• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oversample Reconstruction Based on a Strong Inter-Diagonal Matrix for an Optical Microscanning Thermal Microscope Imaging System

    2018-04-16 06:49:43MeijingGaoAilingTanJieXuWeiqiJinZhenlongZuandMingYang

    Meijing Gao, Ailing Tan Jie Xu Weiqi Jin, Zhenlong Zu and Ming Yang

    (1.The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;2.School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    In the military field, thermal imaging techniques have been developed quickly due to night-time combat equipment requirements. However, most of them follow a telescopic pattern and cannot meet the microthermal analysis requirements[1-5]. In recent years, various thermal microscope imaging systems have been developed to meet the demands of microthermal analysis[6-8]. The American company EDO/BARNES, developed the InfraScope series of thermal microscope imaging systems, which can be used in electronic components and circuit failure analysis[9]shown as Fig.1.

    Another thermal microscope imaging system, the TVS-8000 has been jointly developed by Cincinnati Electronics Corporation and Nippon Avionics Company, Ltd (Avio) of Japan[10]. This system offers the user a wide variety of options for real time display, analysis, and recording of thermal scenes (Fig.2).

    Fig.1 InfraScope Ⅲ

    Fig.3 shows the PD300 thermal microscope imaging system developed by the American company, SPI[11]. The system has a unique high-performance optical system that can be used to make fine thermal analysis on small objects. The Japanese company Jasco developed the IRT7000 multichannel thermal microscope imaging system in 2000 (Fig.4).

    Fig.2 TVS-8000

    Fig.3 PD300

    Fig.4 IRT 7000

    However, these thermal microscope imaging systems using cooled infrared detectors are heavy and expensive, and hence find few applications in our country. In order to solve this problem, we developed a thermal microscope imaging system based on an uncooled infrared detector[12-14]in 2008 (Fig.5). In 2012, Japan developed the FSV-GX7700 thermal microscope imaging system, which used an uncooled focal plane detector[15]. Han Jie proposed a thermal microscope imaging system based on the uncooled focal plane detector in 2015[16].

    However, the spatial resolution of the thermal microscope imaging system based on an uncooled infrared detector is low. With optical microscanning technology, the spatial resolution of the thermal microscope imaging system can be increased without increasing the detector dimension or reducing the detector unit size[17-20].

    Fig.5 Thermal microscope imaging system

    Optical microscanning imaging technologies have been widely used in many fields, such as military reconnaissance, remote image sensing, and scientific research. The low-resolution image sequences, which have microdisplacements between frames, can be obtained by optical microscanning. In addition, by the subsequent reconstruction processing, we can obtain a high-resolution oversample[21-24].

    Therefore, we developed an optical microscanning thermal microscope system based on optical plate rotating microscanning technology. The optical microscanning thermal microscope imaging system is composed of an infrared microscope, a rotating optical plate microscanning instrument, an uncooled infrared detector, a computer and a mechanical structure component[25](Fig.6).

    Fig.6 Optical microscanning thermal microscope imaging system

    The components of the rotating optical plate microscanning instrument are an infrared optical plate, an electronically controlled rotating platform, a mount for the optical plate and the corresponding controller. Through the infrared objective lens and the microscanning device, the object is imaged by the infrared focal plane array. Then thermal microscope images are displayed on the computer. The microscanning instrument is placed in front of the focal plane array and controlled by the computer in the 2×2 model four-point mechanical microscanning scheme, as shown in Fig.7. The optical plate is at an angle relative to the optical axis. The mechanical device rotates it around the system’s optical axis. We collected four low-resolution images at intervals of 90° from the microscanning zero[26]. Each image had a displacement of half the size of the photosensitive pixel of the detector. The standard 2×2 microscanning location is shown as the upright square in Fig.8.

    Fig.7 Diagram for microscanning

    Fig.8 2×2 microscanning location

    The labels 1, 2, 3, and 4 are located in the four quadrants of 45°, 135°, 225°, and 315°, and they represent four standard locations; thus they form a regular upright square. The four low-resolution images collected at the standard locations are sub-sampled, and we can use the sub-sampled images to reconstruct a high-resolution image. The spatial resolution of the imaging system is improved. However, due to unavoidable errors (such as alignment, mechanical vibration, imperfections in the fabrication of the devices and environmental factors), the actual optical microscanning microdisplacement deviates from the regular position, and the microdisplacement position is not a regular upright square (Fig.9). As a result, if we use four images with corresponding locations that are not standardized, the quality of the reconstructed image will be reduced. The resulting quality will be even poorer than that of the image amplified by the original image with a double linear interpolation method.

    Fig.9 Actual micro displacement position of four images collected by the thermal microscope imaging system

    Therefore, it is essential to calibrate the error to obtain regular 2×2 microscanning undersampling images for direct reconstruction[27]. In this paper, we have proposed an oversample image reconstruction algorithm to calibrate the error, based on a strong diagonal matrix. This technique can obtain regular 2×2 microscanning undersampling images from the real irregular undersampling images, which leads to a high spatial oversample resolution image. In other words, it can reduce the error. In this paper, the algorithm will be referred to as the inter-frame difference oversample reconstruction based on a strong inter-diagonal matrix (SIDM-IDOR).

    1 Reconstruction of a High Spatial Oversample Image Based on Irregular Microscanning Images

    Assume that the (2M)×(2N) pixel high-resolution oversampling image O is obtained by directly cross-embedding the 4 low-resolution undersampling images O(2i-1, 2j-1),O(2i-1, 2j),O(2i, 2j),O(2i, 2j-1),(wherei= 1,2, …,M;j= 1, 2,N) taken in 2×2 microscanning mode. Since the actual microscanning displacement is irregular (see Fig.9), there are microdisplacements (xt,yt) between thetth (2, 3, 4) low-resolution image gt, and the first low-resolution image g1that is collected at the zero point of the microscanning system. Fig.10 shows a schematic diagram of regular 2×2 microscanning oversample reconstruction. For different processing methods of microdisplacements, there will be different processing algorithms.

    Fig.10 Schematic diagram of regular 2×2 microscanning oversample reconstruction.

    1.1 Inter-frame difference oversample reconstruction (IDOR)

    We present some series expansions for the low-resolution images. The first low-resolution image position is taken to be the origin of our coordinate system[28].

    gt(i,j)=O(2i-1+ht,2j-1+kt)=
    O(2i-1,2j-1)+
    [ht?/?i+kt?/?j]O(2i-1,2j-1)+
    1/2![ht?/?i+kt?/?j]2O(2i-1,2j-1)+…

    (1)

    where (t=1, 2, 3, 4), andhtandktare the normalized microdisplacements (the unit is pixel for these variables) between thetth low-resolution image and the first one

    ht=xt/2Δ,kt=yt/2Δ

    (2)

    In Eq.(2),Δis the distance between the centers of the two adjacent pixels in the detector. Using the difference instead of a differential and retaining only the two highest-order terms in the Taylor expansion, we can deduce the following

    AX=Y

    (3)

    where

    X=[O(2i-1,2j-1) O(2i,2j-1) O(2i-1,2j) O(2i,2j)]

    (4)

    X is a regular 2×2 microscanning undersampling image, and

    Y=[g1(i,j)g2(i,j)g3(i,j)g4(i,j)]

    (5)

    Y is a real irregular 2×2 microscanning undersampling image, and

    (6)

    with

    at1=1-ht-kt+htkt,
    at2=ht(1-kt),at3=kt(1-ht),at4=htkt

    (7)

    It is easy to prove that matrix A is invertible if the microdisplacement is determinate and non-overlapping.

    X=A-1Y

    (8)

    Thus, we can obtain a regular 2×2 microscanning undersampling image X (see Fig.8) from the real irregular undersampling image Y (see Fig.9).

    1.2 Inter-frame difference oversample reconstruction based on strong inter-diagonal matrix (SIDM-IDOR)

    Fig.9 shows that the microdisplacement of an actual microscanning system is irregular, such as in the following example: (0.00, 0.00), (0.03, -0.56), (0.53, -0.55), (0.60, 0.06).

    However, the normalized microdisplacement (counterclockwise) is still near the regular microscanning position {(xt0,yt0)}={(0.00, 0.00), (0.00, 0.50), (0.50, 0.50), (0.50, 0.00)}. Also, assuming (xt,yt) is the microdisplacement between the four actual collected images relative to the first regular scanned image, the microdisplacement (xt,yt) can be expressed as

    (9)

    Let every irregular low-resolution image be expanded as a Taylor series using the corresponding regular low-resolution image as a starting point

    gt(i,j)=O(I+Δxt,J+Δyt)=
    O(I,J)+[Δxt?/?i+Δyt?/?j]O(I,J)+
    1/2![Δxt?/?i+Δyt?/?j]2O(I,J)+…

    (10)

    ParametersIandJare related toi,jandt. ① Ift=1,I=2i-1 andJ=2j-1; ② ift=2,I=2iandJ=2j-1; ③ ift=3,I=2iandJ=2j;and ④ ift=4,I=2i-1 andJ=2j. In these four cases, using the difference instead of a differential in which we keep only the two highest-order terms, we obtain as

    (11)

    It is not difficult to deduce that

    BX=Y

    (12)

    where

    (13)

    and

    (14)

    As for the actual microscanning positions (recall the trapezium shown in Fig.9), it is easy to prove that matrix B is invertible. We obtain as

    X=B-1Y

    (15)

    Thus, we can obtain a regular 2×2 microscanning undersampling image X (see Fig.8) from the real irregular undersampling image Y (see Fig.9).

    Comparing coefficient matrix Eq.(14) with coefficient matrix Eq.(7), we can see that under the condition of irregular microscanning, Δxtand Δytare small quantities, buthtandktmay not be. Therefore, the precision of SIDM-IDOR is better than that of IDOR when we use only the two highest-order terms in Eqs.(1)(10). In addition, matrix B is a strong diagonally dominant matrix, but matrix A is not. By the nature of strong diagonally dominant matrices, the calculation of the inverse of matrix B has a higher degree of accuracy than the calculation of the inverse of matrix A when there is an error in matrix A and B. Combining the two factors, we can see that in theory, SIDM-IDOR has a higher precision than IDOR. The microdisplacement of the actual system is easy to calculate, and matrix B-1can be obtained by parsing Δxtand Δyt. Thus, the process of determining X from Y by an algebraic algorithm is fast.

    2 Simulation and Actual Thermal Microscope Image Experiment

    2.1 Infrared image simulation experiment

    In order to quantitatively evaluate our algorithm, we first performed a simulation of the experiment. Based on the actual microdisplacement (trapezium as shown in Fig.9), four low-resolution images (Fig.11b) were created from the high-resolution infrared image (Fig.11a). The results are shown in Fig.12. Fig.12a is the oversampling reconstructed image with IDOR and Fig.12b is the oversampling reconstructed image with the SIDM-IDOR algorithm. To appraise the effects of reconstruction, the parameters of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), general image quality factor (Q), and information entropy (SNT) are shown in Tab.1. By definition, high-quality reconstructed images are more similar to the original than low-quality images; their RMSE approximations are smaller and PSNRs are greater. The quality factor indicates that the more similar the correlation, contrast, and brightness between two images, the larger Q will be, which will be closer to 1.

    Fig.11 High-resolution image and microscanning under-sample images

    Fig.12 Reconstruction images of IDOR and SDDM-IDOR

    ReconstructionmethodRMSEPSNRQSNTIDOR0.059272.72060.98006.7426SIDM-IDOR0.041375.84360.99016.7900

    The more information the image contains, the larger the SNT is. We can see that the evaluation parameters with the oversampling reconstruction method SIDM-IDOR are better than the evaluation parameters with the method IDOR. We can conclude that the image reconstructed using the SIDM-IDOR method is more similar to the original image and contains more information.

    2.2 Experiments of actual thermal microscope images

    To verify the effectiveness of the proposed algorithm in the actual thermal microscope imaging system, we captured four low-resolution images of the target in 2×2 microscanning mode (Fig.13). Fig.14a is the image reconstructed using the IDOR method. Fig.14b is the oversampling image reconstructed using the SIDM-IDOR method proposed in this paper.

    Fig.13 Four real microscanning downsample

    Fig.14 Reconstruction of a real microscanning thermal image with different algorithms

    It can be seen that the images reconstructed using SIDM-IDOR contain more information than those reconstructed using IDOR. Furthermore, the spatial resolution of the image reconstructed using SIDM-IDOR is better than the spatial resolution of the image reconstructed using IDOR.

    3 Conclusion

    As researchers continue to pursue high-resolution optical imaging systems, the development of photoelectric detectors always lags behind the requirements of the system. Therefore, it has become an important research direction to make use of optical microscanning techniques in low-grade detectors, in order to realize high-resolution imaging. There is intrinsic error in the optical microscanning machine, which is difficult to avoid completely. Reasonable and effective processing algorithms become the key of practical technology to reduce the impact of the error in the reconstructed images. The SIDM-IDOR algorithm uses the stability of a strictly diagonally dominant matrix to reduce the influence of microdisplacement errors. The technique can obtain regular 2×2 microscanning undersampling images from the real irregular undersampling images, and can then obtain a high spatially oversampled resolution image. Simulations and experiments show that the proposed technique can reduce the optical microscanning errors and improve the system’s spatial resolution. The results show that the proposed method can effectively improve the spatial resolution of thermal microscope imaging systems. The algorithm proposed is simple, fast, and has low computational complexity.

    [1] Phillips T J. High performance thermal imaging technology [J]. III-Vs Review, 2002, 15(7):32-34.

    [2] Rogalski A. Progress in focal plane array technologies[J]. Progress in Quantum Electronics, 2012, 36(2-3):342-473.

    [3] Mai L B. Outline on development and application of FPA thermal imaging sets[J]. Infrared Technology, 2006, 28(9):497-502.

    [4] Li Xiangdi, Huang Ying, Zhang Peiqing, et al. Infrared imaging system and applications[J]. Laser & Infrared, 2014, 44(3):229-234.(in Chinese)

    [5] Peng Huanliang. The development of the IRFPA thermal imaging technology[J]. Laser & Infrared, 2006, 36(9):776-780.(in Chinese)

    [6] Wang H, Dinwiddie R B, Maleki H, et al. IR imaging of integrated circuit power transistors during operation[C]∥Aerosense. Beijing, China: International Society for Optics and Photonics, 2002:80-87.

    [7] Li L I. Application of optical methods in microeletronics packaging[J]. Journal of Experimental Mechanics, 2007, 22(3-4): 236-248.

    [8] Gao Meijing, Jin Weiqi, Xin L U, et al. Improved row action iterative super-resolution restoration for thermal microscope imaging system[J]. Opto-Electronic Engineering, 2011, 38(9):35-39.(in Chinese)

    [9] Mansfield J R. Infrared imaging of skin lesions[C]∥Proceedings of SPIE-The International Society for Optical Engineering, Beijing, China, 2002.

    [10] Lee S Y, Tung H W, Chen W C, et al. Thermal actuated solid tunable lens[J]. IEEE Photonics Technology Letters, 2006, 18(21):2191-2193.

    [11] Gao Meijing, Jin Weiqi, Wang Haiyan. The new thermal microscope imaging system for electronic device analysis [J]. Electronic Packaging, 2008, 8(4): 41-44.(in Chinese)

    [12] Li Y, Yang Z W, Zhu J T, et al.Investigation on the damage evolution in the impacted composite material based on active infrared thermography[J]. Ndt & E International, 2016, 83:114-122.

    [13] Abdollahi H, Hajghassem H, Mohajerzadeh S. Simple fabrication of an uncooled Al/SiO2, microcantilever IR detector based on bulk micromachining[J]. Microsystem Technologies, 2014, 20(3):387-396.

    [14] Gao M J, Jin W Q, Wang X. Thermal microscope imaging system for semiconductor device and IC invalidation analysis[J].Proc SPIE,2008,6621: 1-8.

    [15] Feng Y, Zhao Y, Dong L, et al.High-speed infrared imaging by an uncooled optomechanical focal plane array[J]. Applied Optics, 2015, 54(34):10189-10195.

    [16] Han Jie. Research on the key techniques of thermal microscope imaging system[D]. Beijing: Beijing Institute of Technology, 2015: 1-83.(in Chinese)

    [17] Zhang Dongxiao, Lu Lin, Li Cuihua, et al. Super-resolution image reconstruction algorithm based on sub-pixel shift [J]. Acta Automatica Sinica, 2104, 40(12):2851-2861.(in Chinese)

    [18] Gao M J, Xu J, Tan A L, et al.Error correction based on micro-scanning preprocessing for an optical micro-scanning thermal microscope imaging system[J]. Infrared Physics and Technology, 2017,83: 252-258.

    [19] Guan Congrong, Jin Weiqi, Wang Jihui. Application of histogram on micro-scanning position calibration of microscopic thermal imaging[J]. Infrared & Laser Engineering, 2013,42(2):519-523.(in Chinese)

    [20] Gao Meijing, Xu Jie, Tan Ailing, et al. Optical micro-scanning zero calibration for a thermal microscope imaging system[C]∥International Symposium on Optoelectronic Technology and Application. International Society for Optics and Photonics, Beijing, China, 2016.

    [21] Zhang Haitao, Zhao Dazun. Mathematics theory and realization of aliasing reduction in opto-electric imaging system using microscanning[J]. Acta Optica Sinica,1999,19: 1258-1263.(in Chinese)

    [22] Zhang Haitao, Zhao Dazun. Mathematics theory and realization of aliasing reduction in opto electric imaging system using microscanning[J]. Acta Optica Sinica, 1999, 19(9):1649-1654.(in Chinese)

    [23] Park S C, Min K P, Kang M G.Super-resolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine,2003, 20(3): 21-36.

    [24] Gillette J C, Stadtmiller T M, Hardie R C. Aliasing reduction in staring infrared images utilizing subpixel techniques[J]. Optical Engineering, 1995, 34(11):3130-3137.

    [25] Gao Meijing, Jin Weiqi, Wang Xia. Design and implementation of optical micro-scanning thermal microscope imaging system with high resolution[J]. Chinese Journal of Scientific Instrument, 2009,30(5):1037-1041.(in Chinese)

    [26] Gao Meijing, Jin Weiqi, Wang Xia, et al. Zero calibration for the designed microscanning thermal microscopic imaging system[J]. Acta Optica Sinica, 2009, 29(29):2175-2179.(in Chinese)

    [27] Gao M J, Wang J Y, Xu W, et al. High-resolution over-sampling reconstruction algorithm for a microscanning thermal microscope imaging system[J]. Infrared Physics & Technology, 2016, 76:661-666.

    [28] Gao Meijing, Jin Weiqi, Wang Xia, et al. Inter-frame difference oversample reconstruction for optical microscanning thermal microscope imaging system[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):704-707.(in Chinese)

    亚洲五月色婷婷综合| 久久久久国产网址| 欧美日韩一区二区视频在线观看视频在线| 午夜av观看不卡| 少妇的丰满在线观看| 国产高清国产精品国产三级| 亚洲欧美清纯卡通| 欧美日韩亚洲高清精品| 午夜免费男女啪啪视频观看| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 国产国拍精品亚洲av在线观看| 免费观看无遮挡的男女| 丰满饥渴人妻一区二区三| 国产高清三级在线| 亚洲av电影在线进入| 免费人妻精品一区二区三区视频| 免费av中文字幕在线| 亚洲精品第二区| 欧美日韩亚洲高清精品| 精品人妻熟女毛片av久久网站| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 制服人妻中文乱码| 久久久久网色| 午夜精品国产一区二区电影| 国产毛片在线视频| 国产成人精品无人区| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| av女优亚洲男人天堂| 日韩制服丝袜自拍偷拍| 看免费成人av毛片| av在线观看视频网站免费| 美女主播在线视频| av天堂久久9| 亚洲 欧美一区二区三区| 国产免费一区二区三区四区乱码| 一二三四在线观看免费中文在 | 日本欧美国产在线视频| 国产乱来视频区| 成年av动漫网址| 欧美成人午夜免费资源| 在线亚洲精品国产二区图片欧美| 国产精品一二三区在线看| 亚洲精品第二区| 黄色视频在线播放观看不卡| 咕卡用的链子| 亚洲精品久久午夜乱码| 搡老乐熟女国产| 亚洲综合色网址| 日韩大片免费观看网站| 日本wwww免费看| 中文字幕人妻熟女乱码| 国产熟女午夜一区二区三区| 2022亚洲国产成人精品| 狂野欧美激情性xxxx在线观看| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 国产毛片在线视频| 亚洲色图 男人天堂 中文字幕 | 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 性高湖久久久久久久久免费观看| 久久久国产精品麻豆| 国产免费一级a男人的天堂| 亚洲伊人久久精品综合| 久久午夜福利片| 三上悠亚av全集在线观看| 97超碰精品成人国产| 亚洲一码二码三码区别大吗| 国产国拍精品亚洲av在线观看| 婷婷色综合www| 在线亚洲精品国产二区图片欧美| 欧美日本中文国产一区发布| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 男男h啪啪无遮挡| 国产精品国产三级国产专区5o| h视频一区二区三区| 精品熟女少妇av免费看| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 欧美丝袜亚洲另类| 热99久久久久精品小说推荐| 日韩人妻精品一区2区三区| 在线观看三级黄色| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 亚洲av.av天堂| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 在线观看一区二区三区激情| 成人亚洲欧美一区二区av| 国产欧美日韩综合在线一区二区| av卡一久久| 欧美成人精品欧美一级黄| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 人妻少妇偷人精品九色| kizo精华| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 超碰97精品在线观看| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看 | 久久av网站| 人人妻人人爽人人添夜夜欢视频| 亚洲精品日本国产第一区| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜爱| 久久国内精品自在自线图片| 亚洲欧美日韩另类电影网站| 国产亚洲精品久久久com| 亚洲五月色婷婷综合| 日韩 亚洲 欧美在线| 9热在线视频观看99| 曰老女人黄片| 亚洲精品第二区| 国产日韩欧美视频二区| 熟女人妻精品中文字幕| 水蜜桃什么品种好| 丝袜在线中文字幕| 97在线人人人人妻| a级片在线免费高清观看视频| av片东京热男人的天堂| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 热99久久久久精品小说推荐| 国产精品一国产av| 观看美女的网站| 免费看av在线观看网站| 捣出白浆h1v1| 亚洲av男天堂| 国产精品一区www在线观看| 成年女人在线观看亚洲视频| 成人毛片a级毛片在线播放| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| 国产免费一区二区三区四区乱码| 视频在线观看一区二区三区| 热99久久久久精品小说推荐| 午夜老司机福利剧场| av一本久久久久| 高清av免费在线| 色哟哟·www| 日韩av免费高清视频| 久久影院123| 啦啦啦中文免费视频观看日本| 七月丁香在线播放| 中文精品一卡2卡3卡4更新| 亚洲精品国产色婷婷电影| 精品国产国语对白av| 精品国产国语对白av| 国产精品成人在线| 91国产中文字幕| 免费女性裸体啪啪无遮挡网站| 天堂中文最新版在线下载| 伊人亚洲综合成人网| 国产极品天堂在线| 国产精品无大码| 我的女老师完整版在线观看| 国产精品三级大全| 成人18禁高潮啪啪吃奶动态图| 男男h啪啪无遮挡| 美女国产高潮福利片在线看| 久久国内精品自在自线图片| 成年动漫av网址| 一级,二级,三级黄色视频| 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久午夜乱码| 亚洲第一av免费看| 中文字幕人妻熟女乱码| 亚洲国产精品成人久久小说| 黄色一级大片看看| 黑人猛操日本美女一级片| 中文字幕亚洲精品专区| 大话2 男鬼变身卡| 黄色毛片三级朝国网站| 国产乱人偷精品视频| 国产精品人妻久久久久久| 一级毛片黄色毛片免费观看视频| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 午夜影院在线不卡| 国产极品天堂在线| 日日爽夜夜爽网站| 91成人精品电影| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 18禁观看日本| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美| 制服丝袜香蕉在线| 久久热在线av| 97在线人人人人妻| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 99久国产av精品国产电影| 在线免费观看不下载黄p国产| 男女国产视频网站| 好男人视频免费观看在线| 亚洲欧美日韩另类电影网站| 亚洲欧美色中文字幕在线| 精品酒店卫生间| 国产福利在线免费观看视频| 精品国产一区二区久久| 在线观看美女被高潮喷水网站| 亚洲国产精品成人久久小说| av线在线观看网站| 90打野战视频偷拍视频| 亚洲美女黄色视频免费看| 国产精品女同一区二区软件| 久久久久网色| 日本欧美视频一区| 在线看a的网站| 亚洲内射少妇av| 丝袜在线中文字幕| 男女啪啪激烈高潮av片| 美国免费a级毛片| 久久久久久久久久成人| 欧美少妇被猛烈插入视频| 国产爽快片一区二区三区| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| a级片在线免费高清观看视频| 成人国产av品久久久| av片东京热男人的天堂| 欧美丝袜亚洲另类| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 九草在线视频观看| av一本久久久久| 乱码一卡2卡4卡精品| 国产精品偷伦视频观看了| 最近手机中文字幕大全| 国产国语露脸激情在线看| 欧美xxxx性猛交bbbb| 国产男女超爽视频在线观看| 美女xxoo啪啪120秒动态图| 免费黄频网站在线观看国产| 少妇人妻 视频| 国产精品99久久99久久久不卡 | av国产久精品久网站免费入址| 好男人视频免费观看在线| av播播在线观看一区| 国产成人精品在线电影| 国产福利在线免费观看视频| 国产精品国产三级专区第一集| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 在线免费观看不下载黄p国产| 国产亚洲精品第一综合不卡 | 国产免费现黄频在线看| 国产熟女午夜一区二区三区| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| 免费av不卡在线播放| 这个男人来自地球电影免费观看 | a级毛片黄视频| 蜜桃国产av成人99| 亚洲国产看品久久| 男女下面插进去视频免费观看 | 欧美xxxx性猛交bbbb| 涩涩av久久男人的天堂| 18+在线观看网站| 春色校园在线视频观看| 三上悠亚av全集在线观看| 少妇的逼水好多| 国产成人精品无人区| 成人国产av品久久久| 97在线人人人人妻| 亚洲欧美成人精品一区二区| 男女下面插进去视频免费观看 | 国产成人欧美| av视频免费观看在线观看| 中文天堂在线官网| 女人精品久久久久毛片| 热re99久久国产66热| 日日啪夜夜爽| av视频免费观看在线观看| 日本与韩国留学比较| 久久久久久久精品精品| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 午夜福利视频精品| 久久精品aⅴ一区二区三区四区 | 亚洲精品乱码久久久久久按摩| 久久久国产一区二区| 欧美3d第一页| 1024视频免费在线观看| 热re99久久国产66热| 欧美激情 高清一区二区三区| 久久久久视频综合| 中文字幕免费在线视频6| 2022亚洲国产成人精品| 99九九在线精品视频| 久久这里有精品视频免费| 视频区图区小说| 亚洲精品乱码久久久久久按摩| 中文字幕人妻熟女乱码| 成人影院久久| 高清欧美精品videossex| 纯流量卡能插随身wifi吗| 十八禁网站网址无遮挡| 国产精品无大码| 欧美另类一区| 亚洲国产欧美在线一区| 国产极品粉嫩免费观看在线| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 亚洲情色 制服丝袜| 香蕉精品网在线| 黑丝袜美女国产一区| 欧美精品国产亚洲| 日韩一区二区三区影片| 亚洲丝袜综合中文字幕| 国产熟女午夜一区二区三区| av电影中文网址| 两个人免费观看高清视频| av在线观看视频网站免费| 91精品国产国语对白视频| 在线观看一区二区三区激情| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 9热在线视频观看99| 久久av网站| 国产极品粉嫩免费观看在线| 91在线精品国自产拍蜜月| 国产免费又黄又爽又色| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 久久久久久久久久成人| 日韩伦理黄色片| 久久精品国产综合久久久 | 97在线人人人人妻| 老司机影院毛片| 免费大片18禁| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 欧美亚洲日本最大视频资源| 91午夜精品亚洲一区二区三区| 中文字幕精品免费在线观看视频 | 黑人欧美特级aaaaaa片| 日韩一区二区视频免费看| 老司机影院毛片| 丰满乱子伦码专区| 国产69精品久久久久777片| 97在线人人人人妻| 日本与韩国留学比较| 少妇 在线观看| 制服丝袜香蕉在线| 大片免费播放器 马上看| 少妇被粗大的猛进出69影院 | 免费观看a级毛片全部| 亚洲av电影在线观看一区二区三区| 国产精品99久久99久久久不卡 | 国产69精品久久久久777片| 肉色欧美久久久久久久蜜桃| 黄片播放在线免费| 亚洲第一av免费看| 婷婷色综合大香蕉| 欧美日韩av久久| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 99久久精品国产国产毛片| 十八禁网站网址无遮挡| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 亚洲熟女精品中文字幕| 最近的中文字幕免费完整| 你懂的网址亚洲精品在线观看| 久久97久久精品| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 蜜桃国产av成人99| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| 丰满饥渴人妻一区二区三| 亚洲美女搞黄在线观看| 欧美精品一区二区大全| 欧美人与性动交α欧美软件 | 一边亲一边摸免费视频| 国产免费又黄又爽又色| 十分钟在线观看高清视频www| 欧美成人午夜免费资源| av免费观看日本| 欧美3d第一页| 在线观看免费日韩欧美大片| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 午夜免费鲁丝| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 日本vs欧美在线观看视频| 久久久久久久国产电影| 哪个播放器可以免费观看大片| 在线免费观看不下载黄p国产| 日韩人妻精品一区2区三区| www日本在线高清视频| 欧美成人午夜精品| 全区人妻精品视频| videossex国产| 亚洲中文av在线| 久久久久久久精品精品| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 在线观看人妻少妇| 亚洲综合色惰| 乱人伦中国视频| 国产精品秋霞免费鲁丝片| 女的被弄到高潮叫床怎么办| 香蕉国产在线看| 欧美3d第一页| 如日韩欧美国产精品一区二区三区| 五月天丁香电影| 亚洲一码二码三码区别大吗| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 国产在线视频一区二区| 黄片播放在线免费| 久久国产精品男人的天堂亚洲 | 又黄又粗又硬又大视频| 亚洲av电影在线进入| 国产1区2区3区精品| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 人人妻人人爽人人添夜夜欢视频| 中文乱码字字幕精品一区二区三区| 久久久久精品人妻al黑| 午夜免费鲁丝| 精品人妻一区二区三区麻豆| 日韩精品有码人妻一区| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 啦啦啦视频在线资源免费观看| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 亚洲天堂av无毛| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 一二三四在线观看免费中文在 | 久久精品aⅴ一区二区三区四区 | 最黄视频免费看| 亚洲精品456在线播放app| 国产精品国产三级专区第一集| 亚洲精品第二区| 国产黄色免费在线视频| 久久久久网色| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 99热全是精品| 亚洲精品乱码久久久久久按摩| 国产黄色视频一区二区在线观看| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 国产毛片在线视频| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 久久综合国产亚洲精品| 99国产精品免费福利视频| 黄色怎么调成土黄色| 欧美人与善性xxx| av国产精品久久久久影院| 男人添女人高潮全过程视频| 99久久中文字幕三级久久日本| 高清毛片免费看| 十分钟在线观看高清视频www| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91| 青春草视频在线免费观看| 多毛熟女@视频| 伦精品一区二区三区| 久久99热这里只频精品6学生| 九草在线视频观看| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 我要看黄色一级片免费的| 老司机影院毛片| 亚洲国产最新在线播放| 国产成人精品在线电影| 99九九在线精品视频| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 日韩电影二区| 久久久国产一区二区| 日韩电影二区| 有码 亚洲区| 赤兔流量卡办理| av天堂久久9| 国产精品不卡视频一区二区| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 午夜福利视频精品| 欧美最新免费一区二区三区| 又黄又粗又硬又大视频| 22中文网久久字幕| 在线免费观看不下载黄p国产| 亚洲精品自拍成人| 久久精品久久久久久久性| 看非洲黑人一级黄片| 18禁观看日本| 亚洲熟女精品中文字幕| 中文字幕制服av| 国产精品秋霞免费鲁丝片| 午夜激情久久久久久久| 97在线人人人人妻| 亚洲精品乱久久久久久| 秋霞伦理黄片| 2018国产大陆天天弄谢| 国产午夜精品一二区理论片| 欧美性感艳星| 伦精品一区二区三区| 国产成人av激情在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人成视频在线观看免费观看| 九色亚洲精品在线播放| 成人手机av| 高清毛片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃在线观看..| 9色porny在线观看| 久久久国产精品麻豆| 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 大香蕉97超碰在线| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 性色av一级| 最黄视频免费看| 在线观看人妻少妇| www.熟女人妻精品国产 | 精品少妇久久久久久888优播| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品自产自拍| 在线 av 中文字幕| 国产永久视频网站| 97精品久久久久久久久久精品| av在线观看视频网站免费| 晚上一个人看的免费电影| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 日韩中文字幕视频在线看片| 国产一区二区在线观看av| 如何舔出高潮| 桃花免费在线播放| 国产精品久久久av美女十八| 亚洲内射少妇av| a级片在线免费高清观看视频| 国产成人av激情在线播放| 亚洲精品美女久久久久99蜜臀 | 久久 成人 亚洲| 欧美日韩综合久久久久久| 女性被躁到高潮视频| 日韩av在线免费看完整版不卡| 丰满饥渴人妻一区二区三| 国产精品无大码| 久久人人97超碰香蕉20202| 又大又黄又爽视频免费| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 亚洲 欧美一区二区三区| 香蕉丝袜av| 秋霞在线观看毛片| 26uuu在线亚洲综合色| 少妇精品久久久久久久| 一级a做视频免费观看| 在线精品无人区一区二区三| 性色avwww在线观看| 母亲3免费完整高清在线观看 | 最近2019中文字幕mv第一页| 男人操女人黄网站| 97在线人人人人妻| 欧美另类一区| 久久久久国产网址| 精品国产国语对白av| 男女下面插进去视频免费观看 | 波多野结衣一区麻豆| 新久久久久国产一级毛片| 国产激情久久老熟女| 99re6热这里在线精品视频| 咕卡用的链子| 一级,二级,三级黄色视频| 亚洲精品国产av蜜桃| 日韩av免费高清视频| 亚洲久久久国产精品| 最近手机中文字幕大全|