• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pd-Ag合金納米線的可見光輔助簡易合成及其對乙醇的電催化氧化

    2018-04-10 09:26:49譚德新王艷麗
    關(guān)鍵詞:電催化納米線乙醇

    譚德新 王艷麗

    0 Introduction

    Direct liquid fuel cells,especially direct ethanol fuel cells (DEFCs),is considered to be one of the promising clean energy sources with high energy conversion efficiency and low environmental pollution[1-2].Up to now,designing highly efficient catalysts is still the main challenges for DEFCs applications.Pd-based catalysts,because of their low cost and good tolerance to the poisoning caused by intermediate species during the ethanol oxidation process,are likely to be put into practical use for DEFCs[3].Particularly,the incorporation of a second metal (M)into Pd for forming PdM alloy often brings superior catalytic performance,due to the synergistic effects and rich diversity of the compositions[4].Recently,several PdM catalysts,such as Pd-Ag[3],Pd-Cu[5]and Pd-Sn[6],demonstrate the enhanced catalytic activity toward the ethanol oxidation reaction (EOR).For example,welldispersed fcc-Pd-Cu alloys are successfully prepared by one-pot synthesis and a two-step reductive process,and show an excellent catalytic activity,durability and catalytic stability toward EOR[5].On the other hand,specific structures,such as one-dimensional(1D)bimetallic nanowires or nanotubes[7],threedimensional(3D)noble metal networks (NWs)[3],nanoflowers[8],nanoneedles[9],or core-shells[10],have significant effects on the properties of the materials.Among them,1D bimetallic nanowires exhibit enhanced electrocatalytic activity for fuels anodic oxidation and oxygen cathodic reduction owing to the large specific interface areas.Recently,Chen et al.[2]synthesized bimetallic Pd-Ag alloy nanowires at 170℃with oil bath by one-step wet chemical strategy,exhibiting enhanced catalytic activity for formic acid oxidation.Compared to the conventional heat treatment methods,the products are more uniform and the growth mechanism can be more conveniently resolved using photochemical and irradiation synthesis methods[11-13].These simple processes have proven to be a promising route for the preparation of Pd-based catalysts.Current photochemical methods focus mainly on the use of high-energy radiation,such as UV light orγ-irradiation.For instance,Nenoff et al.[14]have successfully prepared Ag-Ni alloy nanoparticles and Pd-Ni alloy nanoparticles via a60Co-γsource.Pande et al.[15]have reported the synthesis of monometallic (Au and Pd)and bimetallic(AuPd)nanoparticles using graphitic carbon nitride quantum dots under the UV lamp(λ=365 nm).Therefore,it is important to design a safer,cheaper,and more facile light-assisted method to synthesize 1D Pd-based alloy nanostructures.Recently,we have presented a novel visible-light-assisted method to synthesize Pd nanoparticles with single-crystalline and multiple-twinned structures[16-17].However,to the best of our knowledge,there have been few reports on visible light-assisted synthesis of Pd-based alloy,especially with 1D nanowires structures.Thus,we have geared our efforts towards exploring a simple,inexpensive,and efficient approach to the large-scale fabrication of 1D Pd-based alloy nanostructures.

    In this paper,a facile and environmentally friendly visible-light-assisted method has been developed for the synthesis of 1D Pd-Ag alloy nanowires under the irradiation of visible light from a commercial incandescent lamp.The unique nanowires were produced by the coreduction of Pd and Ag precursors in the presence of sodium citrate tribasic dehydrate and poly (vinyl pyrrolidone).The as-prepared Pd-Ag nanowires exhibited excellent electrocatalytic activity toward EOR.

    1 Experimental

    1.1 Chemicals and materials

    Palladium nitrate (Pd(NO3)2·2H2O, >99.9%),silver nitrate(AgNO3,>99.8%)and poly(vinyl pyrrolidone)(PVP,MW=58 000)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Sodium citrate tribasic dehydrate (Na3C6H5O7·2H2O, >99%)and ethanol were obtained from Nanjing Chemical Reagent No.1 Factory.All other chemicals were analysis reagent(AR)grade and used as received.

    1.2 Synthesis of Pd-Ag alloy nanowires

    In a typical synthesis,sodium citrate tribasic dehydrate(3.4 mmol),PVP(1.7 mmol),Pd(NO3)2·2H2O(26.27 mmol)and AgNO3(30.61 mmol)was mixed with 20 mL of ethanol and 4 mL of deionized water in a glass vessel.The mixture was dispersed to form a homogeneous solution by constant strong stirring for 10 min at room temperature.Then,the mixture was irradiated under constant stirring for 2 h with visible light from the 200-Watt incandescent lamp at a distance of 5 cm (5.30 mW·cm2put on the reacting mixture).Two hours later,the temperature of mixture was 78℃.The color of solution was gradually changed from pale yellow to dark.The dark suspensions were precipitated by acetone and washed at least three times with ethanol to remove excess metal precursors and PVP.The final dark product could be easily redispersed in ethanol solvents to yield a clear homogeneous solution.As a comparison,Pd and Ag nanomaterials were synthesized using the same method.The final products were denoted as Pd,Ag and Pd-Ag,respectively,according to the different compositions.

    1.3 Characterization

    Transmission electron microscopy(TEM)images,high resolution transmission electron microscopy(HRTEM)images,selected area electron diffraction(SAED)patterns and energy dispersive spectrometer(EDS)were carried out on a JEM-2010 instrument operated at 200 kV.Field emission scanning electron microscopy (FESEM)images were performed with a Sirion 200 instrument.Powder X-ray diffraction(PXRD)pattern was recorded on a XD-3 type X-ray diffractometer employing Cu Kα radiation(λ=0.154 06 nm)for scattering angles 25°≤2θ≤90°with 36 kV and 30 mA.UV-visible spectroscopy of the prepared suspensions was obtained by an UV-visible spectrophotometer (UV-2600)from Shimadzu with quartz cuvettes.The intensity of the light was detected by a FZ400 visible light power meter.

    1.4 Electrochemistry tests

    Electrochemical measurements were performed with a CHI 660E electrochemical workstation(CH Instruments,Chenhua Co.,Shanghai,China)at room temperature,and conducted on a conventional threeelectrode cell,which includes a platinum wire as counter electrode,a saturated calomel electrode(SCE)as reference electrode and the nanomaterials-modified glassy carbon electrode (GCE,3 mm in diameter)as working electrode.In all electrochemical measurements,the current densities were normalized to the geometric surface area of the GCE.

    For the preparation of the nanomaterials modified electrode,6μL of a suspension containing nanomaterials (nanomaterials concentration=1 g·L-1)was dropped on the clean electrode surface (the area of the electrode=7.065×10-2cm2)and dried in air.Next,the Nafion film was prepared by dropping 3μL of a Nafion solution (0.1%,w/w)onto the electrode and allowed the solvent to evaporate at room temperature.The solutions were deaerated thoroughly for at least 30 min with pure nitrogen gas and kept under a positive pressure of this gas during the experiments.All experiments were performed at room temperature.

    2 Results and discussion

    2.1 Characterization of Pd-Ag alloy nanowires

    The crystalline phase of the Pd-Ag alloy nanowires was further studied with PXRD measurement as shown in Fig.1.For comparison,the PXRD patterns of Pd and Ag are also displayed in Fig.1.In the pattern of Pd,the peaks at ca.40.01°,46.52°,68.11°,82.00°and 86.40°represent the Pd(111),Pd(200),Pd(220),Pd(311)and Pd(222)planes,respectively.Compared to the data of Pd,the diffraction peaks from Pd-Ag nanowires shift to lower 2θvalues,suggesting the reduction in lattice constant.Here,all the diffraction peaks from Pd-Ag nanowires locate between the positions expected for the Pd and Ag,indicating the obvious alloying of Pd and Ag.Such PXRD phenomenon has also been observed with other bimetallic alloy nanostructures[2-3].Moreover,neither a Pd nor an Ag single component peak was detected,confirming the presence of only single-phase Pd-Ag alloys.It also should be noted that,from the PXRD pattern of Pd-Ag,the intensity ratio between the diffraction peaks of Pd(111)and Pd(200)is 2.13,suggesting the abundant (111)planes of the Pd-Ag nanowires.The bimetallic Pd-Ag nanoparticles′size can be calculated according to Scherrer equation[18]:

    Fig.1 PXRD patterns of Pd,Ag and Pd-Ag alloy nanowires

    where L is the size of Pd-Ag nanoparticles.λKα1is the X-ray wavelength (λ=0.154 nm).B2θis the half-peak width.θmaxis the Bragg angle.The calculated nanoparticle size of Pd-Ag nanowires is 4.89 nm,which agree with the TEM results very well.

    The morphologies of the as-synthesized materials were characterized by FESEM(Fig.2(A))and TEM(Fig.2(B,C))measurements,which confirms the formation of the nanowires by a facile visible-light-assisted method.It can be seen that,uniform nanowires with high yield were obtained.The length of such nanowires can reach up to 250 nm with average diameters of 4 nm.For a single nanowire,it consists of interconnected nanoparticles(top left inset in Fig.2(C)).To investigate the crystal structures of the synthesized Pd-Ag nanowires,HRTEM analyses were also performed(Fig.2(D)).Well-resolved lattice fringes can be seen in Fig.2(D).PXRD result is consistent with(111)interplanar spacing found in the HRTEM measurements.By careful measurements,it was found that there is mainly one type of lattice fringes with interplanar spacing of 0.23 nm,which is ascribed to the (111)lattice plane of the Pd-Ag alloy nanostructure.The lattice fringes are not continuous and their orientations vary,demonstrating that the interconnected Pd-Ag nanowires are polycrystalline.This is further confirmed by the selected area electron diffraction(SAED)pattern,as shown in Fig.2(B),inset.The morphology of such ultrathin nanowires is very similar to that of other two-step synthesized Pd-Pt[19]and one-step synthesized Pd-Ag nanowires at 170℃with polyol reduction method[2].So the present report provides a facile route for preparing bimetallic alloy nanowires.From EDSanalysis shown in Fig.2(E),both Pd and Ag are present in the nanowire materials in addition to the Cu substrate.The average molar ratio of Pd to Ag is determined to be 46∶54 based on the EDX measurement,which is close to 26.27∶30.61.It is clear that the precursors can be largely reduced in the presence of sodium citrate tribasic dehydrate and ethanol[3].

    Fig.2 (A)FESEM image,(B)TEM image and the corresponding SAED pattern(inset),(C)high-magnification TEM image,(D)HRTEM image,and(E)EDX spectrum of Pd-Ag alloy nanowires

    Fig.3 UV-visible spectroscopy of Pd,Ag and Pd-Ag alloy nanowires

    Fig.3 shows the UV-Vis absorption spectra of Ag,Pd-Ag and Pd nanoparticles in colloid state.In Fig.3,a distinct band is observed at 411 nm for Ag colloid that must be due to the localized surface plasmon resonance (SPR)excitation of the Ag nanoparticles[20].It is noteworthy that this band is gradually weakened,with a clear red-shift,as Pd is added to form Pd-Ag alloy,and no UV-Vis absorption is seen at all for pure Pd colloid.The UV-Vis absorption characteristics here also agree well with the Pd-Ag alloy reported previously,indicating Pd-Ag nanoparticles are present in a form of homogeneous alloy[20-21].

    2.2 Ethanol oxidation with Pd-Ag alloy nanowires

    The electrocatalytic activities of Pd nanoparticles and Pd-Ag nanowires were studied by cyclic voltammetry (CV)from-0.8 to 0.3 V with the same Pd loading.Fig.4(A)shows the typical CV curves of Pd and Pd-Ag nanowires in N2-saturated 1 mol·L-1KOH solution.Both samples present reduction peaks of palladium oxides between-0.60 and-0.20 V in the negative scan.Pd-Ag alloy present the highest reduction peak.In the positive scan,OH-was adsorbed onto the surface of catalysts.In comparison with Pd nanoparticles,Pd-Ag alloy shows a more negative onset potential,indicating the easier adsorption of OH-on the surface[3].

    According to the CV curves in Fig.4(A),the corresponding ECSA of each catalyst was calculated by quantification of the electric charges associated with the reduction of PdO[22],as shown in the following equation[4]:

    where Q is the charge for PdO reduction on the surface,which can be obtained from the area integral of Fig.4(A).m is the mass of Pd(6μg).C is the charge required to reduce the layer of PdO(420 μC·cm-2).v is the scan rate,which is 50 mV·s-1.The calculated ECSA is listed in Table 1.It has been demonstrated that ECSA dominates the electrocatalytic activity of catalyst materials.Higher ECSA contributes to an increase of ethanol oxidation reaction activity and thus an increase of the overall fuel cell performance[23].The specific ECSA of the Pd-Ag alloy nanowires(71.43 m2·gPd-1)is higher than the Pd nanoparticles(37.57 m2·gPd-1).

    Fig.4 CV curves of Pd and Pd-Ag catalysts in N2-saturated 1 mol·L-1 KOH(A)and 1 mol·L-1 KOH+1 mol·L-1 CH3CH2OH solution(B)at a scan rate of 50 mV·s-1

    Table 1 Electrochemical parameters of Pd and Pd-Ag alloy nanowires

    Fig.4(B)shows the second voltammogram run with Pd nanoparticles and Pd-Ag nanowires modified electrode in 1 mol·L-1KOH containing 1 mol·L-1ethanol,respectively.Both samples display a typical current peak in the forward scan,representing the oxidation of ethanol.The onset potential and peak current of Pd and Pd-Ag catalysts are summarized in Table 1.A more negative onset potential and higher peak current were presented on Pd-Ag alloy nanowires compared to Pd nanoparticles.In the backward scan,another oxidation peak is formed on the two CV curves,which is associated with the oxidation of intermediates of ethanol dissociative adsorption.The accumulation of these intermediateswill cause“catalyst poisoning”[24-25].The ratio of forward peak current density (If)to backward peak current density (Ib)is used to evaluate the catalyst tolerance to carbonaceous intermediates accumulation[26].The ethanol oxidation reaction test results show that the If/Ibvalues of the synthesized Pd-Ag alloy nanowires are larger than that of Pd,indicating the better tolerance to carbonaceous intermediates accumulation of as-prepared nanowires.

    The CV curves of the ethanol oxidation reaction on the Pd-Ag alloy nanowires catalyst in 1.0 mol·L-1KOH containing 1.0 mol·L-1ethanol at different scan rates is shown in Fig.5(A),and the insert shows the relationship between the peak current density and the square root of scan rate.As can be seen,the peak current densities are linearly proportional to the square root of the scan rates,suggesting that the ethanol oxidation reaction on the Pd-Ag nanowires catalyst in alkaline media may be controlled by a diffusion process[27-28].

    To investigate the electrocatalyst stability of Pd nanoparticles and Pd-Ag alloy nanowires,chronoamperometric tests were carried out on the catalysts at a potential of-0.3 V for 2 000 s in N2-saturated 1 mol·L-1KOH+1 mol·L-1CH3CH2OH solution,as shown in Fig.5(B).Both the catalysts show a significant decay at the very beginning and then remain stable.The current decay of the EOR implies the formation of carbonaceous intermediates,which can poison the active sites of the catalysts.As expected,the Pd-Ag alloy nanowires show higher current density at the start and the end of the tests than Pd nanoparticles,indicating its better catalytic activity and stability against the poisoning[25,29].

    Fig.5 (A)CV curves of the Pd-Ag alloy nanowires with the various scan rates,and the insert is the dependence of cathodic peak current density on the square root of scan rate;(B)Chronoamperometric curves of Pd and Pd-Ag alloy nanowires at an electrode potential of-0.3 V

    3 Conclusions

    In summary,we have synthesized Pd-Ag alloy nanowires via a facile visible-light-assisted method.In cyclic voltammetric and chronoamperometric tests of ethanol oxidation,Pd-Ag alloy nanowires present much better catalytic activity with larger oxidation current density,higher ECSA,more negative onset potential,and better stability in comparsion with Pd nanoparticles.Overall,the present study not only provides a facile one-step method to prepare alloy nanowires, but also find the obtained Pd-Ag electrocatalyst with high catalytic performance for application in fuel cells.

    [1]Puthiyapura V K,Brett D JL,Russell A E,et al.ACSAppl.Mater.Interfaces,2016,8(20):12859-12870

    [2]Lu Y Z,Chen W.ACSCatal.,2012,2(1):84-90

    [3]Fu SF,Zhu C Z,Du D,et al.ACSAppl.Mater.Interfaces,2015,7(25):13842-13848

    [4]Zhang Q L,Feng J X,Wang A J,et al.RSC Adv.,2014,4(95):52640-52646

    [5]Xue J,Han G,Ye W,et al.ACS Appl.Mater.Interfaces,2016,8(50):34497-34505

    [6]Du W X,Mackenzie K E,Milano D F,et al.ACS Catal.,2012,2(2):287-297

    [7]Nasrollahzadeh M,Azarian A,Ehsani A,et al.Tetrahedron Lett.,2014,55(17):2813-2817

    [8]Ahmed M S,Jeon S.J.Electrochem.Soc.,2014,161(12):F1300-F1306

    [9]Lu Y Z,Chen W.J.Phys.Chem.C,2010,114(49):21190-21200

    [10]Jiang Y Y,Lu Y Z,Han D X,et al.Nanotechnology,2012,23(10):105609-105617

    [11]Zhang B,Dai W,Ye X C,et al.Angew.Chem.Int.Ed.,2006,45(16):2571-2574

    [12]Kim F,Song J H,Yang P D.J.Am.Chem.Soc.,2002,124(48):14316-14317

    [13]Xie Y,Qiao Z,Chen M,et al.Adv.Mater.,1999,11(18):1512-1515

    [14]Zhang Z Y,Nenoff T M,Leung K,et al.J.Phys.Chem.C,2010,114(34):14309-14318

    [15]Fageria P,Uppala S,Nazir R,et al.Langmuir,2016,32(39):10054-10064

    [16]Tan D X,Wang Y L,Gan Y.Rare Met.Mater.Eng.,2017,46(8):2065-2069

    [17]TAN De-Xin(譚德新),WANG Yan-Li(王艷麗),GAN Ying(甘影),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2016,32(3):475-482

    [18]Pan H B,Wai CM.New J.Chem.,2011,35(8):1649-1660

    [19]Yuan Q,Zhuang J,Wang X.Chem.Commun.,2009,43:6613-6615

    [20]Kim K,Kim K L,Shin K S.J.Phys.Chem.C,2011,115(30):14844-14851

    [21]Chen JY,Wiley B JM,Mclellan J,et al.Nano Lett.,2005,5(10):2058-2062

    [22]Qiu Y,Xin L,Chadderdon D J,et al.Green Chem.,2014,16(3):1305-1315

    [23]Kibsgaard J,Gorlin Y,Chen Z B,et al.J.Am.Chem.Soc.,2012,134(18):7758-7765

    [24]Zhu C Z,Guo S J,Dong S J.Chem.Eur.J.,2013,19(3):1104-1111

    [25]Liang Z X,Zhao T S,Xu J B,et al.Electrochim.Acta,2009,54(8):2203-2208

    [26]Peng C,Hu Y,Liu M,et al.J.Power Sources,2015,278:69-75

    [27]Sun Z P,Zhang X G,Liang Y Y,et al.Electrochem.Commun.,2009,11(3):557-561

    [28]An C L,Kuang Y F,Fu C P,et al.Electrochem.Commun.,2011,13(12):1413-1416

    [29]Hu G Z,Nitze F,Barzegar H R,et al.J.Power Sources,2012,209:236-242

    猜你喜歡
    電催化納米線乙醇
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    乙醇和乙酸常見考點(diǎn)例忻
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    楊木發(fā)酵乙醇剩余物制備緩釋肥料
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    白地霉不對稱還原1-萘乙酮制備(S) -1-萘基-1-乙醇
    Cu4簇合物“元件組裝”合成及其結(jié)構(gòu)與電催化作用
    精品少妇久久久久久888优播| 97超碰精品成人国产| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 日本色播在线视频| 黄色怎么调成土黄色| a级毛片黄视频| 中文字幕人妻熟人妻熟丝袜美| 十八禁网站网址无遮挡| 一区二区三区精品91| 精品久久久久久久久av| 97精品久久久久久久久久精品| 少妇精品久久久久久久| 色网站视频免费| 久久精品国产自在天天线| 久久久久人妻精品一区果冻| 久久人人爽人人片av| 国产乱人偷精品视频| 少妇高潮的动态图| 久久久久精品久久久久真实原创| 亚洲高清免费不卡视频| 91成人精品电影| 久久精品人人爽人人爽视色| 久久久久久伊人网av| 91久久精品国产一区二区成人| 啦啦啦啦在线视频资源| 十八禁网站网址无遮挡| av福利片在线| 日日撸夜夜添| 在线观看免费高清a一片| 午夜91福利影院| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 99热6这里只有精品| 国产淫语在线视频| 久久免费观看电影| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 91精品三级在线观看| 大香蕉久久成人网| 人人妻人人添人人爽欧美一区卜| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 久久人人爽av亚洲精品天堂| 亚洲av不卡在线观看| 99re6热这里在线精品视频| 在线观看免费日韩欧美大片 | 中文字幕免费在线视频6| 99国产精品免费福利视频| 日本与韩国留学比较| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 观看av在线不卡| xxxhd国产人妻xxx| 丝瓜视频免费看黄片| 久久久国产精品麻豆| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | 99国产综合亚洲精品| 精品一区二区免费观看| 一本一本综合久久| 少妇的逼水好多| 男女啪啪激烈高潮av片| 久久久久久久精品精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 日本91视频免费播放| 99精国产麻豆久久婷婷| 有码 亚洲区| 水蜜桃什么品种好| 亚洲在久久综合| 成人黄色视频免费在线看| 综合色丁香网| av线在线观看网站| 国产高清不卡午夜福利| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 熟女av电影| 91国产中文字幕| 搡老乐熟女国产| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 高清av免费在线| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 日韩熟女老妇一区二区性免费视频| 国产极品粉嫩免费观看在线 | 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 人妻人人澡人人爽人人| 国产又色又爽无遮挡免| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 高清在线视频一区二区三区| 人成视频在线观看免费观看| 天堂8中文在线网| 中文字幕亚洲精品专区| 天堂中文最新版在线下载| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 老司机影院成人| 一区二区日韩欧美中文字幕 | 精品国产一区二区久久| 精品一区二区三区视频在线| 亚洲欧美成人精品一区二区| 最黄视频免费看| 99九九在线精品视频| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 国产色婷婷99| 亚洲色图 男人天堂 中文字幕 | 精品人妻熟女av久视频| 欧美老熟妇乱子伦牲交| 美女国产视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 亚洲综合色惰| 青春草国产在线视频| 人妻制服诱惑在线中文字幕| 日韩中文字幕视频在线看片| a级毛色黄片| 国产欧美亚洲国产| 亚洲综合色网址| 最近2019中文字幕mv第一页| 一区二区日韩欧美中文字幕 | 久久久久精品久久久久真实原创| 曰老女人黄片| 免费大片黄手机在线观看| 精品一区二区免费观看| 国产日韩欧美视频二区| 亚洲中文av在线| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区三区视频在线| 黄色一级大片看看| 精品午夜福利在线看| 97精品久久久久久久久久精品| 一个人看视频在线观看www免费| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 欧美97在线视频| 国产精品成人在线| 日韩免费高清中文字幕av| av在线老鸭窝| 国产精品无大码| 亚洲高清免费不卡视频| 在线播放无遮挡| 日韩伦理黄色片| 美女cb高潮喷水在线观看| 少妇的逼水好多| 69精品国产乱码久久久| 亚洲四区av| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕 | 午夜激情福利司机影院| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 久久久久人妻精品一区果冻| av在线老鸭窝| 欧美日韩在线观看h| 王馨瑶露胸无遮挡在线观看| 在线播放无遮挡| 国产一区二区在线观看av| 中文乱码字字幕精品一区二区三区| 日韩在线高清观看一区二区三区| 视频区图区小说| 五月天丁香电影| a级片在线免费高清观看视频| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 欧美日韩综合久久久久久| 国产男女内射视频| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 欧美日韩成人在线一区二区| 国内精品宾馆在线| av有码第一页| 久久午夜综合久久蜜桃| 国产色婷婷99| 亚洲伊人久久精品综合| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 国产av国产精品国产| 日本欧美视频一区| 街头女战士在线观看网站| 国产免费一区二区三区四区乱码| 99国产精品免费福利视频| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩另类电影网站| 老司机影院毛片| 久久久精品94久久精品| av在线老鸭窝| 少妇人妻 视频| 熟女人妻精品中文字幕| 免费高清在线观看日韩| 亚洲av电影在线观看一区二区三区| 亚洲美女搞黄在线观看| 久久99蜜桃精品久久| 人妻人人澡人人爽人人| 在线精品无人区一区二区三| 精品久久国产蜜桃| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 美女国产高潮福利片在线看| 看十八女毛片水多多多| 国产精品女同一区二区软件| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 乱人伦中国视频| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| av专区在线播放| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃| 在线观看免费高清a一片| 成人午夜精彩视频在线观看| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 热re99久久国产66热| 两个人免费观看高清视频| 亚洲欧洲国产日韩| 久热久热在线精品观看| 久久久午夜欧美精品| 午夜老司机福利剧场| 日韩在线高清观看一区二区三区| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 寂寞人妻少妇视频99o| 免费久久久久久久精品成人欧美视频 | 亚洲欧美成人综合另类久久久| 国产亚洲最大av| 中文乱码字字幕精品一区二区三区| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| 草草在线视频免费看| 男女国产视频网站| 丝袜脚勾引网站| av在线老鸭窝| 欧美精品人与动牲交sv欧美| 国产一区二区在线观看av| 最近手机中文字幕大全| 国产一级毛片在线| 黄色配什么色好看| 亚洲天堂av无毛| 观看美女的网站| 美女视频免费永久观看网站| 久久久久国产网址| 七月丁香在线播放| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| av有码第一页| 青春草亚洲视频在线观看| av在线老鸭窝| 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美 | 成年av动漫网址| 亚洲精品日韩在线中文字幕| 国产精品99久久99久久久不卡 | 国产乱来视频区| 狠狠婷婷综合久久久久久88av| 免费观看性生交大片5| 久热这里只有精品99| 日韩大片免费观看网站| 新久久久久国产一级毛片| 69精品国产乱码久久久| 青春草国产在线视频| 永久网站在线| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 亚洲美女视频黄频| 中文字幕免费在线视频6| 超色免费av| 久久久久网色| 夜夜看夜夜爽夜夜摸| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 久久久欧美国产精品| 一级片'在线观看视频| videos熟女内射| 26uuu在线亚洲综合色| 另类精品久久| 这个男人来自地球电影免费观看 | 日韩av不卡免费在线播放| 国模一区二区三区四区视频| 女性生殖器流出的白浆| 国产成人免费无遮挡视频| 亚洲无线观看免费| 色哟哟·www| 午夜影院在线不卡| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 亚洲国产av影院在线观看| 国产精品久久久久久久久免| 男人操女人黄网站| a级毛色黄片| 一级,二级,三级黄色视频| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| av国产久精品久网站免费入址| 欧美日本中文国产一区发布| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| av一本久久久久| 精品一区二区三卡| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| 日本av免费视频播放| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 边亲边吃奶的免费视频| a 毛片基地| 免费观看av网站的网址| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 亚洲性久久影院| 国产日韩一区二区三区精品不卡 | 自拍欧美九色日韩亚洲蝌蚪91| 国产色爽女视频免费观看| 亚洲av.av天堂| 97在线人人人人妻| 色吧在线观看| 久久久久久久亚洲中文字幕| 亚洲美女黄色视频免费看| 色婷婷久久久亚洲欧美| 亚洲中文av在线| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 国产精品国产三级专区第一集| 精品久久久精品久久久| 国产精品人妻久久久久久| 激情五月婷婷亚洲| 亚洲欧美成人精品一区二区| 国产综合精华液| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 十八禁网站网址无遮挡| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 婷婷色综合www| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 国产片特级美女逼逼视频| 满18在线观看网站| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| 哪个播放器可以免费观看大片| 久热久热在线精品观看| 亚洲国产av新网站| 久久久a久久爽久久v久久| 黑人高潮一二区| 国产免费又黄又爽又色| 黑人猛操日本美女一级片| 人妻 亚洲 视频| 97在线视频观看| 少妇的逼水好多| 在线观看国产h片| 欧美+日韩+精品| 亚洲色图综合在线观看| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 国产免费一级a男人的天堂| 精品人妻熟女av久视频| 大香蕉久久成人网| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 久久久久久久久久久丰满| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区 | av卡一久久| 亚洲成色77777| 精品久久久精品久久久| 天天操日日干夜夜撸| a 毛片基地| 久久久午夜欧美精品| 超碰97精品在线观看| 精品久久久久久久久亚洲| 亚洲av在线观看美女高潮| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 在线观看国产h片| 十八禁网站网址无遮挡| 国模一区二区三区四区视频| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 亚洲av成人精品一二三区| 日本91视频免费播放| 高清av免费在线| 国产不卡av网站在线观看| 久久综合国产亚洲精品| 亚洲中文av在线| 国语对白做爰xxxⅹ性视频网站| 成年美女黄网站色视频大全免费 | 久久精品久久久久久噜噜老黄| 久久精品国产鲁丝片午夜精品| 18禁裸乳无遮挡动漫免费视频| 成年女人在线观看亚洲视频| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 欧美日韩国产mv在线观看视频| 在线看a的网站| 亚洲人与动物交配视频| 亚洲精品aⅴ在线观看| 人妻少妇偷人精品九色| 亚洲熟女精品中文字幕| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 亚洲av国产av综合av卡| 精品99又大又爽又粗少妇毛片| 成人国产av品久久久| 国产成人免费观看mmmm| 久久婷婷青草| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 日韩av不卡免费在线播放| 十分钟在线观看高清视频www| 美女中出高潮动态图| 国产高清国产精品国产三级| videosex国产| 久久久久网色| 成人手机av| 亚洲人成网站在线播| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说 | 精品人妻在线不人妻| 午夜免费鲁丝| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 免费人妻精品一区二区三区视频| 亚洲人成网站在线播| av又黄又爽大尺度在线免费看| 国产午夜精品一二区理论片| 久久国产亚洲av麻豆专区| 九九在线视频观看精品| 亚洲欧美一区二区三区国产| 久久精品国产自在天天线| tube8黄色片| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 国产精品蜜桃在线观看| 精品午夜福利在线看| 蜜桃在线观看..| 国产精品久久久久久av不卡| 我的老师免费观看完整版| 另类精品久久| 亚州av有码| 尾随美女入室| 欧美日韩国产mv在线观看视频| 亚洲精品aⅴ在线观看| 久久精品国产亚洲网站| 亚洲伊人久久精品综合| 久久久欧美国产精品| 国产成人a∨麻豆精品| 边亲边吃奶的免费视频| 欧美日韩亚洲高清精品| 亚洲精品色激情综合| 亚洲无线观看免费| 一本久久精品| 免费人妻精品一区二区三区视频| 新久久久久国产一级毛片| 伦理电影免费视频| 亚洲av二区三区四区| 黄色视频在线播放观看不卡| 最新中文字幕久久久久| 免费人成在线观看视频色| 久久99热这里只频精品6学生| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 99久久中文字幕三级久久日本| 亚洲欧美成人精品一区二区| 一级毛片我不卡| 国产精品国产三级专区第一集| 久久精品国产鲁丝片午夜精品| 男女国产视频网站| 夫妻性生交免费视频一级片| 在线免费观看不下载黄p国产| 日本wwww免费看| av专区在线播放| 在线观看免费高清a一片| 久久久久久久久久久久大奶| 纯流量卡能插随身wifi吗| 欧美精品国产亚洲| 不卡视频在线观看欧美| 久久久久网色| 日韩精品有码人妻一区| 久热这里只有精品99| 男男h啪啪无遮挡| 日韩av不卡免费在线播放| 欧美成人午夜免费资源| 国产视频首页在线观看| 九九在线视频观看精品| 国产视频内射| 黑人高潮一二区| 不卡视频在线观看欧美| 久久久久精品性色| 日韩不卡一区二区三区视频在线| 日韩欧美一区视频在线观看| av在线播放精品| 交换朋友夫妻互换小说| 免费黄网站久久成人精品| 欧美少妇被猛烈插入视频| 亚洲人成77777在线视频| 99热6这里只有精品| 桃花免费在线播放| 欧美人与善性xxx| 日韩亚洲欧美综合| 一区在线观看完整版| 精品视频人人做人人爽| 91精品国产国语对白视频| 成人毛片a级毛片在线播放| 熟妇人妻不卡中文字幕| 成人影院久久| 老司机影院毛片| 国产亚洲一区二区精品| 在线观看三级黄色| 伦理电影大哥的女人| 51国产日韩欧美| 日日撸夜夜添| 一个人看视频在线观看www免费| 中文乱码字字幕精品一区二区三区| 少妇丰满av| 国产色爽女视频免费观看| 精品久久国产蜜桃| 99re6热这里在线精品视频| 丝袜美足系列| 三级国产精品欧美在线观看| 亚洲欧美日韩另类电影网站| 五月伊人婷婷丁香| tube8黄色片| 亚洲,一卡二卡三卡| 久久热精品热| videos熟女内射| 久久青草综合色| 天天操日日干夜夜撸| av线在线观看网站| 青青草视频在线视频观看| 亚洲国产精品一区二区三区在线| 熟妇人妻不卡中文字幕| 国产日韩一区二区三区精品不卡 | 精品国产国语对白av| 2022亚洲国产成人精品| 亚洲国产毛片av蜜桃av| 国产成人免费无遮挡视频| 国产精品国产三级专区第一集| 一个人免费看片子| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 超色免费av| 日韩电影二区| 亚洲成人手机| 久久99精品国语久久久| 成人综合一区亚洲| 少妇猛男粗大的猛烈进出视频| 一区二区三区精品91| 免费人成在线观看视频色| 能在线免费看毛片的网站| 制服诱惑二区| 在线观看免费视频网站a站| 一本久久精品| 最新中文字幕久久久久|