• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagating Characteristic of Premixed Methane-Oxygen Deflagration in the Coal Mine Lane Including a Refuge Chamber

    2018-04-16 06:49:55HuanjuanZhaoYiranYanYinghuaZhangandYukunGao

    Huanjuan Zhao, Yiran Yan, Yinghua Zhang, and Yukun Gao

    (1.Mine Emergency Technology Research Center(University of Science and Technology Beijing), State Administration of Production Safety Supervision and Administration, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2.State Key Laboratory of High-Efficient Mining and Safety of Metal Mines (University of Science and Technology Beijing), Ministry of Education, Beijing 100083, China)

    Explosion risk of gas and coal dust exists in more than 60% coal mines and 87.4% state-owned coal mines in China. Hence, the characteristics and prevention of gas explosion need further research[1- 2].

    In developed country, mines for experiments of gas and coal dust explosion were established to investigate the flame propagation characteristic and pressure trend in gas and coal dust explosion. In 1982, a total length of 896 m (710 m for experiment) lane, which section was similar to the real coal mine in China, was built by Chongqing Branch of China Coal Mine Research General Institute. It is the first experimental lane and lays the foundation of preventing gas and coal dust explosion in China. Some experimental researches were conducted with that lane[3-5]. Recently, the small size tube was utilized in gas and coal dust experiment. New techniques such as high speed photograph and schlieren were adopted in the experiment of gas explosion and the results were demonstrated more directly and accurately. In the small size tube, the influence of obstacles in the explosion shock wave and flame propagation attracted researchers attention[6]and it is important to study the flow field distribution around the refuge chamber as an obstacle in lane[7]. In the explosion, the evolution of flame and shock wave links to the degree of the accident damage. Compared with experiment, simulation can be of lower cost, more efficient and more convenient in parameters analysis. The propagation of gas explosion shock wave[8-14]and the impact resistance of refuge chamber[15-18]were analyzed and discussed via experiment and simulation. However, the load in some previous studies may not agree with the fact and the characteristics of gas deflagration need to be investigated further.

    Self-sustained deflagration can accelerate constantly and transfer to detonation with a proper boundary condition, which should be considered in the accident prevention. In detonation, leading shock wave ignites the mixture while the chemical energy released from ignition, and it can sustain the detonation wave propagating in supersonic[2]. Characteristics of CH4explosion were discussed and discovered by some Chinese researchers[19-22]. Gas can be seen as a hazard leading explosion in coal mine while more than 95% of gas is CH4so that it can be chosen instead of gas in study. Because CH4is instable, which is of low sensitive and high detonation limit pressure, it is difficult to obtain accurate experimental results. There are hardly discussion and conclusion about premixed CH4-O2mixture. In this paper, flow field load distribution for coal mine lane and pressure load for each part of the refuge chamber are analyzed and discussed via experiments in a small size tube and simulations in the real size.

    1 Simulation for Flow Field Load of Refuge Chamber in the Coal Mine Lane

    The finite element model for premixed CH4+2O2mixture explosion in a lane was established and AUTODYN was utilized to calculate the parameters of explosion wave propagating in the lane. The load against the surface of the refuge chamber was due to an instantaneous explosion source in the simulation. Pressure of CH4+2O2mixture explosion could 20 times higher than the initial pressure by experience, and the accurate numerical results are determined by the initial pressure and type of mixture. If the explosion pressure peak was 0.6 MPa, 0.6×25 MPa should be the initial value in the simulation. The corresponding explosion wave and initial pressure were calculated with the initial pressure 21.6 kPa.

    1.1 Flow fieldload model

    The arched lane with the height as 2.6 m and the width as 3.2 m was built as Fig.1. Considering the influence on the explosion waveform, the refuge chamber was at the geometric center in the horizontal direction.

    Fig.1 Simplified physical arched lane model

    In the model,the length of explosion segment was 28 m, while the length of shock wave propagation segment was 100 m and the one of refuge chamber was 22 m. The explosion source and air area were built of solid element, the outlet was determined as outflow and other boundaries were rigid walls. Mesh size was 100 mm. As Fig.2, flow field detection points were set at front and rearface (detection point 2 and 27), the lateral middle position of each section (detection point 3, 4, 5, 6, 7, 20, 21, 22, 23, 24, 25, 26), the top surface of each section (detection point 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) and it is 1 m in front of the refuge chamber (detection point 1).

    Fig.2 Meshing and flow field pressure detection points distribution of the chamber

    1.2 Results and discussion

    Fig.3 Pressure-time history of the chamber in the lane

    The pressure-time history of the chamber is shown in Fig.3. The flow field pressure is shown in Fig.3a. The detection points at the front and rear face are shown in Fig.3b and Fig.3c. There are 12 sections in the refuge chamber. In Fig.3d, curves c(1)-c(12) demenstrate the pressure on the lateral of each section, while curves d(13)-d(24) are the pressures on the top surface. In Fig.4 and Fig.5, the pressure of the shock wave rises suddenly at the front surface, then propagates along the chamber to the rear surface in a short time (10-1s magnitude). The process of impact on the refuge chamber comes to end.

    Fig.4 Corresponding pressure-time history of detection points on lateral surface of the chamber

    Fig.5 Corresponding pressure-time history of detection points on upside of the chamber

    The explosion shock wave form can change with the propagating distance and time. The time of shock wave propagating at each segment is different. These can affect the structural response of refuge chamber under the explosion. In fact, the explosion shock wave propagates constantly so that it is difficult to record waveform in time and calculate the structural response. In the simulation, pressure results are higher and attenuation coefficient is smaller than one of experiments, for which the gravity of gas, heat loss and roughness at tube wall were not considered. The peak pressure change of each segment is in Fig.6.

    Fig.6 Peak pressure change of each segment

    2 CH4+2O2 Mixture Detonation in Small Size Tube

    Fig.7 Design of the rectangular tube

    A small size rectangular experimental tube was built (Fig.7) to study the explosion shock wave in the lane. The rectangular tube consists of two plates and an aluminium alloy plate which was slotted on each side to fit the rubber seal ring. In Fig.8, two pressure transducers were fitted on the aluminium plate and the distance is ΔL=20.4 cm, while Δtwas the peak distance of two waveforms on the oscilloscope. CH4+2O2mixture was pre-mixture for more than 24 h to ensure an intensive mixing.

    Fig.8 Installation of the rectangular tube

    The velocity of CH4+2O2mixture detonation under different initial pressures is shown in Fig.9. The results can prove that the detonation is stable in the experiment.

    Fig.9 Velocity of CH4+2O2 mixture detonation under different initial pressures

    Δt1=77.6 μs, Δt2=75.2 μs, Δt3=78.8 μs,Δt4=76.8 μs, and Δt5=76.4 μs were measured on the oscilloscope and the pressure-time curves are in Fig.10 and Fig.11. Under the initial pressures 5 kPa and 10 kPa, the peak pressures are 1 MPa and 2 MPa, respectively. The shock wave form in the small tube experiment illustrates that the pressure-time curve will change with the time. The differences about the peak pressure and propagation time cannot be ignored.

    Fig.10 Pressure-time curve under initial pressure of 5 kPa

    Fig.11 Pressure-time curve under initial pressure of 10 kPa

    3 Impact Simulation on the Refuge Chamber

    A fluid-structure interaction method was utilized to calculate and analyze the structural dynamic response of the refuge chamber under the pressure load which was calculated in the coal dust explosion simulation. ANSYS/LS-DYNA was used to analyze the response of the refuge chamber structure under the shock wave changing with the time.

    3.1 Model parameter

    The length×width×height of KJYF-96/12 refuge chamber is 10 662 mm×2 072 mm×1 800 mm, skin and flange is 34 mm, respectively. In the simulation, the model was established as the real size. Solid beams and columns were set as solid elements, hollow beams and columns as shell elements, shell structure as shell elements. Structural mesh was used mostly to discretize the refuge chamber. On the each side of solid beams and columns section were more than 2 rows. The mesh size at shell elements was 5-20 times larger than shell structures. Key area and small components were in the real size. The domain was determined by the boundary if the boundary existed around the refuge chamber was 0.5 times less than the structural maximal size. The maximum size in the shell element was 50 mm, in the solid element as 25 mm, and in the small component as 10-15 mm. Shell element, solid element, and rigid element were 548 975 totally (Fig.12). Component and materials of the refuge chamber were shown in Tab.1 and parameters of materials in Tab.2. Fixed or simply-supported connection was chosen due to the real connection method and the connection points, the parts and method should be identical with the refuge chamber in reality.

    3.2 Results and discussion

    The shock wave time delay in different parts cannot be ignored in the simulation according to the waveform and characteristics of explosion shock wave mentioned before. In the lane, the calculated flow field pressure load was determined as the pressure load on the refuge chamber. Single domain size was less than one cabin surface size and the maximum load in the domain was considered as the pressure load.

    Fig.12 Mesh generation of KJYF-96/12 refuge chamber

    StructuresMaterialThickness/mmNoteMaincabindoorQ345-B18FlangeatmaincabindoorQ345-B30EmergencyexitQ345-B30FlangeatemergencyexitQ345-B22FlangeatjointofcabinQ345-B35SkinQ345-B12StiffenerincabinQ345-BWeldedTsteel

    Tab.2 Material characteristic parameters of KJYF-96/12 refuge chamber

    The detection points diagram is shown in Fig.13a, the field pressure load was calculated and the pressure-time history on all parts are shown in Fig.13b-Fig.13e.

    Fig.13 Detection points and pressure-time history on all parts of KJYF-96/12 refuge chamber

    Fig.14 Stress distribution for KJYF-96/12 refuge chamber

    In Fig.14a-Fig.14f, a stress distribution is demonstrated from low to high. With the explosion wave propagating, stress change can be observed at the front surface of the cabin. The maximum stress is 339.3 MPa, at the connection of the door frame and the connection of door handle, which is lower than the yield strength.

    In Fig.15a-Fig.15f, the maximum displacement is at the middle cabin and middle and upper part of the front face, which is 15.12 mm maximumly. Refuge chamber maximum deformation is lower than 20 mm, and no local fracture or crack exist.

    Fig.15 Displacement distribution for KJYF-96/12 refuge chamber

    4 Conclusions

    ① The explosion initial pressure was calculated with “Chemical Equilibrium Analysis”. The lane with a refuge chamber model was built in real size and the flow field pressure load and other pressure loads on the cabin were calculated.

    ② The pressure-time curve in the small size tube agrees with the waveform change in the simulation, which validates the model of CH4+2O2mixture and the explosion load.

    ③ The inpressure-time curve and the explosion wave form changes with the distance and time. The peak pressure and propagation time are the main different points which can have influences on the simulation. Flow field load history was analyzed and more accurate pressure load on the refuge chamber were calculated, which is important on the method and practical applications for preventing coal mine gas explosion.

    [1] Wang Cheng, Hui Yan, Hu Binbin, et al. Effect of obstacle shape on gas explosion flame propagation process[J]. Transactions of Beijing Institute of Technology, 2015, 35(7): 661-676. (in Chinese)

    [2] Jiang Zonglin, Teng Honghui.Research on some fundamental problems of the universal frame work for regular gaseous detonation initiation and propagation [J].Sci Sin-Phys Mech Astron, 2012, 42(4): 421-435. (in Chinese)

    [3] Jing Guoxun, Duan Zhenwei, Cheng Lei, et al.Research progress in explosion characteristics and spread law of gas and coal dust[J].China Safety Science Journal, 2009, 19(4): 67-72. (in Chinese)

    [4] Si Rongjun. Study on mine gas and coal dust explosion propagation [D]. Qingdao: Shandong University of Science and Technology, 2007. (in Chinese)

    [5] Jiang Congguang, Lin Baiquan, Zhai Cheng. Structure variation law of explosion wave in gas explosion[J].Journal of China University of Mining and Technology, 2003, 32(4): 363-366. (in Chinese)

    [6] Zheng Youshan, Wang Cheng. Numerical simulation for the influence of variable cross-section tube on explosion characteristics of methane[J].Transactions of Beijing Institute of Technology, 2009, 29(11): 947-949. (in Chinese)

    [7] Ciccarelli G, Fowler C J, Bardon M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves, 2005 14(3): 161-166.

    [8] Xu Shengli, Zhang Hongyue, Yue Pengtao, et al. Study on properties of pressure waves generated by steady flames in a duct[J]. Journal of China University of Science and Technology, 2000, 30(8): 387-392. (in Chinese)

    [9] Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Numerical simulation on the oscillation and shock of gas explosion in a closed end pipe[J]. Journal of Vibration and Shock, 2012, 31(16): 8-12.(in Chinese)

    [10] Wang Zhirong. Gas explosion propagation and dynamic process research in confined space [D]. Nanjing: Nanjing University of Technology, 2005. (in Chinese)

    [11] Qu Zhiming, Zhou Xinquan, Zhang Yikai, et al. Dynamic mathematical model and numerical analysis of gas explosion in excavation roadway[J]. Chinese Journal of Engineering, 2006, 28(10): 907-911. (in Chinese)

    [12] Kobiera A, Kindracki J, Zydak P. A new phenomenological model of gas explosion based oncharacteristics of flame surface [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 271-280.

    [13] Chen Dongliang, Sun Jinhua, Liu Yi, et al. Propagation characteristics of premixed methane-air flames[J].Explosion and Shock Waves, 2008, 28(5): 385-390. (in Chinese)

    [14] Hong Yidu, Lin Baiquan, Zhu Chuanjie. Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes[J]. Explosion and Shock Waves, 2016, 36(2): 198-209. (in Chinese)

    [15] Zhao Huanjuan, Huang Ping, Qian Xinming. Structure safety analysis and optimization of refuge chamber shell under explosion load[J]. Journal of China Coal Society, 2012,38(6): 1095-1100. (in Chinese)

    [16] Zhao Huanjuan, Qian Xinming. Simulation analysis on structure safety of coal mine mobile refuge chamber under explosion load[J].Safety Science, 2012,50(4): 674-678. (in Chinese)

    [17] Zhao Huanjuan, Qian Xinming, Huang Ping, et al. A one-piece coal mine mobile refuge chamber with safety structure and less sealing risk based on FEA[J].Journal of Beijing Institute of Technology, 2014, 23(2):152-157.

    [18] Rong Jili, Liu Qian, Xiang Dalin. Numerical simulation on the dynamic response of mine rescue chamber subjected to explosion impact in the tunnel[J].Journal of Vibration and Shock, 2016, 35(11): 28-33. (in Chinese)

    [19] Wu Yuwen, Lee John H S. Stability of spinning detonation waves [J]. Combustion and Flame, 2015, 162(6):2660-2669. (in Chinese)

    [20] Lee John H S. The detonation phenomenon [M]. New York: Cambridge University Press, 2008: 29-38, 173-175, 194-200.

    [21] Zhang Bo, Shen Xiaobo, Pang Lei, et al. Methane-oxygen detonation characteristics near their propagation limits in ducts [J].Fuel, 2016, 177(1): 1-7. (in Chinese)

    [22] Anatoliy V Trotsyuk, Pavel A Fomin, Anatoly A Vasil’ev. Numerical study of cellular detonation structures of methane mixtures[J].Journal of Loss Prevention in the Process Industries, 2015, 36: 394-403.

    51国产日韩欧美| 99在线视频只有这里精品首页| 亚洲人成电影免费在线| 看免费av毛片| 日韩免费av在线播放| 国产伦精品一区二区三区视频9| 久久久精品欧美日韩精品| 真人一进一出gif抽搐免费| 亚洲美女搞黄在线观看 | 国产又黄又爽又无遮挡在线| 久久香蕉精品热| av欧美777| 观看美女的网站| 在线看三级毛片| 成人欧美大片| 成人国产一区最新在线观看| 嫩草影院精品99| 国产成人aa在线观看| 高清在线国产一区| 亚洲第一区二区三区不卡| 国产真实伦视频高清在线观看 | 国产精品永久免费网站| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 亚洲av熟女| 久久久国产成人精品二区| 亚洲成av人片在线播放无| ponron亚洲| 黄片小视频在线播放| 欧美在线一区亚洲| 在线播放国产精品三级| 一区二区三区激情视频| 精品久久久久久久久av| 国产中年淑女户外野战色| 日日夜夜操网爽| 三级国产精品欧美在线观看| 十八禁网站免费在线| 午夜福利视频1000在线观看| 亚洲国产色片| 天堂av国产一区二区熟女人妻| 亚洲第一区二区三区不卡| 美女黄网站色视频| 男插女下体视频免费在线播放| 直男gayav资源| 欧美不卡视频在线免费观看| 久久精品国产清高在天天线| 1024手机看黄色片| 精品国内亚洲2022精品成人| 国产免费一级a男人的天堂| 99热只有精品国产| bbb黄色大片| 国产精品一区二区免费欧美| 一进一出抽搐gif免费好疼| 欧美精品国产亚洲| 51国产日韩欧美| 国产在线男女| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 成人性生交大片免费视频hd| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 久久亚洲真实| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 欧美一区二区国产精品久久精品| 久久草成人影院| 一个人看视频在线观看www免费| 美女大奶头视频| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 又黄又爽又免费观看的视频| 宅男免费午夜| 美女cb高潮喷水在线观看| 老女人水多毛片| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 国产高清有码在线观看视频| 日韩欧美国产在线观看| 日韩欧美 国产精品| 天堂√8在线中文| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 久久热精品热| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 国产精品一区二区三区四区免费观看 | 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲综合色惰| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| 又粗又爽又猛毛片免费看| 一个人免费在线观看的高清视频| 又爽又黄无遮挡网站| 亚洲国产精品合色在线| 十八禁网站免费在线| 国产美女午夜福利| 欧美日韩瑟瑟在线播放| 国产精品一及| 99热6这里只有精品| 在线观看舔阴道视频| 日韩成人在线观看一区二区三区| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 嫩草影院新地址| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| www.www免费av| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 国产伦精品一区二区三区视频9| 日韩精品青青久久久久久| 精品一区二区三区av网在线观看| 内射极品少妇av片p| 国产精品一区二区三区四区免费观看 | 如何舔出高潮| 又黄又爽又刺激的免费视频.| 99久久九九国产精品国产免费| 无遮挡黄片免费观看| 我的女老师完整版在线观看| 啪啪无遮挡十八禁网站| 亚洲男人的天堂狠狠| 国产精品乱码一区二三区的特点| 一级a爱片免费观看的视频| 一夜夜www| 国产精品美女特级片免费视频播放器| 国内精品久久久久精免费| 99久久九九国产精品国产免费| 亚洲美女黄片视频| 少妇的逼好多水| 久9热在线精品视频| 国产高清三级在线| 三级男女做爰猛烈吃奶摸视频| 神马国产精品三级电影在线观看| 亚洲精品粉嫩美女一区| 男插女下体视频免费在线播放| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 色在线成人网| 国产一区二区三区在线臀色熟女| 一级作爱视频免费观看| 别揉我奶头 嗯啊视频| 亚洲第一电影网av| 久久精品国产亚洲av涩爱 | 色吧在线观看| 老鸭窝网址在线观看| www.熟女人妻精品国产| 三级男女做爰猛烈吃奶摸视频| 国产欧美日韩一区二区三| 十八禁人妻一区二区| 国产色爽女视频免费观看| 在线天堂最新版资源| 亚洲av免费在线观看| 老司机福利观看| av专区在线播放| 99久久久亚洲精品蜜臀av| 久久人人爽人人爽人人片va | 久久伊人香网站| 亚洲经典国产精华液单 | 尤物成人国产欧美一区二区三区| 99久久九九国产精品国产免费| 国产高潮美女av| 欧美一区二区国产精品久久精品| 一本一本综合久久| 国产色爽女视频免费观看| 全区人妻精品视频| 国产欧美日韩一区二区三| 欧美性感艳星| 热99re8久久精品国产| 国产精品野战在线观看| 波多野结衣高清无吗| 琪琪午夜伦伦电影理论片6080| av女优亚洲男人天堂| 久久伊人香网站| 国产精品乱码一区二三区的特点| 久久国产乱子伦精品免费另类| 天堂√8在线中文| 男插女下体视频免费在线播放| 高清在线国产一区| 女同久久另类99精品国产91| 免费观看人在逋| 国产综合懂色| 3wmmmm亚洲av在线观看| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 嫩草影院精品99| 高清在线国产一区| 久久国产乱子免费精品| 可以在线观看的亚洲视频| 成人高潮视频无遮挡免费网站| 欧美黄色片欧美黄色片| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 久久九九热精品免费| 久久久久久久久久成人| 久久人人爽人人爽人人片va | 我的老师免费观看完整版| 免费大片18禁| 真人做人爱边吃奶动态| 国产精品一及| 成熟少妇高潮喷水视频| 男人舔奶头视频| 97热精品久久久久久| 赤兔流量卡办理| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 看十八女毛片水多多多| 免费观看人在逋| 欧美一级a爱片免费观看看| 亚洲自拍偷在线| 久久性视频一级片| 日本熟妇午夜| avwww免费| 日韩欧美 国产精品| 久久国产乱子免费精品| 超碰av人人做人人爽久久| 国产日本99.免费观看| 在线播放国产精品三级| 亚洲一区二区三区不卡视频| 亚洲va日本ⅴa欧美va伊人久久| 97碰自拍视频| 婷婷色综合大香蕉| 免费观看人在逋| 色综合欧美亚洲国产小说| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲 | 琪琪午夜伦伦电影理论片6080| 国产成人av教育| 欧美日韩国产亚洲二区| 国产三级黄色录像| 亚洲在线观看片| eeuss影院久久| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 90打野战视频偷拍视频| 窝窝影院91人妻| avwww免费| 亚洲欧美激情综合另类| 两个人的视频大全免费| 久久午夜福利片| 亚洲无线观看免费| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 午夜a级毛片| 99热这里只有是精品在线观看 | 国产视频内射| 好男人电影高清在线观看| 国产成人影院久久av| 欧美乱色亚洲激情| 久久久久久大精品| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 色播亚洲综合网| 日日摸夜夜添夜夜添av毛片 | 99精品久久久久人妻精品| 波野结衣二区三区在线| 岛国在线免费视频观看| 特级一级黄色大片| 嫩草影院精品99| 人妻丰满熟妇av一区二区三区| avwww免费| 两人在一起打扑克的视频| 两个人的视频大全免费| 在现免费观看毛片| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app | 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 久久久久国内视频| 成年版毛片免费区| 免费观看人在逋| 成人精品一区二区免费| 精品久久国产蜜桃| 99热精品在线国产| 亚洲av成人av| 男女那种视频在线观看| 久久中文看片网| 人妻久久中文字幕网| av中文乱码字幕在线| 99在线视频只有这里精品首页| 女同久久另类99精品国产91| 成人无遮挡网站| 天天一区二区日本电影三级| 日本a在线网址| 亚洲成av人片在线播放无| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 99久国产av精品| 97碰自拍视频| 久久性视频一级片| 国内精品一区二区在线观看| 亚洲av熟女| 熟妇人妻久久中文字幕3abv| 国产三级黄色录像| 波多野结衣巨乳人妻| 国产成年人精品一区二区| av黄色大香蕉| 高清日韩中文字幕在线| 亚洲天堂国产精品一区在线| 色吧在线观看| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 亚洲av成人精品一区久久| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| avwww免费| 亚洲欧美精品综合久久99| 免费看a级黄色片| 国产人妻一区二区三区在| 三级国产精品欧美在线观看| 国产亚洲精品久久久com| 国产精品亚洲一级av第二区| 国产成人影院久久av| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 制服丝袜大香蕉在线| 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 十八禁网站免费在线| 99热这里只有是精品50| www.999成人在线观看| 国产综合懂色| 久久久久久久久久黄片| 亚洲在线观看片| 亚洲av免费在线观看| 国产色爽女视频免费观看| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 免费高清视频大片| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 真人做人爱边吃奶动态| 噜噜噜噜噜久久久久久91| 天堂av国产一区二区熟女人妻| 国产成人福利小说| 人人妻人人看人人澡| 90打野战视频偷拍视频| 国产午夜精品论理片| 18禁在线播放成人免费| 天天一区二区日本电影三级| 男女视频在线观看网站免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人a在线观看| 激情在线观看视频在线高清| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 国产老妇女一区| 97热精品久久久久久| 女同久久另类99精品国产91| 亚洲最大成人手机在线| 日韩欧美 国产精品| 成人av在线播放网站| 久久热精品热| 色视频www国产| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 欧美另类亚洲清纯唯美| 黄色女人牲交| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 国产激情偷乱视频一区二区| 噜噜噜噜噜久久久久久91| 99久久99久久久精品蜜桃| 我要看日韩黄色一级片| 久久久久久久久久成人| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 国产美女午夜福利| 午夜福利18| 国产成人欧美在线观看| 日本 av在线| 精品久久久久久久久久久久久| 高清日韩中文字幕在线| 脱女人内裤的视频| 国产精品爽爽va在线观看网站| 91九色精品人成在线观看| 欧美日韩乱码在线| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 亚洲国产高清在线一区二区三| 在现免费观看毛片| 神马国产精品三级电影在线观看| 成年女人毛片免费观看观看9| av国产免费在线观看| 国产精品久久电影中文字幕| 亚洲综合色惰| 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 在线观看舔阴道视频| 搡老妇女老女人老熟妇| 变态另类成人亚洲欧美熟女| 久久九九热精品免费| 成人毛片a级毛片在线播放| 日韩 亚洲 欧美在线| 日本五十路高清| 一级av片app| 久久亚洲精品不卡| 观看免费一级毛片| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添av毛片 | 国产精品久久电影中文字幕| 欧美黄色片欧美黄色片| 赤兔流量卡办理| 国内毛片毛片毛片毛片毛片| 亚洲av二区三区四区| 免费观看的影片在线观看| 两个人的视频大全免费| 国产69精品久久久久777片| 国产不卡一卡二| 国产av一区在线观看免费| 午夜a级毛片| 午夜久久久久精精品| АⅤ资源中文在线天堂| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 成年版毛片免费区| 欧美成狂野欧美在线观看| 美女黄网站色视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品伦人一区二区| 精品一区二区免费观看| 日韩大尺度精品在线看网址| av在线天堂中文字幕| 久久久久国产精品人妻aⅴ院| 精品久久久久久久末码| 每晚都被弄得嗷嗷叫到高潮| 桃色一区二区三区在线观看| 草草在线视频免费看| 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 婷婷亚洲欧美| 亚洲欧美日韩高清专用| 亚洲美女黄片视频| 黄色丝袜av网址大全| 国产国拍精品亚洲av在线观看| 久久久久久久久中文| 亚洲七黄色美女视频| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| 最好的美女福利视频网| 国产成人啪精品午夜网站| 男女床上黄色一级片免费看| 在线国产一区二区在线| 一个人观看的视频www高清免费观看| 久久精品91蜜桃| 在线免费观看不下载黄p国产 | 啪啪无遮挡十八禁网站| 1000部很黄的大片| 国产单亲对白刺激| 国产精品,欧美在线| 成人欧美大片| 成人午夜高清在线视频| 身体一侧抽搐| 欧美丝袜亚洲另类 | 丝袜美腿在线中文| 精品一区二区三区人妻视频| 桃色一区二区三区在线观看| 久久久久久久久大av| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 色哟哟哟哟哟哟| 麻豆av噜噜一区二区三区| 男女做爰动态图高潮gif福利片| 国产探花在线观看一区二区| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 亚洲片人在线观看| 日韩大尺度精品在线看网址| 亚洲av第一区精品v没综合| 欧美区成人在线视频| bbb黄色大片| 久久精品久久久久久噜噜老黄 | 日韩免费av在线播放| 极品教师在线视频| 我的女老师完整版在线观看| 91在线观看av| 免费人成视频x8x8入口观看| 午夜福利高清视频| 人妻久久中文字幕网| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av涩爱 | 久久人人精品亚洲av| 又爽又黄a免费视频| 色哟哟·www| 国产精品国产高清国产av| 日韩亚洲欧美综合| 亚洲精品成人久久久久久| 亚洲在线观看片| 观看美女的网站| 亚洲第一区二区三区不卡| 最新在线观看一区二区三区| 香蕉av资源在线| 国产亚洲精品综合一区在线观看| 97热精品久久久久久| 日韩欧美国产一区二区入口| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 变态另类成人亚洲欧美熟女| 亚洲人成伊人成综合网2020| 久久久久久久久大av| 国产亚洲精品av在线| 性色avwww在线观看| 国产av在哪里看| 乱码一卡2卡4卡精品| av在线天堂中文字幕| 午夜两性在线视频| 成人鲁丝片一二三区免费| 亚州av有码| 国产精品99久久久久久久久| 男人和女人高潮做爰伦理| 色在线成人网| 国产色婷婷99| 丝袜美腿在线中文| 国产乱人视频| 又爽又黄a免费视频| 极品教师在线免费播放| 久久精品91蜜桃| 免费看日本二区| 天堂√8在线中文| 国产精品一区二区三区四区免费观看 | 国产精品一区二区三区四区久久| 在线观看舔阴道视频| 嫁个100分男人电影在线观看| 日本与韩国留学比较| 国产又黄又爽又无遮挡在线| 观看美女的网站| 国产免费一级a男人的天堂| 亚洲av电影不卡..在线观看| 久久精品综合一区二区三区| 日本成人三级电影网站| xxxwww97欧美| 男女床上黄色一级片免费看| 亚洲国产精品合色在线| 亚洲人与动物交配视频| 久久99热这里只有精品18| 在线观看舔阴道视频| 毛片女人毛片| 少妇丰满av| 免费人成在线观看视频色| 天天躁日日操中文字幕| 欧美+亚洲+日韩+国产| 日韩欧美国产在线观看| 制服丝袜大香蕉在线| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美在线二视频| 我要看日韩黄色一级片| 永久网站在线| 亚洲男人的天堂狠狠| 舔av片在线| 精品一区二区三区视频在线观看免费| 婷婷丁香在线五月| 久久久久久国产a免费观看| 久久国产精品影院| 首页视频小说图片口味搜索| 变态另类丝袜制服| 国产黄片美女视频| 日本撒尿小便嘘嘘汇集6| 精品午夜福利在线看| 亚洲av五月六月丁香网| 在线看三级毛片| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| aaaaa片日本免费| 波多野结衣高清作品| h日本视频在线播放| 久久99热6这里只有精品| 长腿黑丝高跟| av天堂中文字幕网| 麻豆av噜噜一区二区三区| АⅤ资源中文在线天堂| 亚洲专区国产一区二区| 又爽又黄无遮挡网站| 成年女人永久免费观看视频| 国产亚洲精品久久久久久毛片| 99久国产av精品| 综合色av麻豆| 欧美三级亚洲精品| 内地一区二区视频在线| 嫩草影院精品99| 精品一区二区三区人妻视频| 欧美国产日韩亚洲一区| 欧美一区二区亚洲| 免费在线观看影片大全网站| 尤物成人国产欧美一区二区三区|