李 洪,侯平煒,孫 躍
?
太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)光電光熱性能試驗(yàn)
李 洪,侯平煒,孫 躍
(燕山大學(xué)建筑工程與力學(xué)學(xué)院,秦皇島 066004)
為減少建筑熱水能耗,該文研究了一種新型太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)。該系統(tǒng)將太陽(yáng)能光伏光熱利用與環(huán)路熱管有機(jī)結(jié)合,并以電加熱為輔助熱源制備生活熱水。搭建了室外測(cè)試平臺(tái),對(duì)該系統(tǒng)進(jìn)行了典型工況及全天性能的測(cè)試研究,分析了循環(huán)工質(zhì)充注量對(duì)系統(tǒng)性能的影響。結(jié)果顯示,系統(tǒng)在環(huán)路熱管運(yùn)行模式下,夏季工況的光熱效率和綜合能源效率最高,日平均值分別為62.1%和68.1%;冬季工況的光電效率和綜合?效率最高,日平均值分別為13.7%和10.9%。整套系統(tǒng)的綜合能源效率和綜合?效率略高于環(huán)路熱管模式。30%充注量的工況更有利于系統(tǒng)光熱效率和光電光熱綜合能源效率的提高,40%充注量的工況則有利于系統(tǒng)光電光熱綜合?效率的提高。該研究表明太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)在寒冷地區(qū)運(yùn)行性能良好,為系統(tǒng)工質(zhì)充注量的選擇提供了參考依據(jù)。
太陽(yáng)能;光伏;熱管;試驗(yàn);?
世界能源形勢(shì)日趨嚴(yán)重,將太陽(yáng)能應(yīng)用于生活熱水的制備越來(lái)越受到人們的關(guān)注[1-4]。近年來(lái),一種新型太陽(yáng)能應(yīng)用技術(shù)——太陽(yáng)能光伏光熱(PV/T)技術(shù)——以其節(jié)能性、環(huán)境友好性等優(yōu)勢(shì)成為國(guó)內(nèi)外眾多學(xué)者研究的重點(diǎn)[5-7],研究?jī)?nèi)容主要包括設(shè)計(jì)更加高效的系統(tǒng)形 式[8-9]、討論不同環(huán)境下某一特定系統(tǒng)的經(jīng)濟(jì)性與可行性等[10-11];研究方法包含數(shù)值模擬[12-15]、搭建試驗(yàn)臺(tái)進(jìn)行試驗(yàn)研究等[16-19]。通過(guò)學(xué)者們的不斷探索和研究,太陽(yáng)能PV/T技術(shù)日臻完善。在此基礎(chǔ)上,一些學(xué)者[20-24]進(jìn)一步提出將PV/T技術(shù)與環(huán)路熱管相結(jié)合的供熱系統(tǒng),研究證明該種復(fù)合方案使太陽(yáng)能光熱、光電效率均有一定程度的提升。
Zhuang等[23]設(shè)計(jì)并制作了一個(gè)具有多種安裝形式的環(huán)路熱管太陽(yáng)能熱水系統(tǒng),該系統(tǒng)可在近似水平或水平角度放置集熱器時(shí)獲得較高集熱效率。臺(tái)灣大學(xué)新能源中心[25]發(fā)明了一種新型太陽(yáng)能熱水器,這種熱水器將環(huán)路熱管敷設(shè)在熱虹吸管背面,將熱量從虹吸管傳至水箱。
王璋元等[26]設(shè)計(jì)了一種新型環(huán)路熱管太陽(yáng)能熱水系統(tǒng),該系統(tǒng)將吸熱熱管鑲嵌在聚苯乙烯泡沫板內(nèi),外部覆雙層真空玻璃板,與傳統(tǒng)太陽(yáng)能熱水系統(tǒng)相比具有一定節(jié)能減排效果。上述研究表明:結(jié)合了太陽(yáng)能PV/T技術(shù)和環(huán)路熱管技術(shù)的熱水系統(tǒng)是對(duì)傳統(tǒng)太陽(yáng)能熱水系統(tǒng)的一次拓展,更有利于推進(jìn)建筑節(jié)能減排目標(biāo)的實(shí)現(xiàn)。
在中國(guó)寒冷地區(qū),傳統(tǒng)平板式太陽(yáng)能熱水系統(tǒng)存在冬季結(jié)冰、太陽(yáng)能光熱效率較低等問(wèn)題,但平板式太陽(yáng)能集熱器更容易實(shí)現(xiàn)建筑一體化。因此,本文擬通過(guò)試驗(yàn)研究的方式,對(duì)自主設(shè)計(jì)的一套太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)進(jìn)行光電光熱性能的測(cè)試研究,并進(jìn)一步分析不同的制冷劑充注量對(duì)系統(tǒng)性能的影響。
太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)如圖1a所示,測(cè)試系統(tǒng)實(shí)物圖如圖1b所示。試驗(yàn)在秦皇島市(39.95°N, 119.57°E)進(jìn)行,集熱器朝向正南布置,安裝傾角為50°,集熱器和冷凝器的安裝高差為0.6 m,制冷劑(R22)充注量為系統(tǒng)結(jié)構(gòu)總體積的40%。試驗(yàn)中采用均勻布置的熱電阻Pt100監(jiān)測(cè)吸熱板溫度、光伏電池板溫度及水箱內(nèi)水溫等,測(cè)量數(shù)據(jù)通過(guò)安捷倫34970A進(jìn)行采集。光伏電池板正負(fù)極連接固定阻值的電阻及開(kāi)關(guān),采用數(shù)字萬(wàn)用表監(jiān)測(cè)電池板的輸出電量。
如圖1a所示,該試驗(yàn)系統(tǒng)主要由PV/T集熱/蒸發(fā)器、沉浸式垂直螺旋盤管冷凝器和即熱式電加熱器等部件組成。當(dāng)太陽(yáng)輻照度較高時(shí),PV/T集熱/蒸發(fā)器吸熱管中的循環(huán)工質(zhì)吸收太陽(yáng)熱能蒸發(fā)為氣態(tài)工質(zhì),沿上升管到達(dá)冷凝器,在冷凝器中汽態(tài)工質(zhì)在螺旋盤管內(nèi)冷凝液化將熱量傳遞給水箱中的水,從而達(dá)到加熱熱水的目的。當(dāng)太陽(yáng)輻照度不足時(shí),開(kāi)啟即熱式電加熱器進(jìn)行補(bǔ)充加熱,以滿足用戶的用水需求。
圖1 太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)及試驗(yàn)平臺(tái)
將TBQ-2型總輻射表安裝在與PV/T集熱器相平行的位置,對(duì)集熱器表面上的總太陽(yáng)輻照度進(jìn)行測(cè)量。
系統(tǒng)的關(guān)鍵部件PV/T集熱/蒸發(fā)器采用管板式平板集熱器,外框尺寸為2 000 mm × 1 000 mm × 80 mm,有效采光面積為1.87 m2,主要由玻璃蓋板、吸熱板、吸熱管和單晶硅電池板等部件組成。光伏電池板由56塊單晶硅電池串聯(lián)組成,有效面積為0.875 m2,光伏覆蓋率為46.8%,額定功率為140 W。在吸熱板與電池板之間敷設(shè)TPT保護(hù)層作為絕緣層,在電池板正面貼一層減反透射膜,電池板、TPT與減反透射膜之間通過(guò)EVA連接。PV/T集熱/蒸發(fā)器的詳細(xì)設(shè)計(jì)參數(shù)如表1所示。
表1 PV/T集熱/蒸發(fā)器設(shè)計(jì)參數(shù)
1.3.1 環(huán)路熱管模式下典型工況運(yùn)行試驗(yàn)
分別在2016年12月9日、2017年4月28日和2017年7月12日進(jìn)行了冬季、春秋和夏季工況下環(huán)路熱管模式運(yùn)行性能的試驗(yàn)研究。系統(tǒng)的工質(zhì)充注率為30%。試驗(yàn)從上午08:00開(kāi)始到下午15:00結(jié)束,共運(yùn)行7 h??紤]到系統(tǒng)運(yùn)行達(dá)到穩(wěn)定需要一定時(shí)間,只選取09:00到15:00的數(shù)據(jù)進(jìn)行分析。3種工況下的太陽(yáng)輻照和室外空氣溫度如圖2所示。其中,冬季工況的平均太陽(yáng)輻照最高,為792 W/m2。春秋和夏季則分別為772和655 W/m2。冬季、春秋和夏季工況的平均室外空氣溫度分別為4.5、19.2和36.1 ℃。
圖2 不同工況集熱器表面太陽(yáng)輻照度和室外溫度的變化
1.3.2 系統(tǒng)全天性能試驗(yàn)
分別在2016年12月9日和2017年4月20日進(jìn)行了系統(tǒng)全天性能的試驗(yàn)研究。其中,4月20日的日平均太陽(yáng)輻照和室外空氣溫度分別為750 W/m2和26.7 ℃。系統(tǒng)的工質(zhì)充注率為30%。系統(tǒng)運(yùn)行時(shí)間段與環(huán)路熱管模式下典型工況試驗(yàn)相同。
1.3.3 工況充注量對(duì)系統(tǒng)性能影響試驗(yàn)
在2017年4月21日和27日,分別以30%和40%的工質(zhì)充注量進(jìn)行了充注量影響試驗(yàn)。這2 d的日平均太陽(yáng)輻照和室外空氣溫度相差不到2%,具備可比性。系統(tǒng)運(yùn)行時(shí)間段與環(huán)路熱管模式下典型工況試驗(yàn)相同。
本文主要從熱力學(xué)第一定律(能量分析)和熱力學(xué)第二定律(?分析)2個(gè)方面分析了典型工況下環(huán)路熱管運(yùn)行模式和整套系統(tǒng)的運(yùn)行性能?;谙到y(tǒng)兩方面的性能對(duì)比,進(jìn)一步分析了循環(huán)工質(zhì)充注量對(duì)系統(tǒng)性能的影響。
基于熱力學(xué)第一定律,環(huán)路熱管運(yùn)行模式的光電光熱綜合能源效率pvt可以按照式(1)計(jì)算[27]
式中為環(huán)路熱管運(yùn)行模式的光熱效率,
pv為環(huán)路熱管運(yùn)行模式的光電效率,
為系統(tǒng)光伏電池的覆蓋率,
sys為系統(tǒng)的綜合能源效率,
式(1)~(5)中w為冷凝器得熱量,W;p為電加熱器輸入水箱中的熱量,W;pv為光伏電池的光電功率,W;為太陽(yáng)輻照度,W/m2;C為PV/T蒸發(fā)器的有效集熱面積,m2;pv為光伏電池的面積,m2;P為外界輸入系統(tǒng)的電功率,W。
基于熱力學(xué)第二定律,環(huán)路熱管運(yùn)行模式的光電光熱?效率可以按照式(6)計(jì)算[26,28]
ξ為環(huán)路熱管運(yùn)行模式的光熱?效率,
pv為環(huán)路熱管運(yùn)行模式的光電?效率,
式(6)~(8)中w為冷凝器得熱量的?;pv為光伏電池的光電?;rad為單位面積太陽(yáng)輻射的?,
sys為系統(tǒng)的綜合?效率,
式(9)~(14)中p為電加熱器輸入水箱中的熱量的?;power為外界輸入系統(tǒng)電功率的?;a為室外空氣溫度;a為平均室外空氣溫度;sun為太陽(yáng)輻照的溫度,一般為6 000 K。
基于上述試驗(yàn)平臺(tái)及理論分析方法,分析了典型工況下系統(tǒng)的運(yùn)行性能,以及工質(zhì)充注量對(duì)系統(tǒng)性能的影響。
環(huán)路熱管模式下水溫和光熱效率的變化趨勢(shì)如圖3所示??梢钥闯鱿到y(tǒng)在春秋及夏季工況下均能滿足用戶水溫需求(取45 ℃),冬季則需啟動(dòng)電加熱器繼續(xù)加熱。光熱效率呈現(xiàn)先增大后減小的趨勢(shì),這是因?yàn)檫\(yùn)行初期,太陽(yáng)入射角逐漸減小,太陽(yáng)輻照度逐漸升高,系統(tǒng)獲得的熱量也逐漸增加;隨著水溫的升高,光伏組件的溫度升高,系統(tǒng)與環(huán)境間的熱損失增大,而太陽(yáng)輻照度的逐漸減弱導(dǎo)致系統(tǒng)得熱量逐漸減少,光熱效率有所降低。3種工況中夏季的日平均光熱效率最高,為62.1%,春秋和冬季分別為40.2%和53.3%。
圖3 不同季節(jié)環(huán)路熱管模式下水箱內(nèi)平均水溫和光熱效率的變化
由圖4可知,在環(huán)路熱管運(yùn)行模式下,系統(tǒng)的綜合能源效率和光熱效率的變化趨于一致,春秋季、夏季和冬季日平均值分別為46.2%,68.1%和59.7%。這是因?yàn)榫C合能源效率為光熱效率與光電效率的線性疊加,而系統(tǒng)的光熱效率遠(yuǎn)大于光電效率。系統(tǒng)的綜合?效率從低到高分別為夏季、春秋和冬季工況,其日平均值介于6.9%和10.9%之間。這是由于綜合?效率主要受光電效率的 影響。
由上述分析可知,夏季工況下系統(tǒng)的光熱效率和綜合能源效率最優(yōu),而冬季工況下的光電效率和綜合?效率最理想。3種工況系統(tǒng)運(yùn)行性能均與傳統(tǒng)太陽(yáng)能PV/T熱水系統(tǒng)可比[29]。
圖4 不同季節(jié)環(huán)路熱管模式下綜合能源效率和綜合?效率的變化
為分析整套系統(tǒng)2種運(yùn)行模式的綜合運(yùn)行性能,對(duì)4月20日和12月9日的試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比分析,具體結(jié)果如表2所示。試驗(yàn)結(jié)果表明,環(huán)路熱管模式下,12月9日和4月20日的日平均光熱效率分別為53.3%和66.9%;日平均光電效率分別為13.7%和9.9%,且光伏電池的發(fā)電功率均在1.5 MJ以上。日平均光熱?效率都較低,皆低于4.5%,而12月9日是4月20日的2.56倍,這主要是由于12月9日的平均水溫和環(huán)境溫度差別較大導(dǎo)致的。12月9日的光電?效率比4月20日高出18.03%,因此綜合?效率比4月20日高41.56%。2 d的最終水溫W,O均未達(dá)到用戶的水溫需求,需啟動(dòng)電加熱器繼續(xù)加熱,12月9日和4月20日分別耗電1.7和0.8 kWh。由于系統(tǒng)整體的綜合能源效率和綜合?效率需要考慮輸入的電能和輸入電能后得熱量的增加,其值略高于環(huán)路熱管模式。12月9日系統(tǒng)整體綜合能源效率和綜合?效率比環(huán)路熱管模式分別高出12.2%和7.3%;4月20日分別高出7.1%和18.2%。
表2 環(huán)路熱管模式與系統(tǒng)整體全天性能分析
工質(zhì)的充注量對(duì)系統(tǒng)的光熱性能有較大影響,如圖5所示。試驗(yàn)結(jié)果顯示,在2種充注量工況下,環(huán)路熱管模式的最終水溫均達(dá)到了用戶水溫的需求。可以看出,30%充注量的系統(tǒng)光熱效率明顯高于40%充注量的工況,2種工況的日平均值分別為55.5%和40.2%。這是由于試驗(yàn)過(guò)程中30%充注量的系統(tǒng)吸熱板溫度更高,從而確保吸熱管內(nèi)工質(zhì)可以吸收更多熱量;此外,較高的吸熱板溫度使吸熱管出口的工質(zhì)過(guò)熱度更高,進(jìn)一步提高了系統(tǒng)的換熱性能。
由圖6可知,30%充注量工況下綜合能源效率較大,平均值為55.0%,最高值達(dá)到了59.3%,40%充注量工況下綜合能源效率的平均值為46.2%。同時(shí),絕大部分時(shí)間內(nèi),30%充注量工況下綜合?效率低于40%充注量工況下,2種工況的平均值分別為5.2%和8.5%。這主要是因?yàn)?0%充注量的平均電池板溫度為48.2 ℃,低于30%充注量工況下的51.4 ℃,因此40%充注量工況的光電效率較高,綜合?效率也較高。
其中為測(cè)試期間所選擇的數(shù)據(jù)點(diǎn)數(shù)量。依據(jù)上述算法,獨(dú)立參數(shù)太陽(yáng)輻照度和冷卻水溫度W的日平均相對(duì)誤差分別為1.3%和2.06%;非獨(dú)立參數(shù)環(huán)路熱管模式光電效率pv和光熱效率t的日平均相對(duì)誤差分別為0.28%和6.19%。試驗(yàn)過(guò)程中所有參數(shù)誤差均在工程允許范圍內(nèi)。
圖6 不同充注量工況下系統(tǒng)綜合?效率和綜合能源效率的變化
本文以太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)為研究對(duì)象,研究分析了系統(tǒng)在冬季、春秋和夏季3種典型工況下的運(yùn)行性能,以及循環(huán)工質(zhì)充注量對(duì)系統(tǒng)運(yùn)行的影響。主要結(jié)論如下:
1)由環(huán)路熱管模式下典型工況的分析可知,夏季工況下系統(tǒng)的光熱效率和綜合能源效率最高,日平均值分別為62.1%和68.1%;而冬季工況下光電效率和綜合?效率則最優(yōu),日平均值為13.7%和10.9%。3種工況下所研究系統(tǒng)運(yùn)行性能均與傳統(tǒng)太陽(yáng)能PV/T熱水系統(tǒng)可比。
2)由全天性能分析可知,系統(tǒng)只運(yùn)行環(huán)路熱管模式不能滿足用戶水溫需求,需進(jìn)一步啟動(dòng)電加熱器。12月9日的系統(tǒng)整體綜合能源效率和綜合?效率比環(huán)路熱管模式分別高出12.2%和7.3%;4月20日分別高出7.1%和18.2%。
3)由循環(huán)工質(zhì)充注量的影響分析可知,從熱力學(xué)第一定律的角度出發(fā),30%充注量的工況更有利于系統(tǒng)光熱效率和綜合能源效率的提高,其平均值分別為55.5%和55.0%;從熱力學(xué)第二定律的角度出發(fā),40%充注量的工況更有利于系統(tǒng)綜合?效率的提高,其平均值為8.5%。
[1] Li Hong, Yang Hongxing. Potential application of solar thermal systems for hot water production in Hong Kong[J]. Applied Energy, 2009, 86(2): 175-180.
[2] Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change material thermal energy storage medium: A review[J]. Renewable and sustainable Energy Reviews, 2009, 13(8): 2119-2125.
[3] Fuentes E, Arce L, Salom J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1530-1547.
[4] An Jingjing, Yan Da, Deng Guangwei, et al. Survey and performance analysis of centralized domestic hot water system in China[J]. Energy and Buildings, 2016, 133: 321-334.
[5] Wang Zhangyuan, Yang Wansheng. A review on loop heat pipe for use in solar water heating[J]. Energy and Buildings, 2014, 79: 143-154.
[6] Tonui J K, Tripanagnostopoulos Y. Improved PV/T solarcollectors with heat extraction by forced or natural air circulation[J].Renew Energy, 2007, 32(4): 613-637.
[7] Amoria Karima E, Taqi Al-Najjar Hussein M. Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq[J]. Applied Energy, 2012, 98: 384-395.
[8] Wang Zhangyuan. Investigation of a Novel Fa?ade-based Solar Loop Heat Pipe Water Heating System[D]. University of Nottingham, 2012: 131-135.
[9] Zhao Xudong, Wang Zhangyuan, Tang Qi. Theoretical investigation of a novel loop heat pipe solar water heating system for use in Bingjing, China[J]. Applied Therm Eng, 2010, 30: 2526-2536.
[10] Zhang Xingxing, Shen Jingchun, Xu Peng, et al. Socio- economic performance of a novel solar photovoltaic/ loop-heat-pipe heat pump water heating system in three different climatic regions[J]. Applied Energy, 2014, 135: 20-34.
[11] Wang Zhangyuan, Zhang Xingxing, Yang Wansheng. Experiment investigation of the indoor thermal comfort of the public buildings in the typical subtropical climatic region[J]. Applied Mechanics and Materials, 2014p: 588-592.
[12] Huang B J, Lin T H, Hung W C, et al. Performance evaluation of solar photovoltaic/thermal systems[J]. Sol Energy, 2001, 70: 443-448.
[13] He Wei, Hong Xiaoqiang, Zhao Xudong, et al. Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe facade-based heat pump water heating system[J]. Applied Energy, 2014, 77: 180-191.
[14] Zhang Xingxing, Zhao Xudong, Xu Jihuan, et al. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system[J]. Applied Energy. 2013, 102: 1229-1245.
[15] Ji Jie, He Hangfeng, Tintai Chow, et al. Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump. Int J heat Mass Transfer. 2009, 52: 1365-1373.
[16] Pei Gang, Fu Huide, Zhang Tao, et al. A numerical and experimental study on a heat pipe PV/T system. Solar Energy. 2011, 85: 911-921.
[17] Pei Gang, Zhang Tao, Yu Zhi, et al. Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector[J]. Journal of Power and Energy, 2011, 225(3): 271-278.
[18] Zhang Xingxing, Zhao Xudong, Shen Jingchun, et al. Design, fabrication and experimental study of a solar photovoltaic/ loop-heat-pipe based heat pump system[J]. Solar Energy, 2013, 97: 551-568.
[19] Zhang Xingxing, Zhao Xudong, Shen Jingchun, et al. Dynamic performance of a novel solar photovoltaic/loop- heat-pipe heat pump system[J]. Applied Energy, 2014, 114: 335-352.
[20] Wang Z, Duan Z, Zhao X, et al. Dynamic performance of a facade-based solar loop heat pipe water heating system[J]. Solar Energy, 2012, 86: 1632-1647.
[21] Zhang Xingxing, Zhao Xudong, Stefan Smith, et al. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies[J]. Renew Sust Energy Rev, 2012, 16(1): 599-617.
[22] Li Hong, Sun Yue. Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system[J]. Energy and Buildings, 2018, 158: 861-872.
[23] Zhuang Jun. Loop heat pipes for solar energy water heater[P]. People’s Republic of China Patent No. 101922814A, 2010.
[24] Deng Yuechao, Quan Zhenhua, Zhao Yaohua, et al. Experimental research on the performance of household-type photovoltaic–thermal system based on micro-heat-pipe array in Beijing[J]. Energy Conversion and Management, 2015, 106: 1039-1047.
[25] 新型模組式太陽(yáng)能熱水器已開(kāi)發(fā)成功[C]. 臺(tái)大新能源中心通訊,1996.
[26] 王璋元,楊晚生,趙旭東.新型環(huán)路熱管太陽(yáng)能熱水系統(tǒng)節(jié)能減排評(píng)估[J]. 太陽(yáng)能學(xué)報(bào),2014,35(5):825-829. Wang Zhangyuan, Yang Wansheng, Zhao Xudong. Energy- saving and carbon emission reduction evaluations of a novel loop heat pipe solar water heating system[J]. Acta Energiae Solaris Sinica, 2014, 35(5): 825-829. (in Chinese with English abstract)
[27] Chow T T, Pei G., Fong K F, et al. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover[J]. Applied Energy, 2009, 86: 310-316.
[28] 張龍燦,裴剛,張濤,等. 新型光伏—太陽(yáng)能環(huán)形熱管/熱泵復(fù)合系統(tǒng)[J]. 化工學(xué)報(bào),2014,65(8):3228-3236. Zhang Longcan, Pei Gang, Zhang Tao, et al. A new photovoltaic solar-assisted loop heat pipe/heat-pump system[J]. CIESC Journal, 2014, 65(8): 3228-3236. (in Chinese with English abstract)
[29] Chow T T. A review on photovoltaic/thermal hybrid solar technology[J]. Applied Energy 2010, 87: 365-379.
Photoelectricity and photothermal performance experiment on solar photovoltaic/loop-heat-pipe water heating system
Li Hong, Hou Pingwei, Sun Yue
(066004,)
The aim of this paper was to present a dedicated experimental investigation of the thermal and electrical performance of a solar photovoltaic/loop-heat-pipe water heating system. The studied system was the combination of the loop heat pipe and the solar photovoltaic/thermal technology, which was assisted by the electric water heater to product hot water for residential buildings in cold zone. The proposed system could work in 2 operational modes, and the operational modes were mainly determined by the variation of solar radiation. When solar radiation was high, the system operated in the photovoltaic/loop-heat-pipe mode; when solar radiation was low or it was a rainy day, the electric water heater was turned on to heat water to match the preset value. The experimental platform for the solar photovoltaic/loop-heat-pipe water heating system was built and a series of experiments under real weather conditions were conducted. Based on test results, energy and exergy performance of the studied system under typical working condition was analyzed. And the typical working conditions include the transitional season condition, the summer condition and the winter condition. Besides, energy and exergy performance of the system on the specific 2 days was discussed and compared. What was more, the impact of the refrigerant charge quantity on the operating performance was analyzed. Therefore, main content of this paper was composed of energy and exergy performance analyses under typical working conditions and selected full days. The experimental results in the photovoltaic/loop-heat-pipe mode were analyzed in terms of the solar thermal efficiency, the photovoltaic efficiency, the overall energy efficiency and the overall exergy efficiency. For the solar thermal efficiency and overall energy efficiency, the experimental results were the highest in summer, and the daily average values were 62.1% and 68.1% respectively. For the photovoltaic efficiency and overall exergy efficiency, the experimental results were the highest in winter, and the daily average values of them were 13.7% and 10.9% respectively. The whole system performance considered the performance of 2 operational modes, and therefore the overall energy and exergy efficiency of the whole system were a litter higher than those of the mode of photovoltaic/loop-heat-pipe. In this paper, the experimental results of April 20thand December 9thwere chosen to analyze full-day performance of this system, and the solar thermal efficiency and overall energy efficiency were higher on April 20th, while the photovoltaic efficiency and overall exergy efficiency of full-day performance were higher on December 9th. This paper also discussed the system performance with different refrigerant charge quantities in similar ambient environment. And the results showed that 30% refrigerant charge quantity was conducive to the improvement of solar thermal efficiency and overall energy efficiency of this system and 40% refrigerant charge quantity was conducive to the improvement of electrical efficiency and overall exergy efficiency of this system.
solar energy; photovoltaic; heat pipe; experiment; exergy
李 洪,侯平煒,孫 躍. 太陽(yáng)能光伏環(huán)路熱管熱水系統(tǒng)光電光熱性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):235-240. doi:10.11975/j.issn.1002-6819.2018.07.030 http://www.tcsae.org
Li Hong, Hou Pingwei, Sun Yue. Photoelectricity and photothermal performance experiment on solar photovoltaic/loop-heat-pipe water heating system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 235-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.030 http://www.tcsae.org
2017-10-18
2018-03-01
河北省自然科學(xué)基金青年基金項(xiàng)目(E2015203166);燕山大學(xué)青年教師自主研究計(jì)劃課題理工A類項(xiàng)目(15LGA010)
李洪,副教授,博士,研究方向?yàn)閺?fù)合熱源熱泵技術(shù)及太陽(yáng)能光熱綜合利用技術(shù)。Email:be_leecandy@163.com。
10.11975/j.issn.1002-6819.2018.07.030
TE0
A
1002-6819(2018)-07-0235-06