• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic Satisfaction Analysis in Call Centers Considering Global Features of Emotion and Duration

    2018-04-16 06:49:43JingLiuChaominWangYingnanZhangPengyuCongLiqiangXuZhijieRenJinHuXiangXieJunlanFengandJingmingKuang

    Jing Liu, Chaomin Wang,, Yingnan Zhang, Pengyu Cong, Liqiang Xu, Zhijie Ren, Jin Hu, Xiang Xie,, Junlan Feng and Jingming Kuang

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;2.China Mobile Communications Corporation, Beijing 100053, China)

    Call centers have been widely used for customer services, technical support and sales. Call center agents are the key to the success of a call center operation. To evaluate the job performance of agents, 7 quantitative indicators are proposed in Ref. [1] which are service quality indicator, test score, personal attendance, total calls per hour, first call resolution, survey successful rate and customers’ satisfaction. Measuring and monitoring of customers’ satisfaction is an essential issue. Deficiencies of services and businesses can be clearly understood through the analysis of customers’ satisfaction. A large number of dialogue data are produced in call centers every day, and it is impossible to process by artificial means. So an intelligent system which is aimed to accomplish the satisfaction analysis automatically is greatly needed.

    Meanwhile, the paralinguistic information has got more and more attention recently. Since 2010, INTERSPEECH has a challenge about computational paralinguistic. The goal is to identify more information from a speaker’s voice, such as personality, likability, drunken, social information and so on[2-6]. Inspired by these studies, this paper is concentrated on the degree of customer satisfaction of the services.

    Various studies have carried out to investigate customers’ satisfaction. Research in Ref.[7] shows that agent traits can influence customers’ satisfaction. The knowledgeableness and preparedness of an agent are good indicators of his/her service quality according to the authors. The work in Ref.[8] predicts the customers’ satisfaction using affective features and textual features based on the context of a customer in social media. The affective features contain customer’s and agent’s personality traits and emotion expression.It is demonstrated in Ref.[9] that negative emotion between a customer and an agent, especially angry emotion, can deliver useful information to analyze the customer satisfaction.The authors use acoustic and lexical features to recognize the customers’ emotion and computed the proportion of emotional turns as the indicator of customer satisfaction.

    In our research, we have collected thousands of dialogue speech from call centers to analyze the customers’ satisfaction without a speech recognizer[10].Since the customer may talk while driving, taking bus, taking the subways and so on. The channel noise, background noise and talking style can dramatically decrease the recognition accuracy. So it is hard to recognize the speech with a high accuracy.Our method is that extracting the acoustic features from the customers’ fragments to recognize the emotion and extracting the global features of emotion and duration to analyze the satisfaction based on the emotion recognition result.

    1 Data Processing

    The corpus is gathered from China Mobile’s call center that provides support to Shanghai customers in Chinese language. After each phone call, the customers are required to feedback by short message whether he/she is satisfied with the agent service. The database contains 5 684 recording audio files, out of which there are 1 170 dissatisfaction labeled recordings occupying 60 h and 4 514 satisfaction labeled recordings occupying 100 h. The duration of each dialogue varies from 20 s to 20 min. The sampling frequency is 6 kHz and the resolution is 16 bit. The training set contains 836 dissatisfaction recordings and 4 180 satisfaction recordings. The testing set contains 334 dissatisfaction recordings and 334 satisfaction recordings.

    1.1 Segmentation and annotation

    The whole process of segmentation has two steps: automatic segmentation and manual correction.The fragment is labeled with one of the four labels which are agent voice (A), customer voice(B), silence & noise (S) and overlap (AB). Overlapped fragments contains more than one speakers.The automatic segmentations are produced by a commercial ASR engine. These automatic segmentations are then corrected manually for the segmentation point and labeled with the speaker tag.

    The object of an emotion annotation is customer voice. Six emotion labels are used: hot anger (HA), cold anger (CA), boredom (B), disappointment (D), neutral (N) and joy (J). The emotion annotation group has three annotators.They are all college students of about 24 years old. Before the annotation, the three annotators are trained to test the six kinds of emotion. Annotators need to label all of the customers’ fragments.The customers’ emotions are classified into positive emotions (neutral and joy) and negative emotions (hot anger, cold anger, boredom and disappointment) artificially.When a fragment has the same tag from more than one annotator, we take it as a sample for the study. Totally, we get 5 478 negative emotion fragments and 5 647 positive emotionfragments.

    1.2 Negative emotion distribution

    X—the ratio of negative emotion fragments in a dialogue; Y— the ratio of recordings which contain the different ratio of negative emotion fragments in the datasetFig.1 Negative emotion distribution

    The purpose of our system is to find out the satisfaction recordings. An investigation is preformed to find out the relation between the satisfaction and the emotion fragments of customers. Fig.1 shows the correlation between negative emotionsand satisfaction. Thexaxis delegates the ratio of negative fragments to all the fragmentsin a dialogue. Theyaxis delegates the ratio of recordings to all the satisfaction recordings/dissatisfaction recordings. For example, 0% on thexaxis means the recording doesn’t contain any negative emotion, and 78% on theyaxismeans that 78% of the satisfied recordings do not contain any negative emotion.

    Fig.1 illustrates that negative emotions have different distribution between satisfaction recordings and dissatisfaction recordings. Fig.1a shows the negative emotion distribution among all the satisfaction recordings and while Fig.1b shows the negative emotion distribution among all the dissatisfaction recordings.From Fig.1 we can see that only 22% of satisfaction recordings contain the negative emotions but all the dissatisfaction recordings contain the negative emotions. So it is effective to analyze the customer satisfaction by recognizing the emotions.However,it is not sufficient to merely consider the ratio of negative emotions because some satisfaction recordings contain the negative emotions. So the position and duration of the negative emotions in the recordings need to be considered.

    2 Features

    2.1 Acoustic features

    We employ openSMILE[11-12], a feature extraction toolkit for speech, to extract 384 features with a predefined configuration file[13]. The details are exhibited in Tab.1.The low level acoustic features are extracted on a frame level. These low level descriptors (LLD) and their delta coefficients are projected onto 12 statistic functions. The total number is 16×2×12=384.

    Tab.1 Details of 384 features

    2.2 Global features of emotion and duration

    Global features are extracted based on emotion confidence. It is the result of the emotion recognition. The emotion confidence means the intensity of emotion expression. The larger the absolute value of emotion confidence is, the more obviously the emotion is expressed. According to annotation experiments and data statistics, we find that the customers’ negative emotion position has an influence on the satisfaction degree of the dialogue. The regulation is more rearward, more important. So the statistic features not only contain the information of emotion intensity, but also the information of emotion position. The dialogue is divided into beginning, middle, and ending according to its duration and the number of fragments. The negative emotion rate and the negative emotion intensity are calculated respectively. In the satisfied and unsatisfied dialogues, the duration has a great difference between customer and agent. Generally speaking, the customer’s duration is longer than the agent’s in an unsatisfied dialogue. So 13 rhythm features are added which contain the information of customers’ and agents’ duration and interaction. There are 54 global features totally. The details are shown in Tab.2.

    Tab.2 Details of 54 features

    3 Baseline System and Proposed System

    3.1 Baseline system

    The baseline system assumes that customers’ satisfaction is constant during the dialogue. It only extracts 384 acoustic from the customers’ voice without considering the global features of emotion and duration to analyze the customer satisfaction. The basic framework is shown in Fig.2.

    Fig.2 Overview of baseline system

    3.2 Proposed system

    Our system analyzes the customer satisfaction based on local acoustic features and global features of emotions and durations. The system consists of two steps: local emotion recognition and global customer satisfaction analysis. In the first step, we mainly detect the customer’s emotions on the customer’s fragment level using the acoustic features. In the second step, we estimate the result of the firststep on the whole utterances level to analyze the customer satisfaction. Fig.3 shows the diagram of the proposed system.

    Fig.3 Overview of the proposed system

    Firstly, all the customers’ fragments are collected from the dialogue. And then the acoustic features are extracted from every customer’s fragment. The purpose of the emotion recognition is to obtain the emotion confidence of every fragment. Next we do the satisfaction analysis. The input of the model are global features of emotion and duration. They are extracted based on the emotion confidence.The output of the model is customer satisfaction.

    4 Experiments and Results

    SVM[14-15]classifier with radial basic function is used for baseline of the proposed method. The optimal cost function parameterCand kernel function parametergare obtained by 5-fold cross validation approach. The performance of the system is measured byFvalue which is defined as a harmonic mean of precision (P) and recall (R). The formula is as

    To obtain the emotion confidence, SVM is utilized to classify the customers’ emotions into negative emotions and positive emotions. The emotion confidence means the signed distance between samples point and hyper plane in SVM. When the emotion confidence is greater than zero, the corresponding sample is recognized as negative emotion. Otherwise is positive emotion. The typical emotional fragments are used to validate the emotion model. Training set contains 3 835 negative fragments and 3 953 positive fragments. Testing set consists of 1 643 negative fragments and 1 694 positive fragments. The results are shown in Tab.3.

    Tab.3 Results of emotion recognition

    P— precision;R— recall;F— a harmonic mean value of precision and recall

    To evaluate the performance of the proposed system, we compared to the baseline which extracted the acoustic features on the whole utterance to analyze the customer satisfaction without considering the customer emotion. During the training process, we assign five ratios: 1∶1, 1∶2, 1∶3, 1∶4, and 1∶5 of dissatisfaction recordings to satisfaction recordings. In order to ensure the robustness and practicability of the system, we use the recordings without manual correction as training set and test set. The final number of training set and testing set is shown in Tab.4. Five sets of experiments are conducted for comparison. Tab.5 shows the results in detail.

    Tab.4 Size of training set and testing set

    n— the factor which control the ratio of unsatisfied recording to satisfied recording in training set.

    Tab.5 Satisfaction analysis results

    5 Conclusion

    Tab.5 shows that the proposed system has a better performance than the baseline system. The averageFvalue is improved to 0.701 from 0.664 with an increase of 5.57%. The baseline assumes that customers’ attitude does not vary and the acoustic features are only used to analyze the satisfaction. But in a real conversation between a customer and an agent, the interaction happens more than once. Customers can utter multiple sentences during the interaction. One difficulty in analyzing customers’ satisfaction is its ambiguity. Not all of the sentences exhibit the characteristics of satisfaction or dissatisfaction. However, almost all the dissatisfaction recordings have negative emotions. So the proposed system that combining the local acoustic features and the global features of emotions and durations can improve the effectivness in analyzing the customer satisfaction.

    From the experiment, the SVM has the best performance (Fscore is 0.710) when the ratio is 1∶3. It is concluded that the ratio of dissatisfaction recordings to satisfaction recordings in training set has an influence on a system performance.

    In summary, a method is proposed to analyze the customer satisfaction using the acoustic features and global features of emotion and duration.The acoustic features are used to recognize the customer emotion of customer’s fragments. And then, global features of emotion and duration are extracted based on the emotion recognition results and used to conduct the satisfaction analysis. The global features not only contain the intensity of the customers’ emotions, but also the position and duration of customers’ emotions. Experiments show that this novel method can improveFvalue of the performance with 5.57%.

    In the future study, we will pay attention to two aspects. Firstly, we will try to classify the customers’ emotions into multi-classes to analyze the customers’ emotions with more details. Secondly, we will shorten the unit of emotion recognition. In the current experiment each turn of customer is used as unit no matter how long it is. So, we’d like to segment customers’ turn into some kind of unit with suitable length for emotion analysis.

    [1] Hsu H H, Chen T C, Chan W T, et al. Performance evaluation of call center agents by neural networks[C]∥2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). Crans-Montana, Switzerland: IEEE, 2016: 964-968.

    [2] Burkhardt F, Schuller B, Weiss B, et al. “Would you buy a car from me?”-On the likability of telephone voices[C]∥INTERSPEECH, Florence, Italy, 2011.

    [3] Schuller B, Batliner A, Steidl S, et al. The INTERSPEECH 2011 Speaker state challenge[C]∥Proceedings INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy, 2011.

    [4] Schuller B, Steidl S, Batliner A, et al. The INTERSPEECH 2012 speaker trait challenge[C]∥INTERSPEECH, Portland, Oregon, USA, 2012.

    [5] Schuller B, Steidl S, Batliner A, et al. The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism[C]∥INTERSPEECH 2013, Conference of the International Speech Communication Association, 2013.

    [6] Schuller B, Steidl S, Batliner A, et al. The INTERSPEECH 2014 computational paralinguistics challenge: cognitive & physical load[C]∥INTERSPEECH, Max Atria, Singapore, 2014.

    [7] Froehle C M. Service personnel, technology, and their interaction in influencing customer satisfaction[J]. Decision Sciences, 2006, 37(1): 5-38.

    [8] Herzig J, Feigenblat G, Shmueli-Scheuer M, et al. Predicting customer satisfaction in customer support conversations in social media using affective features[C]∥Proceedings of the 2016 Conference on User Modeling Adaptation and Personalizationm, Halifax, Canada, 2016.

    [9] Vaudable C, Devillers L. Negative emotions detection as an indicator of dialogs quality in call centers[C]∥Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on IEEE, Kyoto, Japan, 2012.

    [10] Xie Xiang, Kuang Jingming. Mandarin digits speech recognition using support vector machines[J]. Journal of Beijing Institute of Technology, 2005, 14(1): 9-12.

    [11] Eyben F, W?llmer M, Schuller B. Opensmile: the munich versatile and fast open-source audio feature extractor[C]∥Proceedings of the 18th ACM international Conference on Multimedia, Firenze, Italy, 2010.

    [12] Eyben F, Weninger F, Gross F, et al. Recent developments in openSMILE, the munich open-source multimedia feature extractor[C]∥Proceedings of the 21st ACM international conference on Multimedia, Barcelona, Spain, 2013.

    [13] Schuller B, Steidl S, Batliner A. The INTERSPEECH 2009 emotion challenge[C]∥INTERSPEECH, Brighton, United Kingdom, 2009: 312-315.

    [14] Zhang Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42. (in Chinese)

    [15] Chang C C, Lin C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27.

    啦啦啦韩国在线观看视频| 精品久久久久久成人av| 欧美潮喷喷水| 亚洲专区国产一区二区| 18禁黄网站禁片免费观看直播| 亚洲国产欧洲综合997久久,| 日本一二三区视频观看| 又爽又黄a免费视频| 欧美+日韩+精品| 精品一区二区三区视频在线观看免费| 黄色女人牲交| 一个人观看的视频www高清免费观看| 美女 人体艺术 gogo| 久久伊人香网站| 成人永久免费在线观看视频| 久久精品人妻少妇| 成年女人永久免费观看视频| 成人无遮挡网站| 男人狂女人下面高潮的视频| 国产熟女xx| 亚洲一区二区三区色噜噜| 久久精品久久久久久噜噜老黄 | 男女床上黄色一级片免费看| 午夜精品在线福利| 精品一区二区三区av网在线观看| 亚洲 欧美 日韩 在线 免费| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 一级av片app| 日日摸夜夜添夜夜添小说| 九九在线视频观看精品| 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美激情综合另类| 国产伦精品一区二区三区四那| 全区人妻精品视频| 国产精品免费一区二区三区在线| 亚洲欧美清纯卡通| 日本一本二区三区精品| h日本视频在线播放| 国产真实伦视频高清在线观看 | 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 成人高潮视频无遮挡免费网站| 此物有八面人人有两片| 宅男免费午夜| 亚洲五月婷婷丁香| 成人美女网站在线观看视频| 欧美日韩黄片免| 国产伦精品一区二区三区视频9| 制服丝袜大香蕉在线| 少妇人妻精品综合一区二区 | 宅男免费午夜| 毛片女人毛片| 久久久精品大字幕| 欧美日韩黄片免| 国产私拍福利视频在线观看| a在线观看视频网站| 欧美成人免费av一区二区三区| 亚洲午夜理论影院| 亚洲美女黄片视频| 18禁在线播放成人免费| 国产69精品久久久久777片| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 国产欧美日韩一区二区三| 久久6这里有精品| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 欧美日韩福利视频一区二区| 日日夜夜操网爽| 国内精品美女久久久久久| 高清日韩中文字幕在线| 国产成年人精品一区二区| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产 | 欧美性猛交╳xxx乱大交人| 男插女下体视频免费在线播放| 欧美日韩亚洲国产一区二区在线观看| 免费人成在线观看视频色| 国产精品1区2区在线观看.| 永久网站在线| 午夜福利在线在线| 少妇丰满av| 有码 亚洲区| 亚洲av电影在线进入| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 久久久精品大字幕| 男人舔奶头视频| 亚洲av成人av| 1024手机看黄色片| 窝窝影院91人妻| 悠悠久久av| 亚州av有码| 国产亚洲精品久久久com| 十八禁国产超污无遮挡网站| 全区人妻精品视频| 精品久久久久久久久av| 美女 人体艺术 gogo| 色综合婷婷激情| 91午夜精品亚洲一区二区三区 | 能在线免费观看的黄片| 好看av亚洲va欧美ⅴa在| 亚洲 国产 在线| 国产三级黄色录像| 久久99热6这里只有精品| 亚洲成av人片在线播放无| 国产av在哪里看| 亚洲狠狠婷婷综合久久图片| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添av毛片 | 国内精品久久久久久久电影| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 91麻豆av在线| 亚洲成人免费电影在线观看| 国产一区二区亚洲精品在线观看| 久9热在线精品视频| av专区在线播放| 久久热精品热| 一个人免费在线观看电影| 97超级碰碰碰精品色视频在线观看| 欧美高清成人免费视频www| 国产三级中文精品| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| 欧美激情国产日韩精品一区| 九九久久精品国产亚洲av麻豆| 97热精品久久久久久| 高清在线国产一区| 国产免费一级a男人的天堂| 长腿黑丝高跟| 又爽又黄无遮挡网站| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 国产精品久久久久久久久免 | 两个人视频免费观看高清| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 90打野战视频偷拍视频| 校园春色视频在线观看| 悠悠久久av| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 天美传媒精品一区二区| 天堂影院成人在线观看| 最好的美女福利视频网| 最近最新免费中文字幕在线| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 国产中年淑女户外野战色| 日韩国内少妇激情av| 久久久成人免费电影| 午夜精品在线福利| 日韩精品中文字幕看吧| 五月玫瑰六月丁香| 亚洲av电影不卡..在线观看| 91久久精品电影网| 一夜夜www| 国产大屁股一区二区在线视频| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 免费人成在线观看视频色| 村上凉子中文字幕在线| 男女视频在线观看网站免费| 99热精品在线国产| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 亚洲精品色激情综合| 国产美女午夜福利| 亚洲av二区三区四区| 天堂动漫精品| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 中文字幕av成人在线电影| av福利片在线观看| 我的老师免费观看完整版| 美女黄网站色视频| 欧美一区二区国产精品久久精品| 免费av毛片视频| 嫁个100分男人电影在线观看| 直男gayav资源| 少妇高潮的动态图| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 午夜影院日韩av| 午夜福利免费观看在线| 桃色一区二区三区在线观看| 一个人看视频在线观看www免费| 亚洲国产精品999在线| 一个人免费在线观看的高清视频| 日本在线视频免费播放| h日本视频在线播放| 男女下面进入的视频免费午夜| 日韩欧美免费精品| 99久国产av精品| 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 美女cb高潮喷水在线观看| 久久久久久久亚洲中文字幕 | 五月伊人婷婷丁香| 欧美一区二区亚洲| 久久久色成人| 国产久久久一区二区三区| 波野结衣二区三区在线| 精品乱码久久久久久99久播| 国产人妻一区二区三区在| 亚洲美女搞黄在线观看 | 日韩亚洲欧美综合| 尤物成人国产欧美一区二区三区| 国产三级中文精品| 男女之事视频高清在线观看| 成人亚洲精品av一区二区| 91九色精品人成在线观看| 在线观看一区二区三区| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 露出奶头的视频| 很黄的视频免费| 18+在线观看网站| av中文乱码字幕在线| 深爱激情五月婷婷| 特大巨黑吊av在线直播| 日韩免费av在线播放| 天堂动漫精品| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 亚洲国产精品sss在线观看| 欧美乱妇无乱码| 怎么达到女性高潮| 日本免费一区二区三区高清不卡| 一个人免费在线观看的高清视频| 少妇人妻精品综合一区二区 | 99国产精品一区二区三区| 日韩中字成人| a在线观看视频网站| 夜夜躁狠狠躁天天躁| 欧美区成人在线视频| 午夜亚洲福利在线播放| 欧美黄色淫秽网站| 久久国产精品影院| 最近中文字幕高清免费大全6 | 精品久久久久久成人av| 午夜福利在线观看免费完整高清在 | 国产精品1区2区在线观看.| 亚洲综合色惰| 一本一本综合久久| 美女被艹到高潮喷水动态| 日韩欧美一区二区三区在线观看| 在现免费观看毛片| 日韩大尺度精品在线看网址| 黄色女人牲交| 一级作爱视频免费观看| 在线a可以看的网站| 久久久久久久久久黄片| 午夜久久久久精精品| 久久久久久久久中文| 国产不卡一卡二| 久久午夜福利片| 亚洲三级黄色毛片| 成人特级黄色片久久久久久久| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 久久香蕉精品热| 亚洲av成人av| 色av中文字幕| 成年女人看的毛片在线观看| 成人午夜高清在线视频| 脱女人内裤的视频| 欧美午夜高清在线| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 久久久精品大字幕| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 久久人人爽人人爽人人片va | av专区在线播放| 丰满的人妻完整版| 午夜激情欧美在线| 精品一区二区三区人妻视频| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 国产精品不卡视频一区二区 | 在线观看美女被高潮喷水网站 | 国内毛片毛片毛片毛片毛片| 毛片女人毛片| 久久伊人香网站| 欧美+日韩+精品| 在线观看一区二区三区| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 看免费av毛片| 欧美日韩综合久久久久久 | 99久久99久久久精品蜜桃| 我的老师免费观看完整版| 国产av在哪里看| av在线天堂中文字幕| 亚洲人成电影免费在线| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 久久久久久国产a免费观看| 亚洲精品久久国产高清桃花| 很黄的视频免费| 国产欧美日韩精品一区二区| 1000部很黄的大片| 国产精品女同一区二区软件 | 国产精品亚洲av一区麻豆| 我的老师免费观看完整版| 99国产综合亚洲精品| 美女被艹到高潮喷水动态| 欧美bdsm另类| 简卡轻食公司| 国产一级毛片七仙女欲春2| 最近视频中文字幕2019在线8| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 亚洲欧美日韩高清专用| 一本综合久久免费| 成人国产综合亚洲| 亚洲精品乱码久久久v下载方式| 99久久精品一区二区三区| 全区人妻精品视频| 国产精品一及| 97热精品久久久久久| 亚洲三级黄色毛片| 欧美不卡视频在线免费观看| 亚洲 国产 在线| 淫秽高清视频在线观看| 欧美性猛交╳xxx乱大交人| 精品熟女少妇八av免费久了| 国产综合懂色| 熟女电影av网| 丰满的人妻完整版| 欧美成人a在线观看| 成人亚洲精品av一区二区| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 精品一区二区三区视频在线| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 久久久国产成人免费| 成年人黄色毛片网站| 一a级毛片在线观看| 一夜夜www| 日本在线视频免费播放| 亚洲av成人不卡在线观看播放网| 久久精品影院6| 久久久久国内视频| 国产大屁股一区二区在线视频| 男人舔奶头视频| 男女之事视频高清在线观看| 久久久国产成人精品二区| 天堂影院成人在线观看| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 久久精品夜夜夜夜夜久久蜜豆| 中国美女看黄片| 99热这里只有精品一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 美女xxoo啪啪120秒动态图 | 国产在线男女| 色精品久久人妻99蜜桃| 欧美高清性xxxxhd video| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 国产亚洲精品久久久com| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 国产野战对白在线观看| 丰满乱子伦码专区| 精品欧美国产一区二区三| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 成人毛片a级毛片在线播放| 美女黄网站色视频| 亚洲内射少妇av| 99在线视频只有这里精品首页| 观看免费一级毛片| 亚洲成av人片在线播放无| 国产三级中文精品| 成人特级av手机在线观看| 热99re8久久精品国产| 窝窝影院91人妻| 国产午夜福利久久久久久| 亚洲精品粉嫩美女一区| 91久久精品国产一区二区成人| 国产精品伦人一区二区| 中文字幕高清在线视频| 人人妻人人澡欧美一区二区| 一级毛片久久久久久久久女| 久久午夜亚洲精品久久| 91在线观看av| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| 国产午夜福利久久久久久| 一夜夜www| 国产在线精品亚洲第一网站| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产爱豆传媒在线观看| 十八禁人妻一区二区| 九九在线视频观看精品| 丝袜美腿在线中文| 久久久久免费精品人妻一区二区| 亚洲av.av天堂| 精品无人区乱码1区二区| 亚洲电影在线观看av| 男女之事视频高清在线观看| 色综合婷婷激情| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 美女大奶头视频| 麻豆成人午夜福利视频| 熟女电影av网| 男人和女人高潮做爰伦理| 黄色配什么色好看| 欧美一区二区亚洲| 激情在线观看视频在线高清| 嫩草影院精品99| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 亚洲国产色片| 午夜两性在线视频| 午夜精品在线福利| 日本成人三级电影网站| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 深夜精品福利| 亚洲avbb在线观看| 2021天堂中文幕一二区在线观| 成人午夜高清在线视频| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 亚洲无线观看免费| 亚洲国产精品成人综合色| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 高清在线国产一区| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 两个人的视频大全免费| 99久久精品国产亚洲精品| 99国产精品一区二区三区| 人妻夜夜爽99麻豆av| or卡值多少钱| 极品教师在线视频| 网址你懂的国产日韩在线| 亚州av有码| 午夜激情欧美在线| 久久久久国产精品人妻aⅴ院| 精品一区二区免费观看| 亚洲国产色片| 中文亚洲av片在线观看爽| 久久亚洲真实| 欧美日韩国产亚洲二区| 日本 欧美在线| 免费看光身美女| 美女xxoo啪啪120秒动态图 | 在线观看舔阴道视频| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 国产探花极品一区二区| 国产精品自产拍在线观看55亚洲| 人人妻人人看人人澡| 性色av乱码一区二区三区2| 国产大屁股一区二区在线视频| 国产三级在线视频| 国产人妻一区二区三区在| 成人永久免费在线观看视频| 欧美黄色片欧美黄色片| 高潮久久久久久久久久久不卡| 亚洲美女黄片视频| 禁无遮挡网站| 在线播放无遮挡| 男女做爰动态图高潮gif福利片| 亚洲五月婷婷丁香| 国产精品不卡视频一区二区 | 在线免费观看不下载黄p国产 | 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 97碰自拍视频| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 少妇的逼水好多| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 69人妻影院| 亚洲av五月六月丁香网| 成人无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 老司机午夜福利在线观看视频| 久久久久久久久大av| 级片在线观看| 乱人视频在线观看| 真人做人爱边吃奶动态| 一个人观看的视频www高清免费观看| 白带黄色成豆腐渣| 日韩欧美精品免费久久 | 久99久视频精品免费| 亚洲 国产 在线| 欧美色欧美亚洲另类二区| 日本 av在线| 中文字幕av成人在线电影| 日本黄色片子视频| 五月伊人婷婷丁香| 欧美最黄视频在线播放免费| 少妇的逼好多水| 黄色配什么色好看| 久久久久久国产a免费观看| 激情在线观看视频在线高清| 亚洲精品影视一区二区三区av| 日韩欧美 国产精品| 精品人妻熟女av久视频| 一区福利在线观看| 内地一区二区视频在线| 九色成人免费人妻av| 99精品在免费线老司机午夜| 亚洲国产精品成人综合色| 亚洲国产高清在线一区二区三| 一级作爱视频免费观看| 国内揄拍国产精品人妻在线| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 国产精品电影一区二区三区| 国产高清有码在线观看视频| 我的老师免费观看完整版| 无人区码免费观看不卡| 国产高清激情床上av| 又爽又黄a免费视频| 乱人视频在线观看| 99热这里只有是精品50| 91在线精品国自产拍蜜月| 精品一区二区三区视频在线观看免费| 国产人妻一区二区三区在| 搡老岳熟女国产| 亚洲精品456在线播放app | 少妇被粗大猛烈的视频| 国产探花在线观看一区二区| 国产一区二区激情短视频| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 少妇高潮的动态图| 亚洲成人久久爱视频| 久久精品人妻少妇| 天堂影院成人在线观看| 草草在线视频免费看| 亚洲成av人片在线播放无| 乱人视频在线观看| 999久久久精品免费观看国产| 亚洲欧美日韩高清专用| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 麻豆国产97在线/欧美| 欧美最新免费一区二区三区 | 一本精品99久久精品77| 欧美一区二区亚洲| 又黄又爽又免费观看的视频| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 国产高清三级在线| 国产精品三级大全| 欧美日韩综合久久久久久 | 长腿黑丝高跟| 激情在线观看视频在线高清| 久久天躁狠狠躁夜夜2o2o| 日韩人妻高清精品专区| 18禁黄网站禁片午夜丰满| 高清日韩中文字幕在线| 国产成人a区在线观看| 51午夜福利影视在线观看| 婷婷亚洲欧美| 国产日本99.免费观看| 国产伦精品一区二区三区视频9| 男女那种视频在线观看| 哪里可以看免费的av片| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| eeuss影院久久| 一本精品99久久精品77| 狠狠狠狠99中文字幕| 亚洲国产精品合色在线| 国产美女午夜福利| 丰满人妻一区二区三区视频av| 高潮久久久久久久久久久不卡| 老鸭窝网址在线观看| 一区二区三区激情视频| 久99久视频精品免费| 国产三级在线视频| 日本一二三区视频观看| 此物有八面人人有两片| 首页视频小说图片口味搜索| 国产伦精品一区二区三区视频9| 成年免费大片在线观看| 国产成人福利小说| 日日夜夜操网爽| 成人午夜高清在线视频|