張連科,劉心宇,王維大,李玉梅,孫 鵬,尚少鵬※,姜慶宏
?
油料作物秸稈生物炭對(duì)水體中鉛離子的吸附特性與機(jī)制
張連科1,2,劉心宇1,王維大1,李玉梅1,孫 鵬1,尚少鵬1※,姜慶宏1
(1. 內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,包頭 014010; 2. 西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西安 710055)
為探索利用廢棄生物質(zhì)資源制備生物炭去除水體中Pb2+污染的可行性,以農(nóng)業(yè)廢棄物胡麻秸稈和油菜秸稈為原材料,采用限氧裂解法在700℃條件下制備油菜秸稈(rape straw)生物炭和胡麻秸稈(flax straw)生物炭,通過2種生物炭對(duì)Pb2+的批量吸附試驗(yàn),利用4種吸附動(dòng)力學(xué)模型(擬一級(jí)動(dòng)力學(xué)、擬二級(jí)動(dòng)力學(xué)、Elovich模型和顆粒內(nèi)擴(kuò)散模型)和4種等溫吸附模型(Langmuir、Freundlich、Temkin和D-R模型)研究了胡麻和油菜秸稈生物炭對(duì)Pb2+的吸附行為。同時(shí),通過(brunauer emmett teller, BET)比表面積和孔徑分析、掃描電子顯微鏡(SEM)、X射線衍射(XRD)和傅里葉變換紅外光譜(FTIR)等手段對(duì)生物炭的結(jié)構(gòu)和性質(zhì)進(jìn)行了表征,初步探討了2種生物炭對(duì)Pb2+的吸附機(jī)制。結(jié)果表明,胡麻和油菜秸稈生物炭分別在4 h和10 h達(dá)到吸附平衡,理論最大吸附量分別達(dá)到220.07和307.59 mg/g;2種生物炭對(duì)Pb2+的吸附符合擬二級(jí)動(dòng)力學(xué)模型,吸附等溫線符合Langmuir等溫吸附模型,表明其吸附過程為單分子層吸附;2種生物炭對(duì)Pb2+的吸附作用為物理-化學(xué)復(fù)合過程,吸附機(jī)制主要包括靜電作用、離子/配體交換、陽離子–π作用。研究結(jié)果可為油料作物秸稈的資源化利用和生物炭對(duì)水中重金屬污染防治提供理論依據(jù)。
生物炭;重金屬;吸附;鉛
近年來,隨著中國工業(yè)化、城市化的迅猛發(fā)展,不合理的重金屬開采與冶煉,不恰當(dāng)?shù)奈廴疚锱欧排c處置(生活污水和固體廢物等)以及大氣沉降等因素致使大量重金屬進(jìn)入土壤和水體環(huán)境,在環(huán)境中不斷富集,嚴(yán)重危害到人類健康和生態(tài)環(huán)境安全[1]。據(jù)調(diào)查,中國受到重金屬污染的耕地有2 000萬hm2之多,大約占總耕地面積的1/5;全國60%地下水受到不同程度污染[2]。鉛是當(dāng)今對(duì)人類健康威脅最大的十大類污染物質(zhì)之一,在水體和土壤中的鉛具有富集性,難以被生物降解,并沿食物鏈傳遞,進(jìn)而危害人體健康[3]。吸附法因其操作簡單、有效、經(jīng)濟(jì)、可再生等優(yōu)點(diǎn)被認(rèn)為是去除環(huán)境重金屬較好的方法[4]。近年來,利用原料來源廣泛、成本低廉、具有較高環(huán)境穩(wěn)定性的生物炭吸附污染物受到廣大學(xué)者的青睞[5-6]。
生物炭(biochar)是生物質(zhì)在限氧條件下熱解產(chǎn)生的富碳物質(zhì)[7]。生物炭作為吸附劑具有廉價(jià)和高效等特點(diǎn)而被廣泛應(yīng)用于重金屬[8-9]和有機(jī)污染廢水處理[10],這些研究表明,生物炭對(duì)污染物尤其對(duì)重金屬具有良好的吸附性能。目前,重金屬吸附研究中,制備生物炭的原料主要包括秸稈[9,11-12]、家畜糞便[8]、污泥[13]等原料,而不同原料制備的生物炭表面結(jié)構(gòu)、理化性質(zhì)等存在很大的差異,而這些性質(zhì)是影響生物炭吸附性能的控制因素,使其對(duì)污染物的吸附性能存在較大差別[14-15]。林寧等[11]以水稻秸稈、小麥秸稈、荔枝樹枝為原料,在600℃下制備的生物炭對(duì)Pb2+的最大吸附量分別為132.54、136.23、159.25 mg/g。徐楠楠等[16]用玉米秸稈制備生物炭,在常溫下約40 min即可達(dá)到吸附平衡,對(duì)Pb2+的吸附量為23.51 mg/g。由此可見,不同原料制備的生物炭對(duì)吸附性能的影響。研究表明,秸稈生物炭對(duì)重金屬的吸附性能優(yōu)于禽蓄糞便和木材生物炭。胡麻和油菜是內(nèi)蒙古地區(qū)傳統(tǒng)的油料作物,耐寒抗旱,產(chǎn)量穩(wěn)定,經(jīng)濟(jì)效益好,在當(dāng)?shù)乇粡V泛種植[17]。而大量的胡麻和油菜秸稈被棄置或焚燒造成了較為嚴(yán)重的資源浪費(fèi)和環(huán)境污染。因此,以油料作物秸稈為原料制備生物炭,用于處理重金屬污染水體和土壤修復(fù)是其資源化利用的有效途徑之一,同時(shí)可以減少對(duì)環(huán)境的影響,具有重要的實(shí)踐意義。
基于以上問題,本研究以胡麻和油菜2種油料作物秸稈為原料,采用慢速熱解法[17]于700℃下制備生物炭,利用(brunauer emmett teller,BET)比表面積和孔徑分析、掃描電子顯微鏡(SEM)、X射線衍射(XRD)和傅里葉變換紅外光譜(FTIR)等表征手段對(duì)吸附前后的樣品結(jié)構(gòu)形態(tài)進(jìn)行表征分析,結(jié)合批量吸附試驗(yàn),探究其對(duì)水溶液中鉛的吸附特性和機(jī)制,對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行等溫吸附模型和吸附動(dòng)力學(xué)模型擬合,反映吸附特性,闡述其吸附機(jī)理。以期為油料作物秸稈的資源利用、重金屬污染防治及土壤修復(fù)提供理論依據(jù)。
胡麻秸稈和油菜秸稈均取自包頭周邊農(nóng)村,將其洗凈、自然風(fēng)干、粉碎過100目篩后裝袋備用。將2種原料粉末置于剛玉坩堝中,放入GWL-1 700 GA型管式電爐,以氮?dú)鉃楸Wo(hù)氣,以5℃/min的升溫速率升溫至700℃,熱解4 h,自然冷卻至室溫后取出,過100目篩,所得材料即為試驗(yàn)所用生物炭,裝袋備用。為了敘述方便,胡麻秸稈生物炭命名為FS,油菜秸稈生物炭命名為RS。2種生物炭的基本理化性質(zhì)見表1。
表1 生物炭的基本理化性質(zhì)
注:RS為油菜秸稈生物炭,F(xiàn)S為胡麻秸稈生物炭,下同
Note: RS and FS are biochars derived from rape straw and flax straw respectively, the same below.
生物炭的比表面積、孔徑、孔體積采用3H-2000PS型比表面積及孔徑分布測(cè)定儀(BET)(北京貝士德儀器科技有限公司)測(cè)定(試驗(yàn)條件:飽和蒸汽壓:0.911 3 bar,脫氣系統(tǒng)溫度范圍為20~200℃,吸附氣體為氮?dú)猓2捎萌樟-3400N型掃描電子顯微鏡(SEM)觀察生物炭的形貌特征。礦物相組分分析采用BRUKERD8AA25型X-射線衍射儀(XRD),試驗(yàn)測(cè)試范圍為2=5°~75°,掃描速度為5o/min,電流為30 mA,電壓為40 kV。生物炭的表面官能團(tuán)采用德國Bruker TENSORⅡ型傅里葉變換紅外光譜儀(FTIR)進(jìn)行KBr壓片法測(cè)定,波數(shù)范圍為4 000~400 cm–1,分辨率2 cm–1。
準(zhǔn)確稱取各試驗(yàn)所需用量的生物炭于150 ml錐形瓶,分別加入40 mL一定濃度的Pb2+溶液,所有溶液均加入0.01 mol/L的NaNO3作為背景電解質(zhì)。將溶液放入恒溫振蕩器中,25℃下以150 r/min振蕩一定時(shí)間,0.45m過濾后清液用于分析Pb2+濃度。每個(gè)處理設(shè)置3個(gè)平行樣和空白對(duì)照。經(jīng)空白對(duì)照試驗(yàn),生物炭在去離子水中振蕩足夠時(shí)間后,溶液中Pb2+濃度未檢出,表明生物炭中無明顯Pb2+的釋放,對(duì)實(shí)驗(yàn)結(jié)果無影響。采用原子分光光度計(jì)(美國PE Analyst 800型)測(cè)定濾液中Pb2+濃度。計(jì)算吸附量。
1)pH影響試驗(yàn)。Pb2+溶液初始濃度為800 mg/L,生物炭投加量為0.120 0 g,用0.1 mol/L HNO3或NaOH調(diào)節(jié)溶液pH值為3.0、3.5、4.0、4.5、5.0、5.5、6.0,吸附48 h后,測(cè)定溶液中Pb2+的剩余濃度。
2)投加量影響試驗(yàn)。Pb2+溶液初始濃度為800 mg/L,用0.1 mol/L HNO3或 NaOH調(diào)節(jié)溶液pH值為5.5±0.05,生物炭投加量設(shè)置為0.04、0.08、0.12、0.16、2.00 g,即1.00、2.00、3.00、4.00、5.00 g/L,吸附時(shí)間48 h。
3)吸附動(dòng)力學(xué)試驗(yàn)。Pb2+溶液初始濃度為800 mg/L,用0.1 mol/L HNO3或 NaOH調(diào)節(jié)溶液pH值為5.5±0.05,在10~2 880 min內(nèi)設(shè)置14次取樣。
4)等溫吸附試驗(yàn)。Pb2+溶液初始濃度分別設(shè)為100、200、300、400、500、600、700、800、900、1 000 mg/L,用0.1 mol/L HNO3或 NaOH調(diào)節(jié)溶液pH值為5.5±0.05,吸附時(shí)間為10 h。
試驗(yàn)所用試劑Pb2(NO3)和NaNO3均為分析純,Pb2+標(biāo)準(zhǔn)液由國家標(biāo)準(zhǔn)物質(zhì)中心提供,試驗(yàn)用水均為去離子水。
1.3.1 吸附動(dòng)力學(xué)模型
吸附動(dòng)力學(xué)是用吸附量隨吸附時(shí)間的變化曲線關(guān)系表示吸附反應(yīng)過程,變化曲線揭示了吸附質(zhì)在吸附劑和溶液間分配規(guī)律。本試驗(yàn)采用以下4種動(dòng)力學(xué)模型對(duì)生物炭吸附Pb2+的吸附動(dòng)力學(xué)數(shù)據(jù)進(jìn)行擬合。
擬一級(jí)動(dòng)力學(xué)模型
擬二級(jí)動(dòng)力學(xué)模型
Elovich 模型
顆粒內(nèi)擴(kuò)散模型
1.3.2 等溫吸附模型
吸附等溫線采用Langmuir、Freundlich、Temkin和Dubinin-Radushkevich(D-R)等溫吸附模型對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合。
Langmuir吸附模型
Freundlich吸附模型
Temkin吸附模型
Dubinin-Radushkevich(D-R)吸附模型
溶液pH值是影響重金屬離子吸附的重要因素之一。當(dāng)pH值>6時(shí),溶液中Pb2+會(huì)與OH-反應(yīng)產(chǎn)生沉淀,因此本試驗(yàn)研究了3.0~6.0范圍的pH值對(duì)吸附的影響。如圖1所示,在相同pH值下,RS對(duì)Pb2+的去除率均高于FS,當(dāng)pH值為3.0~5.5時(shí),RS和FS對(duì)Pb2+的去除率均隨pH值的增加呈上升趨勢(shì),但當(dāng)pH值大于5.5后,RS和FS對(duì)Pb2+的去除率基本不變。
圖1 pH值對(duì)生物炭Pb2+吸附的影響
pH值較低時(shí),溶液中H+、Pb2+和[Pb(H2O)6]2+之間對(duì)吸附位點(diǎn)存在較強(qiáng)烈的競(jìng)爭,不利于Pb2+吸附在生物炭表面[18],這與丁文川等[13, 18]的研究結(jié)果類似。另外,pH值較低時(shí),生物炭中較難溶的晶體礦物溶解增加,會(huì)釋放出大量的陽離子(K+、Ca2+、Mg2+等),也與Pb2+競(jìng)爭生物炭表面的吸附點(diǎn)位[11]。溶液pH值增加能夠加快生物炭表面的去質(zhì)子化進(jìn)程,創(chuàng)造出更多的負(fù)電點(diǎn)位來提高Pb2+的去除率[19],同時(shí)K+、Ca2+和Mg2+等陽離子的釋放減少,其與Pb2+的競(jìng)爭吸附減弱,從而增強(qiáng)了對(duì)Pb2+的吸附。隨著pH值的增大,溶液中Pb2+的存在形態(tài)發(fā)生變化,水合結(jié)構(gòu)中的H2O逐步被OH-取代,Pb2+和[Pb(H2O)6]2+逐步轉(zhuǎn)化成氫氧絡(luò)離子形態(tài)([Pb(OH)6]4-),即增加溶液的pH值,可以降低H+與Pb2+對(duì)吸附位點(diǎn)的競(jìng)爭,致使去除率提高。pH值較高即大于5.5時(shí),Pb2+主要結(jié)合生成Pb(OH)2等沉淀,溶液中自由Pb2+離子逐漸減少,實(shí)際吸附量逐漸下降[18]。經(jīng)試驗(yàn)測(cè)定,在初始pH值為3.0~4.5時(shí),吸附后溶液的平衡pH值均略高于初始pH值,這是由于2種生物炭本身pH值呈堿性(由表1可知,2種生物炭pH值分別為10.34和9.52)所致。在初始pH值為5.0~6.0時(shí),吸附后溶液的平衡pH值均稍低于初始pH值,這是由于生物炭本身的酸度使得溶液具有較強(qiáng)的緩沖能力,秦婷婷等[18]也得出相似的結(jié)果?;谝陨戏治?,RS和FS的最佳吸附pH值為5.5左右。
RS和FS投加量與Pb2+的去除率和單位吸附量的關(guān)系如圖2所示,兩者表現(xiàn)出的趨勢(shì)大體一致,投加量由1 g/L增加到3 g/L,2種生物炭對(duì)Pb2+的去除率急劇增加,同時(shí)單位吸附劑上的吸附量也隨之增加;而后,再增加投加量,由3 g/L增加到5 g/L,生物炭對(duì)Pb2+的去除率增加緩慢,而單位吸附量反而減小。這主要是因?yàn)镽S和FS投加量增加時(shí),其吸附點(diǎn)位和比表面積均增加,因此生物炭對(duì)Pb2+的去除率隨著投加量的增加而顯著增大。但是生物炭投加量繼續(xù)增加,Pb2+在溶液中的平衡濃度相對(duì)降低,根據(jù)吸附平衡規(guī)律,Pb2+的去除率增加緩慢,而單位吸附量減小。隨著生物炭投加量的增加,釋放到溶液中的Ca2+、Mg2+等陽離子也隨之增多,導(dǎo)致溶液中陽離子與Pb2+的競(jìng)爭作用不斷增大,也是導(dǎo)致單位吸附量降低的原因。另外,本試驗(yàn)的初始pH值為5.5,根據(jù)上述溶液pH值對(duì)Pb2+吸附的影響分析可知,在此pH值條件下,吸附后溶液的平衡pH值低于初始pH值,因此隨著生物炭投加量的增加,平衡pH值較初始pH值下降幅度增大,也會(huì)導(dǎo)致單位吸附量降低?;谝陨戏治觯琑S和FS投加量為3 g/L時(shí),單位吸附量達(dá)到最大,去除率增加趨緩,綜合考慮,實(shí)際生物炭的最佳投加量為3 g/L。
圖2 RS和FS投加量對(duì)Pb2+吸附的影響
2種油料作物秸稈生物炭對(duì)Pb2+的吸附動(dòng)力學(xué)過程如圖3所示。RS和FS對(duì)Pb2+的吸附均呈先快后慢的趨勢(shì)。RS的吸附較快,在開始吸附的10 min,吸附量已達(dá)到了飽和吸附量的73.29%,隨后吸附量增幅降低,在 30 min時(shí)達(dá)到了96.68%,240 min (4 h)時(shí)趨于吸附平衡。FS對(duì)Pb2+的吸附較慢,吸附10 min時(shí),吸附量僅為飽和吸附量的23.05%,之后吸附量隨吸附時(shí)間的延長而不斷增大,直到600 min (10 h)時(shí),達(dá)到吸附平衡。吸附量在吸附初期增加較快,這和Pb2+在水-生物炭兩相最初的濃度差引起的傳質(zhì)驅(qū)動(dòng)力以及生物炭表面的吸附位點(diǎn)有關(guān)。吸附初期時(shí),Pb2+濃度最大,傳質(zhì)驅(qū)動(dòng)力大,吸附速率因此較大。隨著吸附時(shí)間的增加,Pb2+濃度差迅速減小,生物炭表面的吸附位點(diǎn)基本飽和,生物炭顆粒內(nèi)擴(kuò)散作用減弱,吸附速率減小且吸附容量趨于飽和。安增莉等[20]研究水稻秸稈生物炭對(duì)Pb2+的吸附也得到了相同的結(jié)果。
注:qe為平衡吸附量,mg/g;qt為t時(shí)刻的吸附量,mg/g,下同。
表2 生物炭對(duì)Pb2+吸附動(dòng)力學(xué)模型參數(shù)擬合
注:1為擬一級(jí)吸附速率常數(shù);2為擬二級(jí)吸附速率常數(shù);、為Elovich常數(shù);3是顆粒內(nèi)擴(kuò)散速率常數(shù);是邊界層常數(shù)。
Note:1is pseudo first order adsorption rate constant;2is pseudo second-order adsorption rate constant;、are Elovich constant;3intraparticle diffusion model adsorption rate constant;is boundary layer constant.
2種生物炭對(duì)Pb2+的吸附等溫線如圖4所示。由圖可知,在初始Pb2+濃度為100~600 mg/L,即吸附平衡濃度在0.127~20.75 mg/L范圍時(shí),F(xiàn)S和RS吸附量均隨Pb2+濃度的增加呈直線快速增大,由33.29 mg/g增加到193.08 mg/g;在初始Pb2+濃度為700~1 000 mg/L時(shí),吸附平衡濃度從58.65 mg/L增加到281.60 mg/L,而吸附量僅從213.78 mg/g增加到239.47 mg/g,最后達(dá)到吸附平衡。這是因?yàn)?,?dāng)Pb2+濃度較低時(shí),生物炭可提供足夠的吸附點(diǎn)位和活性基團(tuán),隨Pb2+起始濃度的升高,Pb2+與生物炭表面接觸的機(jī)會(huì)增加,更有利于吸附劑活性位點(diǎn)和表面官能團(tuán)對(duì)Pb2+的吸附。但一定量的生物炭提供的接觸面積和活性位點(diǎn)是定量的,濃度增加到一定程度,吸附位點(diǎn)已被充分利用,吸附逐漸達(dá)到飽和。
對(duì)比FS和RS的吸附過程,在達(dá)到吸附平衡前,2種生物炭吸附量均快速增長,在相同平衡濃度時(shí),RS較FS的吸附速率更快。最終飽和吸附量比較,RS(265.00 mg/g)大于FS(214.45 mg/g)。
圖4 2種油料作物秸稈生物炭對(duì)Pb2+等溫吸附曲線
表3 生物炭對(duì)Pb2+等溫吸附模型擬合參數(shù)
注:q是最大吸附量;L是Langmuir吸附平衡常數(shù);F為與吸附劑的飽和吸附量有關(guān)的Freundlich 常數(shù);是Freundlich模型常數(shù);為平衡結(jié)合常數(shù);是Temkin方程與吸附熱有關(guān)的系數(shù);0是最大單位吸附量;是吸附自由能。
Note:qis the maximum adsorption quantity;Lis Langmuir adsorption equilibrium constant;Fis the Freundlich constant related to the saturated adsorption of adsorbent.is the Freundlich model constant;is the equilibrium binding constant;is the coefficient of the Temkin equation relating to the adsorption heat;0is the maximum unit adsorption;is the adsorption free energy.
生物炭對(duì)重金屬離子的吸附主要包括物理和化學(xué)2種吸附作用,其中物理吸附主要是由于生物炭具有較大的比表面積,可以提供足夠的吸附點(diǎn)位,且通常生物炭表面具有較大的電負(fù)性,重金屬離子通過靜電作用吸附在生物炭表面;化學(xué)吸附主要由于生物炭表面具有豐富的官能團(tuán),促使重金屬離子與其發(fā)生金屬/配體的離子交換及沉淀或絡(luò)合作用。從以上吸附動(dòng)力學(xué)及等溫吸附試驗(yàn)可見,2種油料作物生物炭對(duì)鉛離子的吸附既有物理吸附作用,也包括化學(xué)吸附作用?,F(xiàn)從物理和化學(xué)2個(gè)角度,結(jié)合生物炭的表面特性、微觀形貌、FTIR和XRD表征結(jié)果對(duì)其進(jìn)行分析。
從物理角度分析,見表4,F(xiàn)S和RS表面特性對(duì)比可見,F(xiàn)S的BET比表面積(172.61 m2/g)大于RS(84.44 m2/g)。韓旸等[26]研究表明,生物炭粒徑越小,比表面積越大。FS粒徑(3.05 nm)小于RS(8.64 nm),相互印證。表明FS可以提供更多的吸附點(diǎn)位,但由試驗(yàn)結(jié)果可知RS對(duì)Pb2+的吸附量高于FS,由此可見,生物炭對(duì)鉛離子的吸附能力與其比表面積不成正比,對(duì)重金屬的吸附作用可能還與其表面官能團(tuán)等化學(xué)性質(zhì)有關(guān)。RS比FS具有更大的孔體積和孔徑,使其對(duì)Pb2+具有更快的吸附速率,較大的孔徑減少了顆粒內(nèi)擴(kuò)散阻力。
表4 FS和RS表面特性對(duì)比
掃描電鏡通常用于觀察樣品表面微觀形貌,其中的背散射電子(BSE)主要反應(yīng)樣品表面成分特征。通過圖5,F(xiàn)S和RS吸附Pb2+前后的BSE圖像可以看出,F(xiàn)S和RS均具有良好的孔隙結(jié)構(gòu),孔隙豐富且較為有序,呈蜂窩狀,有利于重金屬離子的吸附。分別比較2種生物炭吸附Pb2+前后圖像可以發(fā)現(xiàn),吸附Pb2+后,大量的小顆粒團(tuán)聚物(圖5 b、d中白色顆粒)附著在生物炭表面及孔內(nèi),表明Pb2+在FS和RS 2種生物炭上發(fā)生了吸附作用。
從化學(xué)角度來看,由圖6中2種生物炭吸附Pb2+前后FTIR譜圖對(duì)比可見,RS和FS具有CO32–(675~750、835~886 cm–1)、仲醇(1 017 cm–1)、C-C鍵(1 437 cm–1)、-COOH或內(nèi)酯基中C=O鍵(1 578 cm–1)、C=C鍵(1 687 cm–1)、-CH2–(2 800~3 000 cm–1)、-OH(3 307 cm–1)等基團(tuán)[13],表明2種生物炭表面官能團(tuán)豐富。定性來看,F(xiàn)S和RS出峰位置大致相同,峰曲線相似,表明其所含官能團(tuán)基本一致,但對(duì)應(yīng)位置峰高不同,表明各官能團(tuán)含量相差較大。吸附Pb2+后,F(xiàn)S和RS官能團(tuán)發(fā)生明顯變化,首先,-OH(3 307、1 017 cm–1)在吸附重金屬時(shí)可以提供氫鍵作用,2種生物炭在吸附Pb2+后-OH基峰減弱,說明Pb2+占據(jù)-OH,表明離子/配體交換存在于生物炭吸附Pb2+過程中[27]。其次,C=C鍵等基團(tuán)的振動(dòng)峰也有較明顯的變化,說明C=C鍵提供的π電子與重金屬形成穩(wěn)定結(jié)構(gòu),可以判定陽離子–π鍵作用存在于2種油料作物生物炭吸附Pb2+的過程中,這與謝超然等[1]的研究結(jié)果一致。最后,CO32–在吸附Pb2+后有明顯上升,表明在Pb2+吸附過程中形成了碳酸鹽沉淀。蔣艷艷等[28]和Tan等[29]也認(rèn)為生物炭吸附重金屬的機(jī)理主要有表面離子交換、重金屬離子與官能團(tuán)的化學(xué)交聯(lián)、表面沉淀及陽離子–π作用,并且認(rèn)為陽離子–π作用本質(zhì)較為復(fù)雜,有一定靜電作用的成分。李力等[30]認(rèn)為離子交換本質(zhì)上也屬于靜電作用,從吸附力角度認(rèn)為靜電吸附主要由庫侖力引起,偏向于物理吸附作用。這也正好說明了前文D-R等溫吸附模型中平均吸附能低于8 kJ/mol,吸附過程主要是物理吸附的主要原因。
圖5 FS和RS吸附Pb2+前后的 (BSE)圖像
圖6 FS和RS吸附Pb2+前后的FTIR譜圖對(duì)比
對(duì)FS和RS吸附Pb2+后進(jìn)行XRD分析,如圖7所示。FS和RS吸附鉛離子后均有PbCO3和Pb3(CO3)2(OH)2生成。由此表明,Pb2+被吸附后進(jìn)一步轉(zhuǎn)化成了新的礦物相吸附在生物炭表面。戴靜等[31]比較了700℃下燒制的木屑、米糠、稻桿、玉米秸桿為原料的4種生物炭對(duì)鉛的吸附效果,得到相同的結(jié)果。
綜上,從物理和化學(xué)2個(gè)角度對(duì)2種油料作物秸稈生物炭對(duì)鉛離子吸附作用的分析認(rèn)為,RS和FS對(duì)Pb2+的吸附作用為物理-化學(xué)復(fù)合過程,吸附機(jī)制主要包括靜電作用、離子/配體交換、陽離子–π作用及沉淀作用等。
注:1:PbCO3,2:Pb3(CO3)2(OH)2。
統(tǒng)計(jì)整理其他研究者關(guān)于不同原料制備的生物炭對(duì)Pb2+的吸附相關(guān)報(bào)道,結(jié)果見表5。通過吸附平衡時(shí)間的對(duì)比發(fā)現(xiàn),胡麻和油菜秸稈生物炭吸附Pb2+的平衡時(shí)間較短。通過對(duì)比不同生物質(zhì)來源生物炭對(duì)Pb2+的吸附性能可見,除了核桃青皮和花椰菜等原料制備的生物炭外,本研究中的胡麻和油菜秸稈生物炭對(duì)Pb2+的吸附量較大。由此可見,胡麻和油菜秸稈生物炭對(duì)Pb2+的吸附有一定優(yōu)勢(shì),較短的時(shí)間內(nèi)即可達(dá)到較高的吸附量,是較具潛力的吸附材料。
表5 不同原料制備的生物炭對(duì)Pb2+的吸附能力比較
1)油菜和胡麻秸稈生物炭吸附鉛離子的速率較快,分別在4和10 h即可達(dá)到吸附平衡,最大吸附量分別可達(dá)到307.59 mg/g和220.07 mg/g,與其它生物質(zhì)原料制備的生物炭對(duì)Pb2+的吸附性能相比具有一定優(yōu)勢(shì)。油菜和胡麻秸稈生物炭吸附Pb2+的最佳pH值為5.5,最優(yōu)投加量為3 g/L。
3)油菜秸稈和胡麻秸稈生物炭的BET比表面積分別為84.44 m2/g和172.61 m2/g;SEM顯示,2種生物炭孔隙豐富且較為有序;FTIR表明,2種生物炭均含有大量的活性官能團(tuán),有利于Pb2+的吸附。
4)2種生物炭對(duì)Pb2+的吸附作用為物理-化學(xué)復(fù)合過程,吸附機(jī)制主要包括靜電作用、離子/配體交換、陽離子–π作用和沉淀作用。
[1] 謝超然,王兆煒,朱俊民,等. 核桃青皮生物炭對(duì)重金屬鉛、銅的吸附特性研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2016,36(4):1190—1198. Xie Chaoran, Wang Zhaowei, Zhu Junmin, et al. Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1190—1198. (in Chinese with English abstract)
[2] 杜文慧,呂紀(jì)康,陳可樂,等. 生物炭對(duì)重金屬遷移行為的阻控效應(yīng)及影響因素[J]. 杭州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,16(4):410—415.Du Wenhui, Lv Jikang, Chen Kele, et al. The retarding effect of biochar heavy metal behavior and its influence factors[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2017, 16(4): 410—415. (in Chinese with English abstract)
[3] 張曉蕾,陳靜,韓京龍,等. 殼-核結(jié)構(gòu)Fe3O4/MnO2磁性吸附劑的制備、表征及鉛吸附去除研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2013,33(10):2730—2736. Zhang Xiaolei, Chen Jing, Han Jinglong, et al. Preparation and evaluation of shell-core structured Fe3O4/MnO2magnetic adsorbent for Pb (Ⅱ) removal fromaqueous solutions[J]. Acta Scientiae Circumstantiae, 2013, 33(10): 2730—2736. (in Chinese with English abstract)
[4] Zhu Q, Wu J, Wang L, et al. Adsorption characteristics of Pb2+onto wine lees-derived biochar[J]. Bull Environ Contam Toxicol, 2016, 97(2): 294—299.
[5] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99(3): 19—33.
[6] Mohan D, Sarswat A, Ok YS, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review[J]. Bioresource Technology, 2014, 160(5): 191—202.
[7] 王林,徐應(yīng)明,梁學(xué)峰,等. 生物炭和雞糞對(duì)鎘低積累油菜吸收鎘的影響[J]. 中國環(huán)境科學(xué),2014,34(11): 2851—2858. Wang Lin, Xu Yingming, Liang Xuefeng, et al. Effects of biochar and chicken manure on cadmium uptake in pakchoi cultivars with low cadmium accumulation[J]. China Environmental Science, 2014, 34(11): 2851—2858. (in Chinese with English abstract)
[8] Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.[J]. Environmental Science & Pollution Research International, 2013, 20(1): 358—368.
[9] 李瑞月,陳德,李戀卿,等. 不同作物秸稈生物炭對(duì)溶液中Pb2+、Cd2+的吸附[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(5):1001—1008. Li Ruiyue, Chen De, Li Lianqing, et al. Adsorption of Pb2+and Cd2+in aqueous solution by biochars derived from different crop residues[J]. Journal of Agro-Environment Science, 2015, 34(5): 1001—1008. (in Chinese with English abstract)
[10] Sun K, Jin J, Keiluweit M, et al. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars[J]. Bioresource Technology, 2012, 118(8): 120—127.
[11] 林寧,張晗,賈珍珍,等. 不同生物質(zhì)來源生物炭對(duì)Pb(Ⅱ)的吸附特性[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(5):992—998. Lin Ning, Zhang Han, Jia Zhenzhen, et al. Adsorption of Pb(Ⅱ) by biochars derived from three types of biomass[J]. Journal of Agro-Environment Science, 2016, 35(5): 992—998. (in Chinese with English abstract)
[12] 余偉光,黎吉輝,王敦,等. 香蕉莖稈生物炭的制備及其對(duì)銅離子的吸附特性[J]. 化工進(jìn)展,2017,36(4):1499—1505. Yu Weiguang, Li Jihui, Wang Dun, et al. The preparation of biochar from pre-oxidation of banana stem and its adsorption of Cu2+[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1499—1505. (in Chinese with English abstract)
[13] 丁文川,杜勇,曾曉嵐,等. 富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究[J]. 環(huán)境化學(xué),2012,31(9):1375—1380.Ding Wenchuan, Du Yong, Zeng Xiaolan, et al. Aqueous solution Pb(Ⅱ) removal by biochar derived from phosphorus- rich excess sludge[J]. Environmental Chenistry, 2012, 31(9): 1375—1380. (in Chinese with English abstract)
[14] Chen T, Zhou Z, Xu S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190: 388—394.
[15] Inyang M, Gao B, Pullammanappallil P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2010, 101(22): 8868—8872.
[16] 徐楠楠,林大松,徐應(yīng)明,等. 玉米秸稈生物炭對(duì)Cd2+的吸附特性及影響因素[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(5):958—964. Xu Nannan, Lin Dasong, Xu Yingming, et al. Adsorption of aquatic Cd2+by biochar obtained from corn stover[J]. Journal of Agro-Environment Science, 2014, 33(5): 958—964. (in Chinese with English abstract)
[17] 趙保衛(wèi),石夏穎,馬鋒鋒,等. Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物質(zhì)炭上吸附的交互作用[J]. 環(huán)境化學(xué),2016,35(2):323—329. Zhao Baowei, Shi Xiaying, Ma Fengfeng. Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environmental Chemistry, 2016, 35(2): 323—329. (in Chinese with English abstract)
[18] 秦婷婷,王兆煒,朱俊民,等. 花椰菜基生物炭對(duì)水中Pb(Ⅱ)的吸附性能[J]. 環(huán)境科學(xué)學(xué)報(bào),2017,37(8):2977—2988. Qin Tingting, Wang Zhaowei, Zhu Junmin, et al. Adsorption characteristics of Pb(II) by biochars derived from cauliflower (Brassica oleracea L.) from aqueous solution[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2977—2988. (in Chinese with English abstract)
[19] Mohan D, Kumar H, Sarswat A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis biochars[J]. Chemical Engineering Journal, 2014, 236(2): 513—528.
[20] 安增莉,侯艷偉,蔡超,等. 水稻秸稈生物炭對(duì)Pb(Ⅱ)的吸附特性[J]. 環(huán)境化學(xué),2011,30(11):1851—1857.An Zengli, Hou Yanwei, Cai Chao, et al. Lead (Ⅱ) adsorption characteristics of different biochars derived from rice straw[J]. Environmental Chemistry, 2011, 30(11): 1851—1857. (in Chinese with English abstract)
[21] 王彤彤,馬江波,曲東,等. 兩種木材生物炭對(duì)銅離子的吸附特性及其機(jī)制[J]. 環(huán)境科學(xué),2017,38(5):2161—2171. Wang Tongtong, Ma Jiangbo, Qu Dong, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 2017, 38(5): 2161—2171. (in Chinese with English abstract)
[22] 張雙圣, 劉漢湖, 張雙全, 等. 污泥吸附劑的制備及其對(duì)含Pb2+模擬廢水的吸附特性研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2011, 31(7): 1403—1412. Zhang Shuangsheng, Liu Hanhu, Zhang Shuangquan, et al. Lead adsorption properties of a sludge adsorbent prepared from sludge and coal[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1403—1412.(in Chinese with English abstract)
[23] 王博,葉春,李法云,等. 水生植物制生物炭對(duì)硝態(tài)氮的吸附規(guī)律研究[J]. 中國環(huán)境科學(xué),2017,37(1):116—122.Wang Bo, Ye Chun, Li Fayun, et al. Studies on adsorption of nitrate from modified hydrophyte biochars[J]. China Environmental Science, 2017, 37(1): 116—122.
[24] 李際會(huì). 改性生物炭吸附硝酸鹽和磷酸鹽研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2012. Li Jihui. Adsorption of Nitrate and Phosphate by Modified Biochar[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2012. (in Chinese with English abstract)
[25] Kiran I, Akar T, Ozcan AS, et al. Biosorption kinetics and isotherm studies of acid red 57 by dried cephalosporium aphidicola cells from aqueous solutions[J]. Biochemical Engineering Journal, 2006, 31(3): 197—203.
[26] 韓旸,多立安,劉仲齊,等. 生物炭顆粒的分級(jí)提取、表征及其對(duì)磺胺甲噁唑的吸附性能研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2017,37(6):2181—2189. Han Yang, Duo Lian,Liu Zhongqi, et al. Fractionated extraction and characterization of biochar and its adsorption behavior for sulfamethoxazole[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2181—2189. (in Chinese with English abstract)
[27] 郭文娟,梁學(xué)峰,林大松,等. 土壤重金屬鈍化修復(fù)劑生物炭對(duì)鎘的吸附特性研究[J]. 環(huán)境科學(xué),2013,34(9):3716—3721. Guo Wenjuan, Liang Xuefeng, Lin Dasong, et al. Adsorption of Cd2+on biochar from aqueous solution[J]. Environmental Science, 2013, 34(9): 3716—3721. (in Chinese with English abstract)
[28] 蔣艷艷,胡孝明,金衛(wèi)斌. 生物炭對(duì)廢水中重金屬吸附研究進(jìn)展[J]. 湖北農(nóng)業(yè)科學(xué),2013,52(13):2984—2988. Jiang Yanyan, Hu Xiaoming, Jin Weibin. Advances on absorption of heavy metals in the waste water by biochar[J]. Hubei Agricultural Sciences, 2013, 52(13): 2984—2988. (in Chinese with English abstract)
[29] Tan X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70—85.
[30] 李力,陸宇超,劉婭,等. 玉米秸稈生物炭對(duì)Cd(Ⅱ)的吸附機(jī)理研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(11): 2277—2283. Li Li, Lu Yuchao, Liu Ya, et al. Adsorption mechanisms of Cd(Ⅱ) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277—2283. (in Chinese with English abstract)
[31] 戴靜,劉陽生. 四種原料熱解產(chǎn)生的生物炭對(duì)Pb2+和Cd2+的吸附特性研究[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,49(6):1075—1082. Dai Jing, Liu Yangsheng. Adsorption of Pb2+and Cd2+onto biochars derived from pyrolysis of four kinds of biomasses[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075—1082. (in Chinese with English abstract)
[32] 郭素華,許中堅(jiān),李方文,等. 生物炭對(duì)水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 環(huán)境工程學(xué)報(bào),2015,9(7):3215—3222. Guo Suhua, Xu Zhongjian, Li Fangwen, et al. Adsorption of Pb(II), Zn(II) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3215—3222. (in Chinese with English abstract)
[33] Shen Z, Jin F, Wang F, et al. Sorption of lead by salisbury biochar produced from British broadleaf hardwood[J]. Bioresour Technol, 2015, 193: 553—556.
Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar
Zhang Lianke1,2, Liu Xinyu1, Wang Weida1, Li Yumei1, Sun Peng1, Shang Shaopeng1※, Jiang Qinghong1
(1.014010,; 2.710055,)
In recent years, with the continuous development of economy, heavy metal pollution becomes increasingly serious. Biochar is often obtained from agriculture wastes through pyrolysis, in which the biomass is subjected to thermochemical conversion under an oxygen-limited condition. As a new type of cheap efficient adsorbent, because of the larger specific surface area and high surface energy, and the surface containing rich-oxygen functional groups, biochar has a good application prospect in wastewater treatment, causing great interest for scientist. Flax () and rape (L.) are the typical oil crops, which are kinds of good raw material for producing biochars. However, large amounts of flax straw (FS) and rape straw (RS) are discarded or incinerated directly and cause resource waste and environmental pollution seriously. In order to utilize the waste biomass resources, 2 types of biochars derived from FS and RS were prepared by pyrolyzing at a temperature of 700 ℃ under oxygen-limited condition, and the adsorptions of Pb2+ in aqueous solutions were evaluated. The effects of contact time, initial Pb2+ concentration and initial pH value in batch experiments were investigated by the 4 kinds of adsorption kinetics models (Pseudo first-order, Pseudo second-order, Elovich and Intra-particle diffusion model) and the 4 kinds of isothermal adsorption models (Langmuir, Freundlich, Temkin and D-R model). The structure and properties of biochars were characterized by using Brunauer-Emmett-Teller (BET) surface area and pore size analysis, scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR), which were used to preliminarily analyze adsorption mechanism. The results showed that the BET surface areas of RS and FS were 84.44 and 172.61 m2/g, respectively; SEM showed that the surface of 2 kinds of biochars was smooth, and the pore structure was compact and regular; FTIR indicated that the active functional groups such as CO32- (675-750, 835-886 cm–1), secondary alcohol (1 017 cm–1), C-C (1 437 cm–1), -COOH or C=O (1 578 cm–1), C=C (1 687 cm–1), -CH2– (2 800-3 000 cm–1), -OH (3 307 cm–1) were found to be rich on the surfaces of 2 kinds of biochars, and all of the properties were good for Pb2+ adsorption. The XRD patterns suggested that carbonate and basic carbonate containing Pb2+ were present in these biochars after adsorption. The adsorption equilibrium of RS and FS was reached in 4 and 10 h, respectively, and the adsorption capacity of RS and FS reached 307.59 and 220.07 mg/g, respectively. The adsorption kinetics were best fitted by the Pseudo second order model, while the isothermal adsorption was best described by Langmuir isotherm. This indicated that Pb2+ ions were adsorbed onto 2 kinds of biochars via monolayer. The adsorption mechanism for Pb2+ was a complex interaction of physical and chemical factors, mainly including electrostatic interaction, ion exchange/ligand exchange, cationic-π and precipitation. The results obtained show that 2 kinds of oil crop biochars are both excellent adsorbents to Pb2+ in aqueous solution and will provide important information on applying as low cost adsorbents for removal of heavy metals in contaminated water.
biochar; heavy metals; adsorption; lead
張連科,劉心宇,王維大,李玉梅,孫 鵬,尚少鵬,姜慶宏.油料作物秸稈生物炭對(duì)水體中鉛離子的吸附特性與機(jī)制[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):218-226. doi:10.11975/j.issn.1002-6819.2018.07.028 http://www.tcsae.org
Zhang Lianke, Liu Xinyu, Wang Weida, Li Yumei, Sun Peng, Shang Shaopeng, Jiang Qinghong. Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 218-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.028 http://www.tcsae.org
2017-11-20
2018-01-30
內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2016MS0221);包頭市科技計(jì)劃項(xiàng)目(2016X1021);內(nèi)蒙古科技大學(xué)產(chǎn)學(xué)研合作培育基金項(xiàng)目(2016CXY03)
張連科,博士,副教授,主要從事水土環(huán)境污染控制與修復(fù)研究。Email:lkzhang@126.com
尚少鵬,副教授,主要從事水土環(huán)境污染控制與修復(fù)研究。Email:297356651@qq.com
10.11975/j.issn.1002-6819.2018.07.028
X7
A
1002-6819(2018)-07-0218-09