• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle Filter Object Tracking Algorithm Based on Sparse Representation and Nonlinear Resampling

    2018-04-16 07:27:01ZheyiFanShuqinWengJiaoJiangYixuanZhuandZhiwenLiu

    Zheyi Fan, Shuqin Weng, Jiao Jiang, Yixuan Zhu and Zhiwen Liu

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    As an active research topic in the field of image processing and computer vision, video real-time object tracking[1]is important in establishing spatial and temporal coherent relationships of object motion states between consecutive frames. Yet it is still challenging to guarantee the stability and accuracy of tracking in complex real-world scenarios due to occlusion, illumination changes and abrupt motion[2-3]. Abrupt motions of objects, such as uncertain and fast motions, fast and high dynamic changing directions range, are ubiquitous in the scenes like sport events as well as in low frame rate videos, so tracking these kinds of objects have attracted wide attention.

    However, most traditional tracking methods cannot accurately track objects with abrupt motions due to their smooth motion assumptions. Therefore, some novel methods have been proposed to handle the abrupt motion tracking. On the one hand, Kwon et al.[4]combined the Wang-Landau sampling with Markov Chain Monte Carlo (MCMC) to propose the WLMC-based tracking. Nguyen et al.[5]utilized sparse estimates of motion direction derived from local features to generate particles by MCMC, which can effectively reduce the search space and handle abrupt motions. Zhou et al.[6]proposed an adaptive stochastic approximation Monte Carlo sampling to solve the problem of abrupt motion tracking.

    On the other hand, considering that particle-filtering based tracking methods[7]can be effectively applied to estimate the object motion states of nonlinear and non-Gaussian system, researchers have proposed abrupt motion tracking algorithms based on the particle filter (PF) method[8-10]. Su et al.[8]detect the regions with visual saliency as the global proposal distribution and then sample particles from it to avoid suffering from local maxima. Morimitsu et al.[9]combined frame description with attributed relational graphs with PF, to track multiple objects with abrupt motions in structured sports videos. These PF-based methods can handle abrupt motions, however, most of them cause the problem of particle diversity impoverishment.The traditional resampling process of PF duplicates particles with large weights and removes those with small weights, which leaves many repetitive particles in the sample set. Thus, the posteriori distribution of object states cannot be accurately represented by these samples. Aiming at this problem, Choi et al.[10]retained the diversity of particles through resampling particles based on the Gaussian distribution.

    To better handle the problem of abrupt motions and particle diversity impoverishment in existing object tracking algorithms, an improved PF object tracking algorithm based on sparse representation and nonlinear resampling is proposed. First, considering the fact that particle weights are sparse when object moves abruptly, the sparse representation is used to compute particle weights, which can reconstruct the object of interest effectively and further predict the potential object region more accurately. Then, a nonlinear resampling process based on the nonlinear sorting strategy is proposed to reserve more kinds of valid particles, so the problem of particle diversity impoverishment can be alleviated.

    1 PF Tracking Method

    Based on Monte Carlo importance sampling, PF uses Bayesian estimation as the main framework to express a posteriori probability of object state. The core of PF tracking method is applying the empirical conditional probability distribution of state system to generate a set of weighted discrete particles. The weights and locations of particles are updated in each frame to estimate the object state by minimum variance. Assume xkand zkrespectively denote the object state and observation result of thekth frame. The tracking process includes the prediction and update stages.

    In the prediction stage, the current object state can be predicted by previous observation results

    (1)

    In the update stage, a posteriori distribution can be updated by the current observation result

    (2)

    wherep(xk-1|z1:k-1) is the posteriori density of framek-1,p(xk|xk-1) is the transition model,p(zk|xk) is the observation model, andp(zk|z1:k-1) is a normalization constant.

    (3)

    (4)

    2 Proposed Tracking Method

    2.1 Motion model

    As a basic element of PF tracking, the motion model describes the transition process between consecutive frames. The random motion model can effectively capture the motion state of object, whose motion features are difficult to be accurately gained, thereby making it suitable for abrupt motions. The definition of the random motion model is

    Xk=Xk-1+Rk+Uk

    (5)

    where Xkis the predicted state of the interested object at timek, Ukis white Gaussian noise with zero mean, Rkis the spread radius of particles, which is proportional to the mean value of the object states changing in the previoustframes

    (6)

    whereCis a scaling factor.

    The object is usually denoted by a rectangle, whose state can be defined as

    X=(x,vx,y,vy)T

    (7)

    where (x,y) is the coordinate of object region center; (vx,vy) denotes the velocity of object in thexandydirections, respectively.

    2.2 Observation model

    The observation model describes the object appearance. A suitable observation can effectively differentiate the object from the background, which is crucial to the tracking accuracy. The color feature can be easily calculated and is insensitive to the changes of image sizes and viewing angles, so we adopt blocked color histogram[11]as the observation model. The object region is firstly partitioned into 4 sub-regions in HSV color space, and then the color histogram is extracted from each sub-region. Finally, all 4 histograms are concatenated to form a 512-bins color feature.

    2.3 Weights calculation based on sparse representation

    The core idea of the sparse representation classification (SRC) method is to reach the sparsest representation of the coefficient matrix when the reconstruction error is minimum. Since this method can reduce the importance of feature choice and is robust to occlusion, it has been widely applied in pattern recognition. Object tracking can be considered as a binary classification problem, which recognizes object region from background and then tracks the interested object by classification approach.

    In the PF tracking framework, a weighted particle set is used to approximate a posteriori distribution of the object state. When the object moves abruptly, only a few particles close to the object have relatively large weights, while the weights of others are roughly zeros, as shown in Fig. 1. Thus, considering the fact that the particle weights have sparsity under the situation of abrupt motions, the observation model can be represented by the linear combination of the features of all particles, and the coefficients can be calculated by constrainedl1norm minimization.

    Fig.1 Particle weights for a single object with abrupt motion

    Assuming that M denotes the observation model extracted from the object template at initial frame, yi(i=1,2,…,N) denotes the feature extracted from theith particle region, when the background is invariant as the object moves abruptly, only a few particles match the object and other particle weights vanish. So the object model can be described by the linear representation of all particle feature vectors, namely

    M=ω1y1+ω2y2+ω3y3+…+ωNyN

    (8)

    whereω=(ω1,ω2,ω3,…,ωN)Tis the weight vector, andNis the number of particles.

    Transform Eq.(8) to al1norm problem and set each element value of the weight vector between 0 and 1. The optimization problem can then be described as

    (9)

    whereεis the error term, which is a user-defined small positive-valued parameter.

    2.4 Nonlinear resampling

    The resampling process can effectively solve the problem of particle degradation by duplicating the particles with large weights and removing the ones carrying small weights. However, the traditional resampling method duplicates or removes particles depending on their weights only, resulting in many repetitive particles in the sample set and causing particle diversity impoverishment. This can reduce the kinds of particles to a great extent and seriously influence the representation ability of object state probability distribution when the object moves abruptly. Aiming at this problem, this paper proposes an improved resampling algorithm based on a nonlinear sorting strategy. The details are as follows.

    ② The sorted indices of each particle are mapped to the reservation probability through a nonlinear function. And then the reservation probability is normalized by

    (10)

    (11)

    ③ The duplicated number of each particle is determined by its corresponding reservation probability and the number of all particles, namely

    (12)

    The proposed resampling algorithm based on the nonlinear sorting strategy allocates the reservation probability to each particle depending on its corresponding weight and avoids the situation where most particle reservation probabilities are approximately zero. The validity and diversity of particles are guaranteed.

    2.5 Tracking algorithm

    A robust tracking algorithm for the object with abrupt motions is proposed in this paper. The main procedures are summarized as follows.

    Step1Initialization

    ② The motion model of object is established by Eq.(5).

    ③ The observation model of the initial object region is established by extracting its color features.

    Step2Object tracking

    ① The new particle set in thetth frame is predicted by Eq.(5).

    ② The color features of particle regions are extracted and the corresponding weight of each particle is calculated by Eq.(9).

    ③ The weights are normalized by

    (13)

    ④ The motion state of the tracked object is estimated by

    (14)

    ⑤ Particles are resampled based on our proposed algorithm in section 2.4.

    ⑥t=t+1, turn to ①.

    3 Experiments and Analysis

    In this section, two experiments are described to prove the effectiveness of the proposed method. First, a single moving point tracking program is designed to compare the proposed nonlinear resampling with other resampling algorithms. Then, the tracking experiments are conducted on videos containing objects with different kinds of abrupt motions, and the tracking results are compared with other approaches. All experimented are performed by MATLAB R2014a on a 3.10 GHz Intel Core computer with 4 GB of RAM.

    3.1 Performance of the nonlinear resampling

    First, we design a tracking program based on a one-dimensional system to compare the proposed nonlinear resampling with some typical resampling methods, like residual resampling, multinomial resampling, systematic resampling, Gaussian distribution[10]resampling and partial systematic[12]resampling. The number of particles isN=500 and the state vector is

    (15)

    (16)

    wherex0~N(0,5),nk~N(0,10) andvk~N(0,1) are white Gaussian noises. The tracking errors are compared in Fig.2. Since our resampling strategy effectively ensures the diversity of particles during the tracking process, it can obtain better tracking results with smaller errors than other methods.

    Fig.2 Comparisons of the tracking errors with different resampling methods

    The root mean square error (RMSE) is calculated to quantitatively evaluate the performance of each resampling method. The RMSE results obtained by 6 kinds of resampling strategies are listed in Tab.1. The results demonstrate that our nonlinear resampling has the smallest RMSE value.

    3.2 Video object tracking results

    Tracking experiments are conducted on several videos including various abrupt motions, such as low frame rate videos, sudden dynamic changes and multi-cameras switching. The tracking results are compared among the traditional PF, WLMC[4]and our proposed method. The number of particles isN=500 and the observation model is blocked color histogram feature.

    Tab.1 RMSE results of 6 resampling methods

    Fig.3 Tracking results of groundtruth (solid line), our algorithm (dotted line), the traditional PF (dash dot line) and WLMC (dashed line) on video sequences with various kinds of abrupt motions

    The tracking results of each method are shown in Fig. 3. Fig. 3a and Fig. 3b are Face[13]and Animal scenarios for sudden dynamic changes. The tracked object in video Face is a human face that moves left and right rapidly, and the target in video Animal jumps fast between consecutive two frames. Fig. 3c is a Boxing sport event in which the camera switches 8 times. Fig. 3d is a low frame rate video of Tennis, constructed manually by keeping one in every 35 frames in this experiment, so a large shift of object position between adjacent frames exists. The tracking results reveal that our proposed method can predict and track the object of interest more successfully owing to the effectiveness of the proposed weight calculation method and nonlinear resampling. The traditional PF, by contrast, cannot accurately track the object due to its smooth motion assumption. Although WLMC searches the object in the whole state space, it is unstable throughout the tracking process and usually deviates to other wrong locations.

    To quantitatively analyze the results of different methods mentioned above, success rate is used to evaluate the performance. If the center of the ground truth is in the estimated rectangle, the object is considered accurately tracked at that frame[6]. The success rate is represented by the ratio between the number of accurately tracked frames and the number of total frames, and is shown in Tab.2. Obviously, the object with abrupt motion is difficult to track successfully, so the success rates are relatively low. But our algorithm shows better tracking performance handling this challenge. Tab.3 shows the average run time of each algorithm for the test videos. The time cost of our algorithm is longer than the traditional PF method for the introduction of sparse representation. However, the WLMC needs longer time due to its global search strategy. Thus, our method can obtain better tracking results and has a relatively high efficiency.

    Tab.2 Success rate of 3 methods on test videos %

    Tab.3 Run time of 3 algorithms on test videos s

    4 Conclusion

    To track the objects with abrupt motions accurately, sparse representation is introduced to calculate the particle weights byl1norm minimization, which can reconstruct the interested object better. Moreover, a nonlinear resampling strategy is proposed to improve the traditional resampling process. This method gains the duplicated number of each particle depending on its corresponding reservation probability and the number of all particles in the set, so it effectively maintains the diversity of particles. Experiments show that the proposed resampling algorithm has improved performance compared to previous algorithms, and our tracking method is robust to abrupt motions.

    [1] Li M, Fan Z Y, Liu Z W. An improved visual tracking algorithm based on particle filter[C]∥2013 IEEE International Conference of IEEE Region 10, Xi’an, Shaanxi, China, 2013:1-4.

    [2] Cai Z W, Wen L Y, Lei Z, et al. Robust deformable and occluded object tracking with dynamic graph[J]. IEEE Transaction on Image Processing, 2014, 23(12): 5497-5509.

    [3] Kwon J, Lee K M.Tracking by sampling and integrating multiple trackers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1428-1441.

    [4] Kwon J, Lee K M. Wang-Landau Monte Carlo-based tracking methods for abrupt motions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(4): 1011-1024.

    [5] Nguyen T, Pridmore T P. Tracking using multiple linear searches and motion direction sampling[C]∥2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 2191-2196.

    [6] Zhou X, Lu Y. Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling[C]∥2010 IEEE Conference on Computer Vision and Pattern Recognition,San Francisco, CA, USA, 2010: 1847-1854.

    [7] Doucet A, Gordon N J. Sequential monte carlo methods in practice[M]. Berlin,Germany: Springer, 2001.

    [8] Su Y, Zhao Q, Zhao L, et al. Abrupt motion tracking using a visual saliency embedded particle filter[J]. Pattern Recognition, 2014, 47(5): 1826-1834.

    [9] Morimitsu H, Bloch I. Attributed graphs for tracking multiple objects in structured sports videos[C]∥Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 2015: 34-42.

    [10] Choi H D, Ahn C K, Lim M T. Gaussian distribution resampling algorithm of particle filter[C]∥Proceedings of the International Conference on Control, Automation and Systems, Gwangju, Korea, 2013.

    [11] Li Mo, Yin Licheng, Yan Tianyi.Particle filter tracking algorithm based on integral histogram and improved resampling[J]. Optics and Electronic Technology, 2013, 11(3): 45-48. (in Chinese)

    [12] Yu J X, Liu W J, Tang Y L. Improved particle filter algorithms based on partial systematic resampling[C] ∥ 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 2010: 483-487.

    [13] Birchfield S. Elliptical head tracking using intensity gradients andcolor histograms[C] ∥1998 IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 1998: 232-237.

    中文字幕高清在线视频| 老司机在亚洲福利影院| 国产午夜福利久久久久久| 日韩欧美国产一区二区入口| 国产一级毛片七仙女欲春2| 欧美区成人在线视频| 亚洲国产精品合色在线| 欧美日韩精品网址| 黄色成人免费大全| 91九色精品人成在线观看| www日本在线高清视频| 亚洲电影在线观看av| 欧美日韩黄片免| 国产三级中文精品| ponron亚洲| 成人国产一区最新在线观看| 国产真实伦视频高清在线观看 | 性色av乱码一区二区三区2| 性色av乱码一区二区三区2| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 一级作爱视频免费观看| 日本黄色片子视频| 99久久综合精品五月天人人| e午夜精品久久久久久久| 91麻豆av在线| 国产av一区在线观看免费| 午夜福利成人在线免费观看| 国产单亲对白刺激| 国产v大片淫在线免费观看| 观看免费一级毛片| 可以在线观看毛片的网站| 成人永久免费在线观看视频| 熟女电影av网| 97人妻精品一区二区三区麻豆| 日本与韩国留学比较| 亚洲精品在线观看二区| 老熟妇仑乱视频hdxx| 变态另类成人亚洲欧美熟女| 不卡一级毛片| 亚洲专区中文字幕在线| 美女大奶头视频| 久久中文看片网| 国产精品久久久人人做人人爽| 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 色av中文字幕| 国产成人欧美在线观看| 美女 人体艺术 gogo| 麻豆国产av国片精品| 美女 人体艺术 gogo| 亚洲欧美精品综合久久99| 好男人在线观看高清免费视频| 99国产精品一区二区蜜桃av| 午夜福利在线观看吧| 日韩有码中文字幕| xxxwww97欧美| 国产精品久久电影中文字幕| 两个人看的免费小视频| 国产熟女xx| 日本黄色视频三级网站网址| 亚洲 国产 在线| 久久精品综合一区二区三区| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 91久久精品国产一区二区成人 | 小说图片视频综合网站| 国产伦精品一区二区三区视频9 | 日韩精品中文字幕看吧| 国产精品香港三级国产av潘金莲| 高清毛片免费观看视频网站| 国产久久久一区二区三区| 看免费av毛片| 精品一区二区三区av网在线观看| 亚洲av成人精品一区久久| 久久久久国产精品人妻aⅴ院| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久性| 久久欧美精品欧美久久欧美| 日韩 欧美 亚洲 中文字幕| 亚洲精品色激情综合| 免费大片18禁| 99精品久久久久人妻精品| 国产成人av教育| 亚洲成av人片在线播放无| 又粗又爽又猛毛片免费看| 精品久久久久久久毛片微露脸| 99热6这里只有精品| 久久久久久久久中文| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 亚洲国产精品久久男人天堂| 全区人妻精品视频| 欧美一区二区国产精品久久精品| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 久久久久久久久久黄片| tocl精华| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 90打野战视频偷拍视频| 亚洲男人的天堂狠狠| 亚洲av二区三区四区| 免费av毛片视频| 成年人黄色毛片网站| av专区在线播放| 日韩欧美国产一区二区入口| 欧美成人a在线观看| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| or卡值多少钱| 久久伊人香网站| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 日本黄色片子视频| 国产精品久久久久久久电影 | 国产精品电影一区二区三区| 亚洲成人中文字幕在线播放| 亚洲成av人片免费观看| netflix在线观看网站| 美女大奶头视频| 国产精品久久视频播放| 一区二区三区国产精品乱码| 午夜福利欧美成人| 亚洲五月天丁香| e午夜精品久久久久久久| 人人妻,人人澡人人爽秒播| 亚洲成人免费电影在线观看| 91字幕亚洲| 亚洲精品成人久久久久久| 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 欧美色视频一区免费| 老司机午夜福利在线观看视频| 99久久成人亚洲精品观看| 搡老熟女国产l中国老女人| netflix在线观看网站| 久久精品亚洲精品国产色婷小说| 欧美区成人在线视频| 亚洲精品一区av在线观看| 哪里可以看免费的av片| 亚洲aⅴ乱码一区二区在线播放| 很黄的视频免费| 亚洲男人的天堂狠狠| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区免费观看 | 三级毛片av免费| 国产成人a区在线观看| 国内精品美女久久久久久| 国产精品三级大全| 欧美3d第一页| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 午夜久久久久精精品| 日韩人妻高清精品专区| 精品久久久久久久末码| 一级毛片女人18水好多| 国产三级中文精品| 久久精品91无色码中文字幕| 国产激情欧美一区二区| 精品国产三级普通话版| 久久久久九九精品影院| 99热精品在线国产| 色在线成人网| 男人的好看免费观看在线视频| 99久久精品一区二区三区| 村上凉子中文字幕在线| 禁无遮挡网站| 伊人久久精品亚洲午夜| 国产成人福利小说| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 我要搜黄色片| 日日夜夜操网爽| 国产午夜精品久久久久久一区二区三区 | 亚洲一区高清亚洲精品| 精品一区二区三区人妻视频| 国产精品 国内视频| 啦啦啦观看免费观看视频高清| 最好的美女福利视频网| tocl精华| 国产乱人伦免费视频| 哪里可以看免费的av片| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 亚洲精品影视一区二区三区av| 中文字幕久久专区| 亚洲美女视频黄频| 国产亚洲欧美98| 日本成人三级电影网站| 叶爱在线成人免费视频播放| 免费人成在线观看视频色| 五月伊人婷婷丁香| 午夜激情欧美在线| 欧美三级亚洲精品| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| 欧美午夜高清在线| 亚洲精品456在线播放app | 婷婷亚洲欧美| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 97人妻精品一区二区三区麻豆| 成年人黄色毛片网站| 国产免费男女视频| 久久久国产精品麻豆| svipshipincom国产片| 中文字幕av成人在线电影| 夜夜爽天天搞| 搡老熟女国产l中国老女人| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 欧美乱妇无乱码| 天天一区二区日本电影三级| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 大型黄色视频在线免费观看| 欧美成人a在线观看| 中文字幕av在线有码专区| 国产高清激情床上av| 黄色片一级片一级黄色片| 网址你懂的国产日韩在线| 亚洲无线在线观看| 亚洲av成人精品一区久久| 搡老岳熟女国产| 99在线视频只有这里精品首页| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 内射极品少妇av片p| 最好的美女福利视频网| 男插女下体视频免费在线播放| 色视频www国产| 亚洲av电影不卡..在线观看| av欧美777| 中文字幕人妻丝袜一区二区| 国产淫片久久久久久久久 | 校园春色视频在线观看| 麻豆久久精品国产亚洲av| 免费大片18禁| 国产精品亚洲av一区麻豆| 亚洲久久久久久中文字幕| 中文资源天堂在线| 精品人妻1区二区| 18禁在线播放成人免费| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 欧美日本亚洲视频在线播放| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观| 黄色视频,在线免费观看| 老司机福利观看| www日本在线高清视频| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站| 免费在线观看日本一区| 男人舔奶头视频| 免费大片18禁| 亚洲av不卡在线观看| 黄色成人免费大全| 亚洲av美国av| 老司机福利观看| 人人妻,人人澡人人爽秒播| 亚洲最大成人手机在线| 欧美最新免费一区二区三区 | 欧美成人一区二区免费高清观看| 色老头精品视频在线观看| 午夜福利免费观看在线| 美女被艹到高潮喷水动态| www.色视频.com| 国产精品亚洲av一区麻豆| 精品电影一区二区在线| 久久久色成人| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 好看av亚洲va欧美ⅴa在| 国产av不卡久久| 在线播放国产精品三级| 91av网一区二区| 无人区码免费观看不卡| 久久久久久九九精品二区国产| 日韩欧美精品免费久久 | 亚洲美女视频黄频| 99热这里只有精品一区| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 久久久色成人| 精品一区二区三区人妻视频| 毛片女人毛片| 欧美激情久久久久久爽电影| 最近最新中文字幕大全免费视频| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 女生性感内裤真人,穿戴方法视频| 九色国产91popny在线| 国产伦精品一区二区三区视频9 | 91av网一区二区| 亚洲人成伊人成综合网2020| 1000部很黄的大片| 亚洲人成电影免费在线| 国产精品久久久久久久电影 | 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 久久国产精品人妻蜜桃| 黄片小视频在线播放| 特大巨黑吊av在线直播| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 久久国产精品影院| 亚洲五月天丁香| 成人国产综合亚洲| 99久久无色码亚洲精品果冻| 亚洲av五月六月丁香网| 免费搜索国产男女视频| 国内精品一区二区在线观看| 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看 | 99热这里只有是精品50| 深夜精品福利| 国内精品久久久久精免费| 高清日韩中文字幕在线| svipshipincom国产片| 男人舔女人下体高潮全视频| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 精品99又大又爽又粗少妇毛片 | 亚洲 国产 在线| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 亚洲成av人片免费观看| 亚洲成人久久性| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 日韩欧美 国产精品| tocl精华| 精品电影一区二区在线| 亚洲人成伊人成综合网2020| 亚洲美女黄片视频| 亚洲精品456在线播放app | 成人国产一区最新在线观看| 免费在线观看成人毛片| 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| aaaaa片日本免费| 亚洲 国产 在线| 午夜激情福利司机影院| 国产av在哪里看| 国产视频内射| 18禁黄网站禁片免费观看直播| www国产在线视频色| 日韩欧美精品v在线| 欧美中文日本在线观看视频| 欧美bdsm另类| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| svipshipincom国产片| 国产蜜桃级精品一区二区三区| 亚洲不卡免费看| 久久99热这里只有精品18| 高清在线国产一区| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 色吧在线观看| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 丰满乱子伦码专区| 精品国内亚洲2022精品成人| 色在线成人网| 最近在线观看免费完整版| 搞女人的毛片| 免费av毛片视频| 成年免费大片在线观看| 999久久久精品免费观看国产| 日韩欧美精品免费久久 | 欧美乱码精品一区二区三区| 麻豆国产97在线/欧美| 国产色婷婷99| 国产私拍福利视频在线观看| 国产精品亚洲av一区麻豆| 又粗又爽又猛毛片免费看| 日韩高清综合在线| 成年版毛片免费区| 乱人视频在线观看| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 亚洲五月天丁香| 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 老司机福利观看| 国产男靠女视频免费网站| 日本一二三区视频观看| 岛国在线观看网站| 国产黄色小视频在线观看| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 亚洲人成电影免费在线| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 亚洲精品一区av在线观看| 在线看三级毛片| 欧美又色又爽又黄视频| 一进一出抽搐动态| 两个人的视频大全免费| 一本一本综合久久| av福利片在线观看| 国产精品久久视频播放| 成年版毛片免费区| 亚洲av一区综合| 波多野结衣巨乳人妻| 亚洲熟妇熟女久久| 亚洲va日本ⅴa欧美va伊人久久| 午夜a级毛片| 欧美成人免费av一区二区三区| 色在线成人网| aaaaa片日本免费| 999久久久精品免费观看国产| 99riav亚洲国产免费| 国产乱人伦免费视频| 狠狠狠狠99中文字幕| 日韩国内少妇激情av| 偷拍熟女少妇极品色| 九色国产91popny在线| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 一级黄片播放器| 国产极品精品免费视频能看的| 女人十人毛片免费观看3o分钟| 久久久久久久久中文| 亚洲国产欧洲综合997久久,| 国产精品久久久久久久久免 | 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| 一a级毛片在线观看| 亚洲精品456在线播放app | 国产成人av激情在线播放| 国产精品一及| 色综合欧美亚洲国产小说| 午夜影院日韩av| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费| 久久九九热精品免费| 久久精品91蜜桃| 中亚洲国语对白在线视频| 欧美日韩瑟瑟在线播放| 嫩草影院精品99| 国产熟女xx| 日韩欧美免费精品| 欧美日韩国产亚洲二区| 日韩欧美免费精品| 免费看光身美女| 国产高清有码在线观看视频| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 色老头精品视频在线观看| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 嫩草影院精品99| 搡老熟女国产l中国老女人| 亚洲狠狠婷婷综合久久图片| 18+在线观看网站| 俄罗斯特黄特色一大片| 国产伦一二天堂av在线观看| 一个人免费在线观看电影| 欧美+日韩+精品| 偷拍熟女少妇极品色| 日韩国内少妇激情av| 国产黄色小视频在线观看| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 国产精品亚洲美女久久久| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看 | 一夜夜www| 内射极品少妇av片p| 久久6这里有精品| 国产毛片a区久久久久| 亚洲性夜色夜夜综合| 一级毛片高清免费大全| 乱人视频在线观看| 熟妇人妻久久中文字幕3abv| 性色av乱码一区二区三区2| 婷婷亚洲欧美| 亚洲精华国产精华精| 动漫黄色视频在线观看| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 国产美女午夜福利| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 欧美日韩一级在线毛片| 日韩人妻高清精品专区| 国产精品久久视频播放| 我的老师免费观看完整版| 国产美女午夜福利| 国产乱人视频| 国产真实乱freesex| 三级国产精品欧美在线观看| 成人av在线播放网站| 精品国产超薄肉色丝袜足j| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 不卡一级毛片| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 精品99又大又爽又粗少妇毛片 | 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 欧美+日韩+精品| 日韩av在线大香蕉| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 国产一级毛片七仙女欲春2| 99精品久久久久人妻精品| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 丁香欧美五月| 欧美国产日韩亚洲一区| 99热只有精品国产| 精品久久久久久久久久免费视频| 日本a在线网址| 国产高清视频在线播放一区| 国产精品 欧美亚洲| 亚洲国产欧美人成| 欧美乱色亚洲激情| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看| 国内久久婷婷六月综合欲色啪| 国产一区二区三区在线臀色熟女| 全区人妻精品视频| 91麻豆av在线| 久久精品综合一区二区三区| 国产老妇女一区| 又爽又黄无遮挡网站| 国产av不卡久久| 国语自产精品视频在线第100页| 一级黄片播放器| 欧美黄色片欧美黄色片| 亚洲欧美日韩东京热| 别揉我奶头~嗯~啊~动态视频| 婷婷六月久久综合丁香| 久久久久免费精品人妻一区二区| 一本一本综合久久| 日本 av在线| 久久精品国产综合久久久| 欧美乱妇无乱码| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 免费看十八禁软件| 国产真实伦视频高清在线观看 | 国产色爽女视频免费观看| а√天堂www在线а√下载| 精品电影一区二区在线| 欧美大码av| 最近最新中文字幕大全免费视频| 亚洲精品亚洲一区二区| 日本一本二区三区精品| 国产高清有码在线观看视频| 成人国产一区最新在线观看| 国产色爽女视频免费观看| 亚洲欧美日韩卡通动漫| 99国产极品粉嫩在线观看| 国内精品久久久久精免费| 亚洲精华国产精华精| 无遮挡黄片免费观看| 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 97人妻精品一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 国产精华一区二区三区| av欧美777|