| 热99国产精品久久久久久7| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区三区在线| 欧美成人免费av一区二区三区 | 成人18禁在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 中国美女看黄片| 中文字幕制服av| 久久久久国产一级毛片高清牌| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 亚洲精华国产精华精| 三上悠亚av全集在线观看| 婷婷丁香在线五月| 天堂√8在线中文| 欧美 亚洲 国产 日韩一| a在线观看视频网站| 99久久人妻综合| 多毛熟女@视频| 国产精品九九99| 色老头精品视频在线观看| 国产av又大| 精品亚洲成国产av| 两个人看的免费小视频| 国产有黄有色有爽视频| 日本黄色视频三级网站网址 | 国产精品国产av在线观看| 少妇猛男粗大的猛烈进出视频| 天天操日日干夜夜撸| 国产高清视频在线播放一区| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 欧美性长视频在线观看| 成人黄色视频免费在线看| 丁香欧美五月| 人人澡人人妻人| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 天天躁日日躁夜夜躁夜夜| 18禁裸乳无遮挡免费网站照片 | 欧美日韩福利视频一区二区| 国产xxxxx性猛交| 久久青草综合色| 一夜夜www| 婷婷成人精品国产| av网站在线播放免费| 成年人免费黄色播放视频| 欧美激情久久久久久爽电影 | 国产色视频综合| tube8黄色片| 亚洲在线自拍视频| 亚洲av日韩在线播放| 12—13女人毛片做爰片一| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 亚洲专区国产一区二区| 操美女的视频在线观看| 国产91精品成人一区二区三区| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 亚洲欧美日韩高清在线视频| 亚洲一码二码三码区别大吗| 男人舔女人的私密视频| 法律面前人人平等表现在哪些方面| 欧美日韩中文字幕国产精品一区二区三区 | 成人黄色视频免费在线看| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| 男女免费视频国产| 亚洲专区中文字幕在线| svipshipincom国产片| 久久精品人人爽人人爽视色| 在线观看免费视频日本深夜| 首页视频小说图片口味搜索| 精品人妻熟女毛片av久久网站| a级毛片黄视频| 久99久视频精品免费| 国产蜜桃级精品一区二区三区 | 这个男人来自地球电影免费观看| 午夜影院日韩av| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频| 91字幕亚洲| 在线播放国产精品三级| 91av网站免费观看| 国产高清视频在线播放一区| 国内久久婷婷六月综合欲色啪| 叶爱在线成人免费视频播放| 美女视频免费永久观看网站| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡人人爽人人夜夜| 亚洲五月色婷婷综合| 亚洲精品乱久久久久久| 黄色视频不卡| 在线观看免费视频日本深夜| 可以免费在线观看a视频的电影网站| 成年人免费黄色播放视频| 黄色成人免费大全| 欧美丝袜亚洲另类 | 999精品在线视频| 美女扒开内裤让男人捅视频| 老司机影院毛片| 超碰97精品在线观看| 国产精品久久电影中文字幕 | 日日爽夜夜爽网站| 最近最新免费中文字幕在线| 村上凉子中文字幕在线| 亚洲 欧美一区二区三区| 亚洲精品自拍成人| 亚洲成人免费av在线播放| 日日夜夜操网爽| 久久久久国内视频| 免费少妇av软件| 色综合婷婷激情| 超色免费av| av在线播放免费不卡| 在线观看舔阴道视频| 一区在线观看完整版| 在线永久观看黄色视频| 99国产精品一区二区三区| 热99re8久久精品国产| 人人妻人人爽人人添夜夜欢视频| 9热在线视频观看99| 国产亚洲欧美98| 国产欧美日韩一区二区三| 午夜日韩欧美国产| 人成视频在线观看免费观看|