• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scheduling Optimization of Space Object Observations for Radar

    2018-04-16 06:49:38XiongjunFuLipingWuChengyanZhangandMinXie

    Xiongjun Fu, Liping Wu, Chengyan Zhang and Min Xie

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The orbital elements of space objects provide collision warning and can be used to adjust the launch window of satellites, space stations and spacecraft. The observation of low earth orbit (LEO) objects are mainly carried out using ground-based radars. The effectiveness of space observation radar can be reflected by the ability of new object discovery, observation efficiency, the accuracy of measurement and orbit determination, the quality of radar imaging, and the recognition rate. Specifically, the higher the number of space objects with determined parameters observed in the same time, the higher is the observation efficiency of radar.

    It turns out to be an optimization problem to improve the performance of space observation on the constraint of radar resources. There are many previous studies on radar resources management for multiple target detection. G. Van Keuk[1]and Yinfei Fu[2]studied task scheduling for ground-based phased array radar and wireless sensor networks respectively; to select the subset of jobs to be processed during the given planning period and determining the starting time and scan-off angle for each selected job, M.R. Taner[3]studied the problem of scheduling the searching, verification, and tracking tasks of a ground-based three-dimensional military surveillance radar. They scheduled tasks to realize radar resource optimization for common targets, while the issue of observing more targets to improve efficiency was not considered. For space objects, the priori orbital elements can be utilized for observation and tracking, and further optimization can be implemented by prearrangement of observation order. Zhongchao Xu[4]scheduled the space objects according to requirement and equipment constraint to improve the observation efficiency of facilities, without utilizing orbital elements. Hua Liang[5]made simulations on observation objects arrangement using prior orbital elements, while the actual constraints and realizability of facilities were not considered.

    Phased array radars with the characteristics of beam agility track multiple objects seamlessly, while the mechanical scan radar has a single beam, and its antenna servo system has the characteristic of inertia. Therefore, for a ground- based mechanical scanning radar, it is necessary to arrange multiple objects observation scheduling reasonably, considering the requirement of observation rate. While the observation scheduling is optimized, the number of observation objects can be maximized during a period of observation time, and a high precision performance for orbit determination can be achieved.

    This letter presents an observation scheduling algorithm for multiple objects based on semi-random search. The observation scheduling is screened by a designed fitness function. Additionally the connection time pair (CTP) and the tracks between two objects are determined for mechanical scanning radar. The multiple target observation is equivalent to long-time single target observation, so highly efficient observation is obtained. The scheme of scheduling optimization is shown in Fig.1.

    Fig.1 Scheme of scheduling optimization

    1 Optimization of the Initial Observation Scheduling Based on Semi-random Search

    The visibility of each object should be determined first for an object set to be observed.We define “observation session” as a period of continuous operating time of radar and “observation bin” as a fraction of time. Observation bin is the increment of time to assign observation tasks. Observation session can be uniformly divided into a series of successive observation bins.

    Referred to space object parameters provided by satellite situation report (SSR) and two-line element (TLE)[6], the visible object set can then be obtained by analyzing the constraints such as relative position between radar and objects, transmitting power and visual angle. Range, azimuth and elevation (RAE) of all visible objects can be calculated using the simplified general perturbations (SGP4) model[7], and then the visible objects in each observation bin can be obtained.

    Designate an object for each observation bin utilizing a random search method and considering the constraints on multiple objects observations. This random search with constraints is called a semi-random search. Initial observation scheduling can so be obtained by using semi-random search. The constraints here mainly refer to observation strategy. The factors include the observation rate (observingLrevolutions duringMdays), object priority and minimum or maximum observation time per revolution or arc. Observation rate is determined by the principle of orbital altitude stratification, importance of objects and the requirement of orbit determination accuracy or radar imaging resolutions[8]. Object priority is set according to observation requirement, the more important the objects are, the higher their priority.For mechanical scanning radar, the servo system constraints should also be considered, which include the elevation range of the antenna, its angular velocity range and angular acceleration range in azimuth and elevation.

    “Highest Priority First” and “Earliest Deadline First” are the two main strategies proposed to generate initial observation scheduling by this semi-random search method. “Highest Priority First” refers to the condition that low-priority objects can be selected only after all the high-priority objects are successfully observed. The priority of one object will be adjusted to minimum if its observation rate requirement has been met. Select one object randomly if several objects have the same priority. “Earliest Deadline First” specifies that the object whose observation time expires the earliest should be selected first. The so-called “expired time” is the last time the moment in which the object could be observed in the current revolution.

    For mechanical scanning radar, the strategy “Frontier First” should be considered.This refers to the condition that the next neighboring object which becomes present along the scan of antenna beam steering is selected. In this way the burden of antenna servo is reduced. If several objects are the frontier objects, we select one object randomly.

    Initial observation scheduling is generated by simulations.Fig. 2 shows the simulation results of 7 objects.

    Observation interval:17/12/2013 0:00:00-8:20:00; international number of objects: 01616,04331,22652,22692,23787,27560,27868,32955; time of observation bin is 10 s; number of bins forward search cross:10; time of mean observation span: 6h; priority of each object is 1; observation rateM,L(observeLtimes duringMdays)=(1,1).

    Fig.2 Schematic of observation scheduling generation

    In Fig. 2, ordinate object1…object7 are the objects mentioned above, and the black blocks represent that the objects are visual to radar.Ordinate observation scheduling 1 and observation scheduling 2 are the results of observation scheduling generation, and the object to be observed corresponding to each observation bin is arranged.

    2 Optimization of CTP Based on GA and Track Design for Mechanical Scanning

    For the mechanical scanning radar, further optimization is needed due to its inertia of the servo system. The realizability of connection between two objects should be paid attention to. CTP between two adjacent objects in observation order can be optimized using GA, and the tracks in the spare time are designed, following which the seamless observation for multiple targets can be achieved.

    The observation on TDM mode for multiple objects is shown in Fig.3.Tobis the minimum observation time of each object;Tspis the spare time without target observation;t′e,iis the end of observation zone of objecti,t′s,i+1is the beginning of observation zone of objecti+1. The end time of objecti, denoted asA, can be set anywhere witht′e,i. The start time of objecti+1, denoted asB, can be set anywhere withint′s,i+1. {A,B} is defined as TCP.Tiis the track of attenna beam from objectito objecti+1.

    Fig.3 Observation on TDM mode for multiple objects

    GA is an optimization algorithm imitating natural selection and genetic mechanism[9].Genetic algorithm with its evolution mutation strategy has strong global search capability[11]. It operates selection operator, crossover operator and mutation operator on initial population generated randomly. The optimal or local optimal solution can be obtained according to the appropriate fitness function. The selection operator combines the means of best individual preservation and fitness proportionate selection[10]. Crossover operator is a manner of two-point crossover, the cross position randomly generated must be located at the end area of an observation arc. Time increment is mutated by mutation operator at a certain probability to ensure its diversification.

    In this paper, GA is applied to optimize CTP by adjusting time increment.Ninitial observation scheduling lead toNobservation scheduling optimized. A final observation scheduling can be determined according to experimental requirement and the value of each element in fitness function. Some factors are required to be considered in the fitness function. The maximum of each factor is 1 for the convenience of weighting.

    2.1 Efficiency factors

    ② Object observation ratio:β=Nob/Nt, whereNobis the number of objects observed,Ntis the total number of objects during observation session.

    2.2 Performance factors

    ① The normalized variance of observation time for each arc:λ=1/(1+varw), where varw=var (Tarc) is the variance of observation time for each arc.

    Orbit accuracy requirements, image quality and image resolution requirements can be expressed by performance elements.

    2.3 Equipment consumption factor

    ① The normalized times of beam direction reentrant:ρ=Ma/Mm, whereMais the reentrant time of beam steering trend for observing another object,Mmis the maximum time.

    So the fitness function is

    (1)

    whereq1,q2,…,q6are the weighting coefficients and set by experience.

    For each new individual generated, it is verified that the constraints are satisfied in the genetic process. The optimization procedure of CTP using GA is shown in Fig.4.

    Fig.4 Optimization procedure of CTP

    For mechanical scanning radar, the observation scheduling could be used for multiple target seamless observation only if the azimuth and elevation information of beam in spare time are appended in. Therefore, after the final observation scheduling is determined, the tracks of antenna beam should be designed according to the constraints of the servo system. The track is expressed in Fig.3. The principles of kinematics should be obeyed here. Rotational angular velocity and acceleration should be as small as possible to get smoothed track when motion displacement and spare time are fixed.

    The entire scheduling process of multiple objects is completed when all the tracks of antenna beam steering are determined.Finally, the RAE time sequence comprising multiple objects can be obtained, and it can be used as the guidance for the radar observation.

    3 Outdoor Experiment and Performance Evaluation

    3.1 Overview of the outdoor experiment

    The outdoor experiment was carried out on December 17, 2013 using an S-band high-precision observation and measurement radar. This mechanical scanning radar is armed with a Cassegrain antenna and operated on data guidance mode in the experiment. The latest TLE and SSR are adopted.

    In the experiment, in order to keep the antenna from being damaged when tracking multiple objects automatically, some parameters value of servo system were reduced by 0.9 times, such as azimuth angular velocity/angular acceleration and elevation angular velocity/angular acceleration. The parameters of antenna servo system are shown in Tab.1.

    Tab.1 Parameters of antenna servo system

    The experiment was performed with number of objects which could be observed 559, observation session 08:00-10:00,minimum observation time per arc 30 s, observation time range per revolution [180,600] s, observation bin 30 s,observation rate {M,L}={2,2}, times of genetic iteration 200,species size 21,maximum ratio of optimal individual 0.92,mutation probability 0.005, the weighting coefficients in fitness function {q1,q2,q3,q4,q5,q6}={2,3,1,1,1,1}. Here, observation rate and the maximum ratio of optimal individual are set by engineering requirements for space objects observation;times of genetic iteration is determined by experiments, while the times of genetic iteration is over 200, the optimization results will not be better, considering time spent and optimization results, the times of genetic iteration is set 200; mutation probability is set by engineering experience; weighting coefficients are set by experience and engineering requirements, for example,q1is effective observation time ratio, the more important the objects are, theq1is bigger;q3is the average displacement of antenna steering in the spare time, considering the servo system,q3should not be taken too big, or the servo system will be damaged easily.

    3.2 Results of the experiment

    The effective observation time are 81.48 min within 120 min. 78 objects are expected to be observed in the optimized scheduling, and they were all observed successfully in the experiment. The number of times of antenna direction reentrantMais 52. As an example, the RAE time sequence of 3 objects observed in a 2 min interval is shown in Tab.2. And the statistics of scheduling results of outdoor experiments are shown in Tab.3.

    Tab.2 Scheduling results (08:00:00-10:00:00)

    3.3 Performance evaluation

    78 objects were observed within 120 min, which means the observation efficiency of this mechanical scanning radar is over 10 times higher than that of scanning radar before. The minimum observation time is 20 s and the minimum antenna latency time is 15 s, more than 30 objects can be observed within one hour. The effective tracking time ratio is close to 70%, which means the spare time is lower than one third. If the minimum observation time is 20 s, the maximum observation time is 60 s and the minimum antenna latency time is 15 s. 30 objects could be observed within 30 minutes, and the radar could observe one object in one minute.

    Tab.3 Statistics of scheduling results of outdoor experiments

    It is verified by more experiments that the expected performance can be obtained by adjusting the weighting factors of the fitness function and other parameters. However, the weighting factors of the fitness function can be optimized by using Greedy algorithm to make the fitness function achieve the maximum in the future.

    4 Conclusion

    A scheduling optimization algorithm for multi-target observation based on TDM is proposed using priori orbital information of objects. The optimized observation scheduling is obtained by a semi-random search and fitness function screening when using phased array radar. For a mechanical scanning radar, the CTP between objects is optimized via GA and the tracks of antenna beam in the spare time are designed additionally. The issue of scheduling optimization of space object observations by radar was validated during anoutdoor experiment. The experiment results showed that the observation efficiency of the mechanical scanning radar has improved significantly. An important observation here is that if the number of measured targets was big enough and the observation time of each object was shorter, the effective utilization of observation time would be higher. Different optimization results can be obtained by adjusting parameters (like the weighting of coefficients of the fitness function) for different demands such as orbit determination and imaging.

    [1] Van Keuk G, Blackman S S. On phased-array radar tracking and parameter control[J]. IEEE Trans Aerosp Electron Syst,1993,29(1):186-194.

    [2] Fu Yinfei, Ling Qing.Distributed sensor allocation for multi-target tracking in wireless sensor networks[J]. IEEE Trans Aerosp Electron Syst, 2012, 48(4):3538-3553.

    [3] Taner M R, Karasan O E. Scheduling beams with different priorities on a military surveillance radar[J]. IEEE Trans Aerosp Electron Syst, 2012,48(2):1725-1739.

    [4] Xu Zhongchao, Huang Yongxuan. A scheduling method for cataloging observation tasks based on greedy algorithm[J]. Journal of Spacecraft TT&C Technology, 2012, 1(1):89-94.(in Chinese)

    [5] Liang Hua, Niu Wei.Design and implementation of measurement resource scheduling for space object catalog[J].Journal of Spacecraft TT&C Technology, 2012, 31(1):84-88.(in Chinese)

    [6] Space-track. Two line element data [EB/OL].(2013-12-16). http:∥www.space-track.org.

    [7] Cho C H, Lee B S.NORAD TLE type orbit determination of LEO satellites using GPS navigation solutions[J].J Astron Space Sci, 2002, 19(3):197-206.

    [8] Li Yuanxin, Wu Bin. Study on determination of observation requirements in space objects catalog maintenance [J]. Journal of Spacecraft TT&C Technology, 2005, 24(1): 26-33.(in Chinese)

    [9] Capraro C T, Bradaric I, Capraro G T. Using genetic algorithms for radar waveform selection[C]∥IEEE Radar Conference, Rome, Italy,2008.

    [10] Arabas J, Bartnik L,Opara K. DMEA-an algorithm that combines differential mutation with the fitness proportionate selection[C]∥IEEE Symposium on Differential Evolution (SDE),Paris, France, 2011.

    [11] Wang Shoukun, Li Delong, Guo Junjie, et al. Robot stereo vision calibration method with genetic algorithm and particle swarm optimization [J]. Journal of Beijing Institute of Technology, 2013, 22(2): 213-220.

    亚洲 国产 在线| cao死你这个sao货| 日本五十路高清| 日韩免费高清中文字幕av| 色婷婷av一区二区三区视频| 男女边摸边吃奶| 久久久欧美国产精品| 五月天丁香电影| 精品一区在线观看国产| 在线观看免费日韩欧美大片| 国产免费av片在线观看野外av| 黄色毛片三级朝国网站| 亚洲av男天堂| 国产男女超爽视频在线观看| 新久久久久国产一级毛片| 女性被躁到高潮视频| 两个人看的免费小视频| 久久香蕉激情| 久久精品人人爽人人爽视色| 天天躁夜夜躁狠狠躁躁| 女性被躁到高潮视频| 搡老乐熟女国产| 亚洲免费av在线视频| 视频在线观看一区二区三区| 老汉色av国产亚洲站长工具| 精品一品国产午夜福利视频| 亚洲国产成人一精品久久久| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添小说| 中文精品一卡2卡3卡4更新| 久久精品亚洲av国产电影网| 久久中文字幕一级| 1024香蕉在线观看| 亚洲国产毛片av蜜桃av| 激情视频va一区二区三区| 亚洲av成人一区二区三| 国产精品一区二区免费欧美 | 久久综合国产亚洲精品| 欧美一级毛片孕妇| 中文字幕另类日韩欧美亚洲嫩草| 欧美黑人精品巨大| 日本五十路高清| 九色亚洲精品在线播放| 欧美乱码精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 极品人妻少妇av视频| a在线观看视频网站| 国产av精品麻豆| 欧美黄色片欧美黄色片| 欧美97在线视频| 日本黄色日本黄色录像| 在线天堂中文资源库| 人人妻人人澡人人爽人人夜夜| 1024视频免费在线观看| 天堂中文最新版在线下载| 亚洲九九香蕉| 亚洲精品美女久久av网站| 大陆偷拍与自拍| 高清黄色对白视频在线免费看| 性色av乱码一区二区三区2| 午夜福利免费观看在线| 美女中出高潮动态图| 午夜福利视频在线观看免费| 亚洲精品第二区| 在线 av 中文字幕| 免费女性裸体啪啪无遮挡网站| 热99久久久久精品小说推荐| 91成人精品电影| 一区二区三区激情视频| 在线观看舔阴道视频| 淫妇啪啪啪对白视频 | 老司机福利观看| 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区黑人| 亚洲成av片中文字幕在线观看| 国产亚洲av片在线观看秒播厂| 一级黄色大片毛片| 9191精品国产免费久久| 国产日韩一区二区三区精品不卡| av片东京热男人的天堂| 亚洲人成电影观看| 免费高清在线观看日韩| 欧美黑人欧美精品刺激| 女人高潮潮喷娇喘18禁视频| 黄网站色视频无遮挡免费观看| 在线观看舔阴道视频| 久久ye,这里只有精品| av又黄又爽大尺度在线免费看| 免费人妻精品一区二区三区视频| 国产精品av久久久久免费| 日韩三级视频一区二区三区| 蜜桃在线观看..| 亚洲第一av免费看| 国产精品国产av在线观看| 国产精品麻豆人妻色哟哟久久| 水蜜桃什么品种好| 夜夜骑夜夜射夜夜干| 久久国产亚洲av麻豆专区| 成人影院久久| 国产成人欧美在线观看 | 欧美精品啪啪一区二区三区 | 亚洲国产精品成人久久小说| 国产片内射在线| 在线av久久热| 18禁黄网站禁片午夜丰满| 欧美亚洲 丝袜 人妻 在线| 日韩欧美免费精品| 亚洲国产精品999| 午夜福利乱码中文字幕| 男人舔女人的私密视频| 亚洲精品在线美女| 不卡av一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲国产中文字幕在线视频| 亚洲免费av在线视频| 久久ye,这里只有精品| 亚洲国产欧美网| 黄色怎么调成土黄色| 国产一区二区 视频在线| 国产精品欧美亚洲77777| 亚洲综合色网址| 一本—道久久a久久精品蜜桃钙片| 亚洲免费av在线视频| 日韩有码中文字幕| 香蕉国产在线看| 视频在线观看一区二区三区| 满18在线观看网站| 电影成人av| 亚洲欧美一区二区三区黑人| 国产免费福利视频在线观看| 国产在线免费精品| 高清视频免费观看一区二区| 80岁老熟妇乱子伦牲交| 免费少妇av软件| 搡老岳熟女国产| 啦啦啦免费观看视频1| 在线观看人妻少妇| 久久久国产欧美日韩av| 人人妻,人人澡人人爽秒播| 日本五十路高清| 欧美在线黄色| 搡老岳熟女国产| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 99精品欧美一区二区三区四区| 在线永久观看黄色视频| 男女无遮挡免费网站观看| 天天躁狠狠躁夜夜躁狠狠躁| 女人被躁到高潮嗷嗷叫费观| 亚洲五月色婷婷综合| 亚洲国产精品成人久久小说| 色播在线永久视频| 久久综合国产亚洲精品| 欧美国产精品一级二级三级| 午夜激情久久久久久久| 国产精品 欧美亚洲| 久久精品国产a三级三级三级| 飞空精品影院首页| 天天躁夜夜躁狠狠躁躁| 999久久久精品免费观看国产| 97人妻天天添夜夜摸| 国产视频一区二区在线看| 欧美精品亚洲一区二区| 九色亚洲精品在线播放| 侵犯人妻中文字幕一二三四区| 麻豆乱淫一区二区| 一个人免费看片子| 国产一卡二卡三卡精品| 人人妻人人爽人人添夜夜欢视频| www.999成人在线观看| 美女脱内裤让男人舔精品视频| 男女下面插进去视频免费观看| 亚洲七黄色美女视频| 久久久久久久久久久久大奶| av网站免费在线观看视频| 亚洲国产欧美一区二区综合| 免费高清在线观看视频在线观看| 黄色视频,在线免费观看| 久久中文字幕一级| 久久免费观看电影| 国产欧美日韩综合在线一区二区| 免费在线观看黄色视频的| 亚洲伊人久久精品综合| www.精华液| 国产免费一区二区三区四区乱码| 亚洲精品久久午夜乱码| 正在播放国产对白刺激| 成人影院久久| 亚洲精品av麻豆狂野| 一本综合久久免费| 欧美国产精品va在线观看不卡| 一本综合久久免费| a级毛片黄视频| 国产视频一区二区在线看| 黄色 视频免费看| 亚洲伊人色综图| tube8黄色片| 美女午夜性视频免费| 久久精品aⅴ一区二区三区四区| 国产又色又爽无遮挡免| 亚洲成人国产一区在线观看| 一本一本久久a久久精品综合妖精| 一本一本久久a久久精品综合妖精| 久久毛片免费看一区二区三区| 欧美激情 高清一区二区三区| 另类亚洲欧美激情| 男女床上黄色一级片免费看| 精品久久久久久久毛片微露脸 | 免费观看av网站的网址| 久久国产精品大桥未久av| 俄罗斯特黄特色一大片| 高清黄色对白视频在线免费看| 精品福利永久在线观看| 国产黄频视频在线观看| 国产熟女午夜一区二区三区| 麻豆国产av国片精品| 亚洲熟女精品中文字幕| 一本—道久久a久久精品蜜桃钙片| 亚洲综合色网址| 久久ye,这里只有精品| 久久久久久久精品精品| 黄色毛片三级朝国网站| 一区二区三区乱码不卡18| 欧美性长视频在线观看| 亚洲欧美精品综合一区二区三区| 国产精品一二三区在线看| 欧美日韩亚洲高清精品| www.自偷自拍.com| 天天影视国产精品| 久久天堂一区二区三区四区| 岛国毛片在线播放| 狠狠婷婷综合久久久久久88av| 亚洲av国产av综合av卡| 免费在线观看黄色视频的| 日韩大片免费观看网站| 精品一区在线观看国产| 亚洲精品久久午夜乱码| 天天躁日日躁夜夜躁夜夜| 777久久人妻少妇嫩草av网站| 久久久久久久大尺度免费视频| 老熟女久久久| 精品一区二区三卡| 日本精品一区二区三区蜜桃| 国产精品av久久久久免费| 1024视频免费在线观看| 日韩制服骚丝袜av| 国产精品免费大片| 看免费av毛片| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 黑人巨大精品欧美一区二区蜜桃| 人妻一区二区av| 俄罗斯特黄特色一大片| 亚洲人成电影免费在线| 国产精品欧美亚洲77777| 国产在视频线精品| 亚洲国产欧美日韩在线播放| 亚洲精品一二三| 亚洲av日韩在线播放| 成人国语在线视频| 亚洲色图综合在线观看| 亚洲精品av麻豆狂野| 真人做人爱边吃奶动态| 色婷婷久久久亚洲欧美| 999久久久精品免费观看国产| avwww免费| 男女之事视频高清在线观看| 欧美日韩福利视频一区二区| 国产激情久久老熟女| 国产成人精品久久二区二区免费| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 成年女人毛片免费观看观看9 | 精品人妻一区二区三区麻豆| 久久天堂一区二区三区四区| 久久精品人人爽人人爽视色| 欧美亚洲 丝袜 人妻 在线| 一级片'在线观看视频| 国产99久久九九免费精品| 欧美精品亚洲一区二区| 亚洲第一av免费看| 国产精品av久久久久免费| 99热国产这里只有精品6| 日日摸夜夜添夜夜添小说| 妹子高潮喷水视频| 男女床上黄色一级片免费看| 日韩人妻精品一区2区三区| 爱豆传媒免费全集在线观看| 精品国产国语对白av| 亚洲国产欧美日韩在线播放| 一区福利在线观看| 男女免费视频国产| 久久久精品国产亚洲av高清涩受| 淫妇啪啪啪对白视频 | 精品人妻一区二区三区麻豆| 国产一区二区三区综合在线观看| 亚洲一区二区三区欧美精品| 人妻久久中文字幕网| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 日本一区二区免费在线视频| 日本av手机在线免费观看| 国产精品久久久久久精品电影小说| 无遮挡黄片免费观看| 午夜福利免费观看在线| 国产极品粉嫩免费观看在线| 精品一区二区三区av网在线观看 | 午夜福利免费观看在线| 丝袜人妻中文字幕| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索| 亚洲欧洲日产国产| 亚洲精品久久午夜乱码| 99热全是精品| 青春草视频在线免费观看| 黄色视频,在线免费观看| 国产欧美日韩综合在线一区二区| av在线播放精品| 欧美日韩黄片免| 亚洲国产精品999| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 我要看黄色一级片免费的| 男人舔女人的私密视频| 亚洲成av片中文字幕在线观看| 这个男人来自地球电影免费观看| 久久热在线av| 久久久久久人人人人人| 高清视频免费观看一区二区| 色精品久久人妻99蜜桃| 法律面前人人平等表现在哪些方面 | 最新在线观看一区二区三区| 9色porny在线观看| 又紧又爽又黄一区二区| 欧美精品高潮呻吟av久久| 成人亚洲精品一区在线观看| 两性夫妻黄色片| www.熟女人妻精品国产| 欧美性长视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 久久久国产成人免费| 国产精品一区二区免费欧美 | 亚洲av日韩精品久久久久久密| 亚洲天堂av无毛| 亚洲av电影在线观看一区二区三区| 国产精品1区2区在线观看. | 天天操日日干夜夜撸| 婷婷丁香在线五月| 超碰成人久久| 免费少妇av软件| 满18在线观看网站| 日韩中文字幕视频在线看片| 亚洲欧美清纯卡通| av天堂在线播放| 性高湖久久久久久久久免费观看| 波多野结衣一区麻豆| av在线播放精品| 国产成人欧美| 亚洲精品美女久久av网站| 久久久国产成人免费| 黑人操中国人逼视频| av在线app专区| 性高湖久久久久久久久免费观看| 后天国语完整版免费观看| 久久国产亚洲av麻豆专区| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 好男人电影高清在线观看| 岛国毛片在线播放| 免费观看a级毛片全部| 两个人看的免费小视频| 一级黄色大片毛片| 青春草视频在线免费观看| 亚洲性夜色夜夜综合| www.熟女人妻精品国产| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 丝袜在线中文字幕| 99国产精品一区二区蜜桃av | 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 男女免费视频国产| 自拍欧美九色日韩亚洲蝌蚪91| 老司机深夜福利视频在线观看 | 99热国产这里只有精品6| 国产1区2区3区精品| 亚洲国产成人一精品久久久| 黄色视频不卡| 国产成人一区二区三区免费视频网站| 精品国内亚洲2022精品成人 | 在线观看免费视频网站a站| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 午夜两性在线视频| 高清视频免费观看一区二区| 中文欧美无线码| 啦啦啦中文免费视频观看日本| 欧美日韩亚洲高清精品| 国产在线免费精品| 成人黄色视频免费在线看| 免费在线观看日本一区| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 午夜福利视频在线观看免费| 最近最新免费中文字幕在线| 我的亚洲天堂| 新久久久久国产一级毛片| cao死你这个sao货| 人人澡人人妻人| 18禁观看日本| 欧美精品人与动牲交sv欧美| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 老鸭窝网址在线观看| www.熟女人妻精品国产| 亚洲精品中文字幕在线视频| 久久国产精品大桥未久av| 国产精品免费大片| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 国产精品欧美亚洲77777| 另类精品久久| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 亚洲三区欧美一区| 性高湖久久久久久久久免费观看| 老司机午夜福利在线观看视频 | 亚洲av男天堂| 老司机影院成人| 国产伦理片在线播放av一区| 一区二区av电影网| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 成年人黄色毛片网站| 一本久久精品| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 超碰成人久久| 十八禁网站免费在线| 国产高清videossex| 丁香六月天网| 大香蕉久久成人网| 一本久久精品| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 人妻一区二区av| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲精品久久成人aⅴ小说| 欧美日韩视频精品一区| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 操美女的视频在线观看| 九色亚洲精品在线播放| 国产精品.久久久| 成人三级做爰电影| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 亚洲伊人色综图| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 一区福利在线观看| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区 | 国产av精品麻豆| 黄色a级毛片大全视频| 一区二区日韩欧美中文字幕| 99久久国产精品久久久| 一二三四在线观看免费中文在| 色94色欧美一区二区| 欧美少妇被猛烈插入视频| 涩涩av久久男人的天堂| cao死你这个sao货| 日本猛色少妇xxxxx猛交久久| 999久久久精品免费观看国产| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 精品一品国产午夜福利视频| 99久久国产精品久久久| 超碰97精品在线观看| 亚洲精品中文字幕一二三四区 | 国产成人av激情在线播放| 天堂中文最新版在线下载| 看免费av毛片| 热99久久久久精品小说推荐| 欧美一级毛片孕妇| 免费黄频网站在线观看国产| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲欧美在线一区二区| 正在播放国产对白刺激| 一个人免费看片子| 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 亚洲成人国产一区在线观看| 高清av免费在线| 国产日韩欧美亚洲二区| 日本av免费视频播放| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 亚洲中文日韩欧美视频| 91精品三级在线观看| 人人澡人人妻人| 18禁国产床啪视频网站| 午夜久久久在线观看| 亚洲成人免费av在线播放| 久久香蕉激情| 日韩中文字幕欧美一区二区| 男女下面插进去视频免费观看| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精| 国产精品免费大片| 精品人妻一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 丰满少妇做爰视频| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 国产成人精品久久二区二区免费| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 国产一区有黄有色的免费视频| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 最新的欧美精品一区二区| 9热在线视频观看99| 黄频高清免费视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 精品久久久久久久毛片微露脸 | 午夜91福利影院| 老司机影院毛片| 老司机深夜福利视频在线观看 | 91九色精品人成在线观看| 国产有黄有色有爽视频| 亚洲va日本ⅴa欧美va伊人久久 | 久久国产精品人妻蜜桃| 人妻一区二区av| 高潮久久久久久久久久久不卡| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 日韩欧美免费精品| netflix在线观看网站| 在线精品无人区一区二区三| 国产人伦9x9x在线观看| 无遮挡黄片免费观看| 男女边摸边吃奶| 在线观看舔阴道视频| 欧美午夜高清在线| 极品人妻少妇av视频| 午夜视频精品福利| 午夜老司机福利片| 波多野结衣av一区二区av| 欧美黄色淫秽网站| 精品国产一区二区三区四区第35| 久久久久精品国产欧美久久久 | 亚洲av国产av综合av卡| 黄色 视频免费看| 69精品国产乱码久久久| 国产一级毛片在线| 亚洲色图 男人天堂 中文字幕| 蜜桃国产av成人99| 最黄视频免费看| 亚洲精品一区蜜桃| 桃花免费在线播放| 国产在线观看jvid| 国产男人的电影天堂91| 国产精品香港三级国产av潘金莲| 法律面前人人平等表现在哪些方面 | 久久久精品免费免费高清| 婷婷丁香在线五月| 国产精品国产av在线观看| 久久ye,这里只有精品| 国产91精品成人一区二区三区 | 可以免费在线观看a视频的电影网站| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 亚洲精品一区蜜桃| 国产成人欧美在线观看 | 亚洲精品乱久久久久久| 欧美精品高潮呻吟av久久| 各种免费的搞黄视频| tube8黄色片| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 女人精品久久久久毛片| 在线观看人妻少妇| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 高清av免费在线| 欧美午夜高清在线| 黄色a级毛片大全视频| 成人免费观看视频高清|