• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    從能量和信息理論視角理解單取代烷烴的異構(gòu)化

    2018-04-10 11:24:22鐘愛國李嶸嶸洪琴張杰陳丹
    物理化學(xué)學(xué)報 2018年3期
    關(guān)鍵詞:蘇文物理化學(xué)學(xué)報

    鐘愛國,李嶸嶸,洪琴,張杰,陳丹

    1 lntroduction

    It is widely accepted both by the experimental measurements1and high-level ab initio computations2that branchedalkanehydrocarbonsaregenerally thermodynamically more stable than its straight-chain counterpart. Nevertheless, this phenomenon is somewhat counterintuitive at first glance. In chemistry, steric effects are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be predominated by repulsive forces arising from overlapping electron densities. In this sense, more branched alkanes normally engender more steric destabilization energy than the normal ones. However, we have just touched upon one side of the“coin”. Simultaneously, there exist some attracting interactions between alky groups, stemming from electron correlation. Thus, inclusion of attractive interactions such as London dispersion forces is indispensable to understand electronic and geometrical structures. Finally, these two forces coexist that makes such a phenomenon a hard nut to crack.

    To provide a unified explanation for this abnormal phenomenon, a surge of interest has been aroused. Schleyer et al. pointed out that intramolecular 1,3-alkyl-alkyl interactions make positive contributions to the molecular stability of hydrocarbons3,4. Nonetheless, this“protobranching” or“prototypical branching” model was severely criticized by Gronert. He5argued that it cannot be rationalized by a through-space model of dispersive London forces. Pitzer and Catalano6have also provided an explanation for the relative stability of branched alkanes based on dispersion interactions.But this argument does not hold because the Hartree-Fock (HF)approach intrinsically has no electron correlation but is able to predict the correct stability trend3. In this regard, the overall stabilization effect does not originate from a simple physical picture.

    In the literature, there are some other orbital-based intramolecular stabilization explanations. Ma and Inagaki7proposed an orbital phase rational and found that σ cross conjugation between two C―H bonds and one C―C bond in an antiperiplanar conformation in branched alkanes results in greater orbital stabilization than straight-chain σ orbital conjugation8. Kemnitz et al. employed natural bond orbital(NBO) analysis9and valence bond theory to argue that10germinal carbon-carbon σ to σ* second-order donor-acceptor orbital interactions account for the branching stability.However, this hyperconjugation model has an inherent drawback since this perturbative type of energy analysis is referenced to a hypothetical localized state that does not analyze/partition the total energy of each molecule.

    The objective of this paper is two-fold. First, we aim to find out the physical differences of mono-substituted linear and branched alkanes alkane derivatives (see Fig.1 for details). It is intuitive that the isomerization from a linear to a branched alkane involves differences in steric energy. Like many concepts in chemistry, actually there is no exact definition of steric effect. Liu has proposed that the Weiz?cker kinetic energy can be employed as a novel definition of steric effect in DFT11,12. This density-based quantification of the steric effect differs from its conventional wavefunction-based counterpart.The latter definition is resulted only from orthogonality and exchange antisymmetry of the wavefunction (the Fermi hole)8.This density-based steric definition is quite in accordance with the early definition by Weisskopf who ascribed the steric repulsion to “kinetic energy pressure”13. In this work, we employ two energy decomposition schemes in Kohn-Sham density functional theory (KS-DFT) to understand the total physical differences between branched and linear alkanes.Isolation of a specific intramolecular interaction is beyond the scope of this paper.

    Fig.1 Schematic representations of mono-substituted alkane derivatives under study.

    Second, other two density-based key quantities from information theory, Shannon entropy and Fisher information are taken into consideration at molecular level to gain insights into the transformation of mono-substituted alkane derivatives.The questions we will address are (i) whether the branched effect is always valid and (ii) what effect(s) dominantly contribute(s) to the validity of this branched effect.

    This paper is mainly laid out as follows. In section 2, we outline the total energy decomposition schemes, followed by computational details. After the results and discussion in section 3, a brief summary is given in section 4.

    2 Theory

    2.1 An outline of the two energy partition schemes

    In conventional KS-DFT, the total energy of a system, Ε[ρ],can be cast in the form of three independent contributions Ts[ρ],Εe[ρ], and Εxc[ρ] (Eq.(1))14,

    where the first term Ts[ρ] signifies the non-interacting one-electron kinetic energy, the second term Εe[ρ] is the electrostatic potential, as shown in Eq.(2), a combination of the nuclear to electron attraction stabilization, Vne[ρ], the classical inter-electronCoulombicrepulsion,J[ρ],andthe nuclear-nuclear repulsion, Vnn, and the last term Εxc[ρ] is a sum of the exchange and correlation energy components.

    Unlike the definition in Eq.(1), Liu12proposed a novel energy partition scheme (Eq.(3)), to unambiguously quantify the omnipresent steric repulsion, as defined by the Weiz?cker kinetic energy, Tw[ρ]

    with

    and

    where Εsand Εqare the steric effect and fermionic quantum effects, respectively. The electrostatic potential Εeis exactly the same as that defined in Eq.(2), ρ(r) is the total electron density distribution, and ?ρ(r) is the first-order derivative. It is worth mentioning that the Weiz?cker kinetic functional is the exact kinetic functional for one-electron atoms and two-electron Hartree-Fock atoms. It has become an essential ingredient in orbital-free DFT15.

    This novel density-based definition of steric effect is totally different from its wavefunction-based counterpart, resulted from the Pauli Exclusion Principle that solely accounts for the electrons possessing the same spin. In this work, these two energy partition schemes will be utilized to analyze the isomerization energy between the linear and branched hydrocarbon derivatives, and its components to find out which component is the predominant term that governs the transformation of an alkane. The new scheme has recently been applied to a couple of systems16-25, among which are bond rotation barriers, cis-effect, anomeric effect, SN2 reaction barriers, water clusters, beryllium bonding interactions, and so on. A key point from these different investigations is that the electrostatic potential is the leading term while other contributions from the steric repulsion and quantum exchange-correlation interactions play minor but nontrivial roles. It is worthwhile to mention that energy partitioning scheme with Weiz?cker functional (in our case Εs[ρ]) as the dominant term was shown elsewhere as well26.

    2.2 Shannon entropy and Fisher information

    In information theory, Shannon entropy SSis defined as the following27:

    where SS(r) is the Shannon entropy density and ρ(r) is the total electron density of a molecular system, satisfying the following condition:

    with Ν as the total number of electrons in the system. In addition, Fisher information, IF, is defined as follows28:

    where iF(r) is the Fisher information density and ?ρ(r) is the density gradient. To calculate the atomic values of Shannon entropy in a molecule, Eq.(11) can be recast as follows:

    where

    with ΩAthe atomic basin of atom A. Bader′s zero-flux partition condition is employed to partition atoms in molecules29. The same is true for Fisher information,

    with

    2.3 Computational details

    All mono-substituted hydrocarbons CnH2n+1―R (n = 3, 4, 5,6; R = OH, OCH3, NH2, NO2, F, Cl, CN, CHO) (see Fig.1 for details) were fully optimized at the M06-2X/6-311+G(d,p)28level of theory. No symmetry constraint was imposed to allow for full variational degrees of freedom. All local minima on the hyper-potential surface were further verified by vibrational frequency calculations (e.g., no imaginary frequency). DFT total energy evaluations and steric energy decomposition calculations were carried out by employing the M06-2X functional with Dunning′s augmented correlation-consistent valence polarized triple-ζ basis set aug-cc-pVTZ (denoted as aVTZ) in NWChem 6.6,30a freely accessible computational chemistry package. Furthermore, a relatively larger basis set aug-cc-pVQZ (aVQZ), was taken into consideration to guarantee the rationalization of our results. M06-2X is superior to B3LYP31,32in many aspects, especially in the description of ubiquitousdispersionforces,irrespectiveofits“over-parameterization”. The tight self-consistent field (SCF)convergence criteria and ultrafine integration grids were employed throughout to rule out numerical problems. Suffice to note that the M06-2X functional gives isomerization energies very close to those predicted by the “gold standard” CCSD(T)in quantum chemistry and experiment.2All MP2 and CCSD(T)computations were executed with the frozen core (FC)technique to reduce the computational cost without compromising the accuracy too much. One more point to mention is that zero-point corrections were not considered in our computations. The linear alkane derivatives are taken as reference so that the isomerization energy is negative in all cases. Unless otherwise stated, all energy differences and its components are in unit of kJ·mol-1.

    Additionally, we employed a multifunctional wavefunction analyzer, Multiwfn33,34to calculate the Shannon entropy and Fisher information at molecular level by utilizing the M06-2X/aVTZ molecular wavefunction as an input file in molden format. To eliminate the numeric instabilities and guarantee the rationalization of our results, we adopted 150 points in radial and 1454 points on spherical surface of Becke′s numerical quadrature.

    3 Results and discussion

    3.1 Validation

    Table 1 exhibits the isomerization energy of a serials of mono-substitutedalkanesC3H7-Rwithboth electron-withdrawing and electron-donating groups R = OH,OCH3, NH2, NO2, F, Cl, CN, and CHO. Here we have chosen two typical density functionals M06-2X and B3LYP. It is well-established that B3LYP inherently fails to depict the dispersion forces which have a far-reaching effect on the molecular stability. In this sense, for comparison we have adopted some B3LYP variants with a portion of empirical dispersion, such as Grimme′s density-independent, atomic pair wise corrections, D3BJ (B3LYP_D3BJ),35the exchange-hole dipole moment (B3LYP_XDM)36theory proposed by Becke andJohnson,andthedispersion-core-potential(B3LYP_DCP)37model, which contains both local and semilocal terms. All the structures both reactants and products were optimized by using each method with Pople′s standard basis set 6-311+G(d,p) while all post-HF optimizations were carried out at the MP2/6-311+G(d,p) level of theory. The aVTZ basis set was employed to obtain more accurate energy differences. An even larger basis set aVQZ was employed to confirm the rationalization of the aVTZ results. The CCSD(T)/aVTZ results were taken as a reference to evaluate the overall performances of HF, MP2 and DFT B3LYP and M06-2X. Two statistical parameters, mean signed error (MSE)and mean absolute error (MAE) were adopted.

    A quick inspection of Table 1 can give rise to some points in order: (i) all the methods under consideration can give a qualitative prediction of the isomerization energies (negative insign), indicating that electron correlation is not the only factor that is responsible for the relative stability of mono-substituted alkanes since HF intrinsically has no electron correlation; (ii)compared with CCSD(T), MP2 and B3LYP_DCP overestimate the isomerization energies while the rest approaches adopted[M06-2X, B3LYP, B3LYP_D3BJ, B3LYP_XDM, and HF]underestimate the data; (iii) dispersion-corrected B3LYP variants improve the energy differences to some extent, with mean absolute errors (MAEs) decreasing from 3.4 kJ·mol-1of B3LYP to 2.2 kJ·mol-1of B3LYP_D3BJ, 2.0 kJ·mol-1of B3LYP_XDM, and 2.3 kJ·mol-1of B3LYP_DCP, respectively;however, they are still far from satisfactory when compared with CCSD(T) and entail more substantial improvement; (iv)compared with the CCSD(T) data, M06-2X has the best performance if combined with the aVTZ basis set. In a nutshell,we have screened a rational and cost-efficient combination of method and basis set M06-2X/aVTZ and it will be employed for further energy decomposition analysis.

    Table 1 Total energy difference (in kJ·mol-1) of the isomerization reaction of C3 serials a.

    3.2 Total energy decompositions

    Table 2 shows the total energy difference (?Εtot) νia the conventional and newly proposed energy partition schemes and its components: kinetic energy (?Ts), steric hindrance (?Εs),exchange (?Εx), correlation (?Εc), electrostatic potential (?Εe)and quantum effect (?Εq), which are obtained at the M06-2X/aVTZ level of theory, with the geometries completely optimized at the M06-2X/6-311+G(d,p) level of theory.

    From Table 2, one can readily see that the total energy difference is negative in sign, indicating that the branched alkane derivatives are energetically favorable. Among all the energy components, steric potential (?Εs) and exchangecorrelation potential (exceptions do exist in C3 serials) possess negative values, meaning that they make positive contributions to the total energy difference, while they are largely compensated by the quantum effect (?Εq) and kinetic energy (?Ts), respectively. An intriguing phenomenon has been discovered that for the C3 serials the exchangepotential (?Εx) is larger than the correlation (?Εc) in absolute values and the results are reverse for these two energy components in the rest serials. It is worthwhile to point out that only the total effect of exchange and correlation potential has a physical meaning. Meanwhile, we find that there exists a strong linear relationship between the quantum effect and steric hindrance, with the correlation coefficient R2= 0.99 (Fig.2a),serving as a confirmation of no systematic errors of our computational results. Similar trends have been observed in previous studies21-23.

    Table 2 Total energy difference (?Etot) and its components with kinetic energy (?Ts), steric hindrance (?Es), exchange (?Ex), correlation (?Ec),electrostatic potential (?Ee) and quantum effect (?Eq), evaluated at the M06-2X/aVTZ level a.

    continued Table 2

    continued Table 2

    continued Table 2

    continued Table 2

    Furthermore, we aim to find out if there exists a single energy component that dictates the isomerization of alkane derivatives. To make that happen, in Fig.2(b, c), we have plotted the electrostatic potential (?Εe) and the kinetic energy(?Ts) νs the total energy difference (?Εtot), respectively. The corresponding correlation coefficient R2is only 0.65 and 0.71 while those for the remaining energy components are less than 0.5 and ignored. In a previous work for alkanes without substituents, Εecan be linearly related to Εtot, but that's a special case21.

    Fig.2 Correlations between (a) steric potential and quantum effect (y = -0.98 x + 7.63, R2 = 0.99); (b) total energy difference and electrostatic potential (y = 0.40x - 8.61, R2 = 0.64), and (c) total energy difference and kinetic energy (y = -0.68 x - 0.84, R2 = 0.71), the y axis spans from (b) to (c).

    Up to now, we have revealed that no such a single energy component that governs the isomerization of alkane derivatives, which is reminiscent of the resultant force in nature for such a phenomenon. Furthermore, we want to look into the relative importance of energy components contributing the total energy, thus rendering the so-called “branching effect”. To this end, we have employed a two-variable strategy.

    In Fig.3, we plotted the total energy difference νs the two components: the electrostatic potential (?Εe) and steric hindrance (?Εs), with R2= 0.98. Moreover, we can find out the relative significance of the two energy components νia the coefficients. It is clearly shown that the electrostatic potential plays a predominant role while the steric effect has some minor effect in the transformation of mono-substituted alkane derivatives, with the coefficients 0.33 and 0.04, respectively. In other words, though steric hindrance is engendered due to the branching of alkanes, this portion is overwhelmingly compensated by the electrostatic potential.

    3.3 Shannon entropy and Fisher information

    Having touched upon one side of the coin, the total energy and its components, next we will switch our gear from an information-theoreticviewpointbyanalyzingthe M06-2X/aVTZ wavefunction. Here in this work, suffice to note that our Shannon entropy and Fisher information data are based on the electron probability density, rather than the shape function. From the information theory point of view, Shannon entropy measures the spatial delocalization of the electronic density, and Fisher information measures its sharpness or concentration. They sound to be vastly different measurements but apparently in electronic systems, these two density-based quantities are not absolutely independent. They are strongly correlated to each other, as theoretically proven earlier38and numerically shown39,40. We have plotted the Shannon entropy difference and Fisher information difference in Fig.4 with the correlation coefficient R2= 0.74. Once again, we have verified that Shannon entropy and Fisher information are interrelated as a windfall of this work. The linear correlations of these two quantities can be used an evidence of weak interactions as previously shown in beryllium bonds24, though it is not observed here. We have also plotted the Shannon entropy difference νs the electrostatic potential energy difference ΔΕeor Fisher information difference νs total energy difference ΔΕtotwith the correlation coefficient R2< 0.20. That the total energy difference ΔΕtotdoes not strongly correlate any of these information-theoretic quantities suggests that the branched alkanes effect is of the complex nature.

    Fig.3 A binary fit of total energy difference (?Etot) with electrostatic potential (?Ee) and steric hindrance (?Es).

    Fig.4 Linear correlation between Shannon entropy difference and Fisher information difference.

    4 Concluding remarks

    Isomerization of mono-substituted alkanes from energetic and information-theoretic perspectives was investigated within the KS-DFT framework. To this end, the KS-DFT total energy and a newly proposed energy partitioning scheme were employed as well as Shannon entropy and Fisher information from information theory. We have found that no such a single energy component dictates the transformation of the mono-substituted alkane derivatives. Molecular stability is governed by a resultant force. From the binary fit, we have unraveled that the electrostatic potential and the steric repulsion are responsible for the relative stability of linear and branched alkanes. Moreover, from the regression coefficient, we have shown that the electrostatic potential has played a predominant role while the steric effect has a trivial role. Shannon entropy and Fisher information at molecular level are linearly correlated, which is in line with our previous work.

    (1)Olah, G. A.; Molnur, A. Hydrocarbon Chemistry; Wiley: New York,1995.

    (2)Miao, J.; Hua, S.; Li, S. Chem. Phys. Lett. 2012, 541, 7.doi: 10.1016/j.cplett.2012.05.067

    (3)Wodrich, M. D.; Wannere, C. S.; Mo, Y.; Jarowski, P. D.; Houk, K.N.; Schleyer, P. V. R. Chem. Εur. J. 2007, 13 (27), 7731.doi: 10.1002/chem.200700602

    (4)Allen, T. L. J. Chem. Phys. 1959, 31, 1039. doi: 10.1063/1.1730501

    (5)Gronert, S. Chem. Εur. J. 2009, 15 (21), 5372.doi: 10.1002/chem.200800282

    (6)Pitzer, K. S.; Catalano, E. J. Am. Chem. Soc. 1956, 78, 4844.doi: 10.1021/ja01600a006

    (7)Ma, J.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 1193.doi: 10.1021/ja003067v

    (9)Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107 (14), 5406.doi: 10.1063/1.475149

    (10)Kemnitz, C. R.; Mackey, J. L.; Loewen, M. J.; Hargrove, J.L.; Lewis, J. L.; Hawkins, W. E.; Nielsen, A. F. Chem. Εur. J.2010, 16 (23), 6942. doi: 10.1002/chem.200902550

    (11)Weizs?cker, C. F. V. Z. Phys. 1935, 96, 431.doi: 10.1007/BF01337700

    (12)Liu, S. B. J. Chem. Phys. 2007, 126, 244103.doi: 10.1063/1.2741244

    (14)Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.

    (15)Chakraborty, D.; Kar, S.; Chattaraj, P. K. Phys. Chem. Chem.Phys. 2015, 17, 31516. doi: 10.1039/C5CP00995B

    (16)Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112 (29), 6690.doi: 10.1021/jp800376a

    (17)Liu, S. B.; Govind, N; Pedersen, L.G. J. Chem. Phys. 2008,129 (9), 094104. doi: 10.1063/1.2976767

    (18)U?ur, ?.; Vleeschouwer, F. D.; Tüzün, N.; Aviyente, V.;Geerlings, P.; Liu, S. B.; Ayers, P. W.; DeProft, F. J. Phys.Chem. A 2009, 113 (30), 8704. doi: 10.1021/jp903371b

    (19)Torrent-Sucarrat, M.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2009, 113 (15), 3698. doi: 10.1021/jp8096583

    (20)Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010,114, 5913. doi:10.1021/jp101329f

    (21)Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133 (11), 114110. doi: 10.1063/1.3492377

    (22)Ess, D. H.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g

    (23)Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, R. S.; Yin, D. L.;Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29 (1), 43. [趙東波,榮春英, 蘇曼, 蘇文, 尹篤林, 劉述斌. 物理化學(xué)學(xué)報,2013, 29 (1), 43.] doi: 10.3866/PKU.WHXB201211121

    (24)Wang, Y. J.; Zhao, D. B.; Rong, C. Y.; Liu, S. B. Acta Phys. -Chim.Sin. 2013, 29 (10), 2173. [王友娟, 趙東波, 榮春英, 劉述斌. 物理化學(xué)學(xué)報, 2013, 29 (10), 2173.]doi: 10.3866/PKU.WHXB201308272

    (25)Zhong, A. G.; Chen, D.; Li, R. R. Chem. Phys. Lett. 2015,633, 265. doi: 10.1016/j.cplett.2015.06.007

    (26)Deb, B. M; Chattaraj, P. K. Phys. Reν. A 1989, 39, 1696.doi: 10.1103/PhysRevA.39.1696

    (27)Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.doi: 10.1002/bltj.1948.27.issue-3

    (28)Fisher, R. A. Proc. Camb. Philos. Soc. 1925, 22, 700.doi: 10.1017/S0305004100009580

    (29)Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Oxford University Press: Oxford, 1990.

    (30)Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x

    (31)Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.;Straatsma,T. P.; van Dam, H. J. J.; Wang, D.; Nieplocha, J.;Apra, E.; Windus, T. L.; et al. Comput. Phys. Commun. 2010,181, 1477. doi: 10.1016/j.cpc.2010.04.018

    (32)Becke, A. D. J. Chem. Phys. 1993, 98, 1372.doi: 10.1063/1.464304

    (33)Lee, C.; Yang, W.; Parr, R. G. Phys. Reν. B 1988, 37, 785.doi: 10.1103/PhysRevB.37.785

    (34)Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580.doi: 10.1002/jcc.22885

    (35)Lu, T. Multiwfn, Version 3.3; A Multifunctional Wavefunction Analyzer, 2016, http://multiwfn.codeplex.com (accessed Sep 18, 2016).

    (36)Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011,32, 1456. doi: 10.1002/jcc.21759

    (37)Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122,154104. doi: 10.1021/acs.chemrev.5b00533

    (38)He?elmann, A. J. Chem. Phys. 2009, 130 (8), 084104.doi: 10.1063/1.3077939

    (39)Liu, S. B. J. Chem. Phys. 2007, 126, 191107.doi: 10.1063/1.2741244

    (40)Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140 (2),024109. doi: 10.1063/1.4860969

    猜你喜歡
    蘇文物理化學(xué)學(xué)報
    遲到了
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    學(xué)報簡介
    學(xué)報簡介
    《深空探測學(xué)報》
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    背負(fù)陽光
    欧美日韩亚洲综合一区二区三区_| 丰满饥渴人妻一区二区三| 成熟少妇高潮喷水视频| 国产日韩一区二区三区精品不卡| 9191精品国产免费久久| 欧美日韩精品网址| 国产无遮挡羞羞视频在线观看| 久久久久久免费高清国产稀缺| 亚洲欧美激情在线| 日韩欧美国产一区二区入口| 亚洲精品一区av在线观看| 一级a爱视频在线免费观看| 久久精品国产综合久久久| 十分钟在线观看高清视频www| 亚洲精华国产精华精| 欧美日韩视频精品一区| 日韩欧美一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 国产免费男女视频| 久久国产精品人妻蜜桃| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲综合一区二区三区_| 婷婷六月久久综合丁香| 丰满饥渴人妻一区二区三| 一本大道久久a久久精品| 级片在线观看| 首页视频小说图片口味搜索| 国产精华一区二区三区| 香蕉丝袜av| 日本黄色日本黄色录像| 精品久久久久久,| 精品国产超薄肉色丝袜足j| 91九色精品人成在线观看| 9色porny在线观看| 一级毛片高清免费大全| 亚洲一区二区三区不卡视频| 午夜激情av网站| 日韩欧美国产一区二区入口| av在线播放免费不卡| 日本黄色日本黄色录像| 99国产精品一区二区蜜桃av| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人| 99riav亚洲国产免费| 岛国视频午夜一区免费看| 亚洲自拍偷在线| 身体一侧抽搐| 欧美 亚洲 国产 日韩一| 国产精品 欧美亚洲| 长腿黑丝高跟| 日本免费一区二区三区高清不卡 | 亚洲国产精品一区二区三区在线| 女性生殖器流出的白浆| 精品人妻在线不人妻| 新久久久久国产一级毛片| 中文亚洲av片在线观看爽| 亚洲av成人一区二区三| 久久热在线av| 欧美丝袜亚洲另类 | 亚洲男人天堂网一区| 村上凉子中文字幕在线| 三上悠亚av全集在线观看| 久久久久久久久久久久大奶| 婷婷精品国产亚洲av在线| 国产精品99久久99久久久不卡| 国产熟女xx| 欧美最黄视频在线播放免费 | 中文字幕av电影在线播放| 久久久久久久久免费视频了| 一级作爱视频免费观看| 免费看十八禁软件| 日韩av在线大香蕉| 国产精品一区二区三区四区久久 | 久久久久久久精品吃奶| 国产亚洲精品久久久久5区| 天天添夜夜摸| 长腿黑丝高跟| 18禁国产床啪视频网站| 丁香欧美五月| 亚洲精品一区av在线观看| 日韩免费av在线播放| 精品国产超薄肉色丝袜足j| 日韩欧美在线二视频| 中亚洲国语对白在线视频| 国产一区二区三区在线臀色熟女 | 久久久国产一区二区| 中出人妻视频一区二区| aaaaa片日本免费| 69精品国产乱码久久久| 在线观看午夜福利视频| 51午夜福利影视在线观看| videosex国产| 91麻豆精品激情在线观看国产 | 久9热在线精品视频| 亚洲五月婷婷丁香| 视频在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| videosex国产| 黄色视频不卡| 国产一区二区激情短视频| 19禁男女啪啪无遮挡网站| 国产成年人精品一区二区 | 欧美中文综合在线视频| 校园春色视频在线观看| 免费久久久久久久精品成人欧美视频| 国产区一区二久久| 国产精品秋霞免费鲁丝片| 亚洲人成电影免费在线| 一区在线观看完整版| 真人一进一出gif抽搐免费| a在线观看视频网站| 日韩人妻精品一区2区三区| 免费人成视频x8x8入口观看| 欧美日韩乱码在线| 久久人妻福利社区极品人妻图片| 久久久国产精品麻豆| 午夜福利在线免费观看网站| 久久中文字幕人妻熟女| 亚洲黑人精品在线| 亚洲黑人精品在线| 丝袜人妻中文字幕| 中文欧美无线码| 精品熟女少妇八av免费久了| 日本撒尿小便嘘嘘汇集6| 99久久综合精品五月天人人| 久久久久精品国产欧美久久久| 亚洲在线自拍视频| 人人澡人人妻人| 在线观看免费高清a一片| 国产熟女xx| 又黄又粗又硬又大视频| 手机成人av网站| 亚洲专区国产一区二区| 久久 成人 亚洲| 99精品在免费线老司机午夜| 三级毛片av免费| 久久久久久亚洲精品国产蜜桃av| 久久久久国产一级毛片高清牌| √禁漫天堂资源中文www| 成熟少妇高潮喷水视频| av网站在线播放免费| 大码成人一级视频| 中出人妻视频一区二区| 亚洲欧美精品综合久久99| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷丁香在线五月| 桃色一区二区三区在线观看| 在线av久久热| 亚洲欧美精品综合久久99| 人妻久久中文字幕网| www.熟女人妻精品国产| 在线播放国产精品三级| 欧洲精品卡2卡3卡4卡5卡区| 色综合站精品国产| 国产免费av片在线观看野外av| av视频免费观看在线观看| 婷婷六月久久综合丁香| 丰满的人妻完整版| 岛国视频午夜一区免费看| 99国产精品免费福利视频| 欧美日本中文国产一区发布| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 久久久久国内视频| 男人的好看免费观看在线视频 | 精品人妻在线不人妻| 一a级毛片在线观看| 国产精品久久久人人做人人爽| 午夜福利一区二区在线看| 国产av一区二区精品久久| 一进一出好大好爽视频| 18禁国产床啪视频网站| 欧美激情 高清一区二区三区| 亚洲av美国av| 免费高清视频大片| 国产精品一区二区三区四区久久 | 亚洲一区二区三区欧美精品| 免费搜索国产男女视频| 亚洲五月天丁香| www.www免费av| 国产av又大| 婷婷丁香在线五月| 男女高潮啪啪啪动态图| 国产精品一区二区免费欧美| 黄色怎么调成土黄色| 亚洲精品av麻豆狂野| 久久精品亚洲精品国产色婷小说| 纯流量卡能插随身wifi吗| 欧美日韩黄片免| 乱人伦中国视频| 国产真人三级小视频在线观看| 久热这里只有精品99| 午夜福利,免费看| 19禁男女啪啪无遮挡网站| 嫩草影院精品99| 亚洲性夜色夜夜综合| 亚洲一码二码三码区别大吗| 99riav亚洲国产免费| 欧美日韩福利视频一区二区| 免费av中文字幕在线| 我的亚洲天堂| 亚洲国产欧美日韩在线播放| 亚洲精品一二三| 久久精品亚洲av国产电影网| 精品国产一区二区久久| 国产单亲对白刺激| 国产精品久久电影中文字幕| 成人18禁高潮啪啪吃奶动态图| 亚洲精品av麻豆狂野| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一出视频| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕日韩| 精品电影一区二区在线| 在线视频色国产色| 18禁国产床啪视频网站| 91成年电影在线观看| 一夜夜www| 久久久久国内视频| 热99re8久久精品国产| 欧美一级毛片孕妇| 久久人妻av系列| 午夜福利影视在线免费观看| 亚洲专区国产一区二区| 亚洲全国av大片| 久久狼人影院| 亚洲精品粉嫩美女一区| av超薄肉色丝袜交足视频| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久久毛片| 亚洲全国av大片| 国产精品国产av在线观看| 国产一区二区激情短视频| 日韩av在线大香蕉| 国产熟女午夜一区二区三区| 老司机福利观看| 看免费av毛片| 亚洲av五月六月丁香网| 精品电影一区二区在线| 精品人妻在线不人妻| 天堂中文最新版在线下载| 久9热在线精品视频| 日韩欧美在线二视频| 欧美乱码精品一区二区三区| 久久国产精品影院| 波多野结衣高清无吗| 十八禁网站免费在线| 夜夜爽天天搞| 99久久综合精品五月天人人| 在线观看舔阴道视频| 麻豆久久精品国产亚洲av | 亚洲国产欧美一区二区综合| 久久久国产成人免费| 国产激情久久老熟女| av网站在线播放免费| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 久久中文字幕一级| 久久香蕉激情| 久久影院123| 欧美精品亚洲一区二区| 精品一区二区三卡| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 一本综合久久免费| 99久久人妻综合| 99国产精品免费福利视频| 国产黄色免费在线视频| 日本三级黄在线观看| 黑人操中国人逼视频| 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 亚洲一码二码三码区别大吗| 国产成人av教育| 日日爽夜夜爽网站| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕在线视频| 精品一区二区三卡| 久久中文字幕一级| 很黄的视频免费| 日日爽夜夜爽网站| 激情视频va一区二区三区| 免费av毛片视频| 精品免费久久久久久久清纯| 国产成人av教育| av国产精品久久久久影院| 亚洲av五月六月丁香网| 日韩精品青青久久久久久| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| e午夜精品久久久久久久| 窝窝影院91人妻| 老司机靠b影院| 日韩三级视频一区二区三区| 麻豆国产av国片精品| 最近最新中文字幕大全电影3 | 97碰自拍视频| 91精品三级在线观看| 两性夫妻黄色片| 欧洲精品卡2卡3卡4卡5卡区| 777久久人妻少妇嫩草av网站| 精品久久久久久,| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 久久精品国产99精品国产亚洲性色 | 成年女人毛片免费观看观看9| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 一个人观看的视频www高清免费观看 | 色综合欧美亚洲国产小说| 色播在线永久视频| 老汉色∧v一级毛片| 99热只有精品国产| 丝袜人妻中文字幕| 午夜久久久在线观看| 岛国在线观看网站| 亚洲第一av免费看| 大陆偷拍与自拍| 操美女的视频在线观看| av电影中文网址| 欧美av亚洲av综合av国产av| 久久久久久久精品吃奶| 丰满迷人的少妇在线观看| 日韩免费av在线播放| 亚洲中文av在线| 男人操女人黄网站| 最近最新中文字幕大全电影3 | 18禁国产床啪视频网站| 18美女黄网站色大片免费观看| 黑人猛操日本美女一级片| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影 | 美女 人体艺术 gogo| 色综合婷婷激情| 久久欧美精品欧美久久欧美| 国产精品自产拍在线观看55亚洲| 一进一出抽搐动态| 亚洲 欧美一区二区三区| 国产成人欧美| 国产一区二区在线av高清观看| 99香蕉大伊视频| 精品第一国产精品| 久久香蕉精品热| 他把我摸到了高潮在线观看| av超薄肉色丝袜交足视频| 国产成人欧美在线观看| 国产熟女xx| 村上凉子中文字幕在线| 国产精品av久久久久免费| aaaaa片日本免费| 一本大道久久a久久精品| 一级a爱片免费观看的视频| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 日本 av在线| 久久亚洲真实| 国产高清国产精品国产三级| 亚洲三区欧美一区| 深夜精品福利| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 大型黄色视频在线免费观看| 成人三级黄色视频| 国内毛片毛片毛片毛片毛片| 国产精品偷伦视频观看了| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品亚洲一区二区| 一进一出好大好爽视频| 欧美乱妇无乱码| 国产激情欧美一区二区| 久久天堂一区二区三区四区| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 亚洲全国av大片| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 日本三级黄在线观看| 黄色 视频免费看| 天天添夜夜摸| 欧美中文日本在线观看视频| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 久久久国产成人免费| 成人精品一区二区免费| 波多野结衣高清无吗| 一夜夜www| 男女高潮啪啪啪动态图| 亚洲熟女毛片儿| 国产免费现黄频在线看| 少妇的丰满在线观看| 欧美激情久久久久久爽电影 | 伊人久久大香线蕉亚洲五| 国产成人精品在线电影| x7x7x7水蜜桃| 亚洲午夜精品一区,二区,三区| 国产蜜桃级精品一区二区三区| 男人操女人黄网站| 咕卡用的链子| av欧美777| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 亚洲第一av免费看| 国产色视频综合| 久久久久久久久中文| 男女下面进入的视频免费午夜 | 校园春色视频在线观看| 精品国产亚洲在线| 精品久久久久久久毛片微露脸| 久久伊人香网站| 亚洲成人久久性| 国产成人精品久久二区二区91| 国产在线精品亚洲第一网站| 一区福利在线观看| 久久这里只有精品19| 悠悠久久av| 男人的好看免费观看在线视频 | 成人18禁在线播放| 黄色 视频免费看| 日本免费a在线| 搡老乐熟女国产| 成人国产一区最新在线观看| 亚洲精品中文字幕一二三四区| 最新美女视频免费是黄的| 日本五十路高清| a级毛片在线看网站| av国产精品久久久久影院| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 9色porny在线观看| 男女午夜视频在线观看| 免费看十八禁软件| 麻豆一二三区av精品| 亚洲国产精品999在线| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 亚洲第一av免费看| 午夜精品在线福利| 亚洲午夜理论影院| 国产高清激情床上av| 精品国产一区二区久久| 一二三四在线观看免费中文在| videosex国产| 伦理电影免费视频| 精品人妻1区二区| 黄片大片在线免费观看| 国产成+人综合+亚洲专区| 日韩欧美三级三区| 久久久国产成人精品二区 | 亚洲性夜色夜夜综合| 国产激情久久老熟女| 黄色 视频免费看| 国产三级黄色录像| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 欧美av亚洲av综合av国产av| 欧美精品一区二区免费开放| av电影中文网址| 亚洲第一青青草原| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 免费观看人在逋| 国产精品 欧美亚洲| 超碰成人久久| a级片在线免费高清观看视频| a在线观看视频网站| 国产aⅴ精品一区二区三区波| av中文乱码字幕在线| 日韩大码丰满熟妇| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| 99久久综合精品五月天人人| 悠悠久久av| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 亚洲欧美一区二区三区黑人| 我的亚洲天堂| 午夜福利欧美成人| 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 狠狠狠狠99中文字幕| 国产激情欧美一区二区| av欧美777| av片东京热男人的天堂| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 在线观看舔阴道视频| 十八禁网站免费在线| √禁漫天堂资源中文www| 韩国精品一区二区三区| 18美女黄网站色大片免费观看| 精品无人区乱码1区二区| 少妇 在线观看| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 国产在线观看jvid| 无人区码免费观看不卡| ponron亚洲| 黄片大片在线免费观看| 一边摸一边抽搐一进一出视频| 久久久国产精品麻豆| 人人澡人人妻人| 午夜福利一区二区在线看| 成人亚洲精品av一区二区 | 国产av又大| 一本大道久久a久久精品| 国产精品av久久久久免费| 真人做人爱边吃奶动态| 欧美午夜高清在线| 婷婷丁香在线五月| 免费看a级黄色片| 99精品久久久久人妻精品| 水蜜桃什么品种好| 国产精品av久久久久免费| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 亚洲成人久久性| 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 51午夜福利影视在线观看| 精品国产国语对白av| 亚洲av成人av| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 久久草成人影院| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 亚洲成人久久性| 欧美精品一区二区免费开放| 国产乱人伦免费视频| 国产成人精品久久二区二区91| 国产亚洲精品一区二区www| 黑丝袜美女国产一区| 午夜91福利影院| 国产午夜精品久久久久久| 久久久久久久久免费视频了| av视频免费观看在线观看| 亚洲avbb在线观看| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 大型黄色视频在线免费观看| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 老鸭窝网址在线观看| 9热在线视频观看99| 国产精品 国内视频| 777久久人妻少妇嫩草av网站| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看.| 在线看a的网站| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看 | av欧美777| 国产精品美女特级片免费视频播放器 | 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 亚洲精品国产区一区二| 久久久国产成人免费| 在线观看www视频免费| 丝袜人妻中文字幕| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 亚洲五月天丁香| 国产乱人伦免费视频| 一级,二级,三级黄色视频| 一二三四在线观看免费中文在| 午夜福利在线观看吧| 国产精品98久久久久久宅男小说| 夜夜爽天天搞| 午夜两性在线视频| 国产色视频综合| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 热re99久久精品国产66热6| 黄片大片在线免费观看| 日韩中文字幕欧美一区二区| 中文欧美无线码| 老司机靠b影院| 别揉我奶头~嗯~啊~动态视频| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 老司机靠b影院| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 美女 人体艺术 gogo| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 婷婷精品国产亚洲av在线| 性少妇av在线| 亚洲欧美日韩无卡精品| www国产在线视频色| 午夜a级毛片| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 丝袜美足系列|