• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-,and Ca-

    2018-04-10 11:24:15MORRISONRobert
    物理化學(xué)學(xué)報(bào) 2018年3期

    MORRISON Robert C.

    Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA.

    1 lntroduction

    Biological molecules can undergo radiation damage from interaction with low energy electrons1,2. A temporary anion state formed by an electron attaching to a low-lying orbital can affect the underlying electronic structure and lead to molecular dissociation. The effect of the attached electron has been examined using Fukui functions3.

    Stabilization methods can be used in conjunction with standard electronic structure methods to determine the electronic structure of these temporary anion states4-8. The stable eigenvalues with respect to exponent scaling are determined by6,71) a minimum in the hyper-radius <r2>, 2) an inflection point in the energy νs scale factor λ, 3) an avoided crossing point between a stable and an unstable energy. Examples have been given using a model potential6, showing comparable results for the three methods.

    Energies and wave functions of the resonance states of temporary anions can also be obtained through complex scaling of the Hamiltonian9. The electronic coordinates of the Hamiltonian are scaled by η = αeiθ. The resulting Hamiltonian matrix over symmetry adapted configurations is complex symmetric, non-Hermitian, giving complex energies

    Εris the resonance energy and Γ is the width. Trajectories10-12in plots of Re(Ε) νs Im(Ε) as either α or θ is varied are used to determine Ε(η). Loops, kinks, or increased curvature in a trajectory indicate stabilities in Ε with respect to changing α or θ. Wave functions at these optimized values of α and θ are used to determine electron densities.

    2 Theoretical background

    The complex product, c-product13-16,

    has been discussed and deemed appropriate17,18in analyzing complex wave functions for metastable states. In contrast to the ordinary scalar product

    the f(x) is not complex conjugated in Eq.(2). The quantity x refers collectively to spatial and spin coordinates. This c-product form is used for calculating properties of the complex wave functions obtained from complex-scaled Hamiltonians.

    The first-order reduced density matrix for these complex wave functions is obtained by

    The wave function Ψ is not complex conjugated under the integrand. Expressing the wave function in terms of its real and imaginary parts

    the reduced density matrix becomes,

    The first two terms constitute the real part of the density matrix, and the real part of the density is obtained as

    By the normalization in Eq.(4) the electron density integrates to Ν electrons. The imaginary part integrates to zero.

    The real parts of the electron densities are then used to determine the Fukui functions for examining the influence that a temporarily attached electron has on the underlying electronic structure. Fukui functions have been a valuable tool used in the interpretative aspects of density functional theory (DFT)19-21,and they have been important in the analysis of chemical reactivity. The Fukui function in terms of the density is defined by22

    where Ν is the number of electrons, ν0refers to the external potential, ρ(r) is the electron density, and r represents the 3-dimensional spatial coordinates of the particle. Because of the derivative discontinuity23, the value of f(r) is evaluated above and below the integer value of Ν.

    and

    giving two different values of the Fukui function.

    The Fukui function with superscript + is the derivative taken from above for adding an electron, and the Fukui function with superscript - is the derivative taken from below for losing an electron. This can be succinctly expressed as

    The density in terms of the α and β spin components is

    Fukui functions representing changes in the σ-spin electron density when the number of electrons with σ’ spin changes have previously been referred to as the spin Fukui functions24. The spin Fukui function can be written in terms of the corresponding densities25:

    where σ and σ' represent α and β spins. For examplefβ+α(r)is the change in ρβ(r) when an α-spin electron is gained.

    The working equations for calculating the Fukui functions from the densities of accurate configuration interaction (CI)wave functions are obtained by taking the difference between the densities

    for a change in the number of electrons. The spin Fukui functions are determined by

    and

    for a change in the number of electrons with σ' spin.

    The integral of the Fukui function over its negative region(s)Ω is determined as26,

    and

    where

    3 Method of calculation

    Calculations were performed using the selected CI method27-30with up to quadruple excitations for both the neutral atom and its anion. The ARPACK31routines were used to find the lowest complex eigenvalues and corresponding eigenvectors of the complex symmetric matrices that resulted from complex scaling of the Hamiltonian. Our current version requires the Hamiltonian matrix to reside in memory, limiting the CI size to around 70000 configurations.

    The orbital exponents of Slater type orbitals (STOs) were systematically optimized32for the anion of each atom and used both for the neutral atom and its anion, starting with initial self-consistent-field (SCF) calculations. In order to avoid collapse for the anion, a continuum remover potential33was added at the SCF level for the respective anions. The continuum remover was not included for the subsequent CI optimization of the remaining orbital exponents.

    Accounting for electron correlation in open-shell systems requires more computational effort than in closed-shell systems of similar size. When adding an electron to a closed-shell system to form an open-shell, larger basis sets are needed for the open-shell system, with a larger number configurations, in order to perform calculations of comparable accuracy30. This problem has been partially offset in the current calculations by optimizing the basis orbitals for the open-shell anion, then using that basis set for the neutral closed-shell atom as well as for the open-shell anion. Therefore basis sets were optimized for the lowest2P state of Be-, the2P state of Mg-, and the2D state of Ca-, and these basis sets were also used for the neutral1S states of Be, Mg, and Ca, respectively.

    As a test, a preliminary calculation was performed on Mg-Mg-using an STO basis set that was optimized for Mg for CI calculations of Mg, and an STO basis set that was optimized for Mg-for CI calculations of Mg-, resulting in Fukui functions that are visually identical to Fukui functions obtained by using the basis set optimized for Mg-in CI calculations on both Mgand Mg. Likewise the negativities IΩbetween the two basis sets are similar. The total energies differed by 0.008 a.u. (0.2 eV)which is significant when the energy differences of interest are less than 1.0 eV. All reported results are based on using the anion-optimized basis sets for both the neutral and the anion.

    The optimized basis sets included up to 4f STOs for Be-, up to 5g STOs for Mg-and up to 6h STOs for Ca-. Nine even-tempered diffuse functions were added to each optimized basis set: nine 2p STOs for Be-, nine 3p STOs for Mg-, and nine 3d STOs for Ca-. Trial calculations were also performed using additional diffuse STOs of differing angular momentum quantum numbers without significant improvements in the results.

    4 Results and discussion

    The two2P resonance states of the Be-anion are examined both by scaling the orbital exponents of diffuse 2p orbitals in a stabilization method, and by complex rotation of the Hamiltonian. The2P resonance state of the Mg-anion and the2D resonance state of the Ca-anion are examined by complex rotation of the Hamiltonian.

    4.1 Be-Be-

    A stabilization calculation using the unscaled Hamiltonian was performed on Be-by scaling the nine even-tempered diffuse 2p functions by a scale factor λ. Fig.1 shows plots of ΔΕiνs λ for the 3 lowest energy levels of the2P states of Be-,referred to as CI1 through CI3. The energy above threshold,ΔΕi, is the eigenvalue difference

    Ε0(Be) = -14.6645 a.u. There are two avoided crossings between CI1 and CI2, one near λ = 1.2 and the other near λ =3.2. These avoided crossings indicate stabilization at the resonance energies.

    Fig.2 shows graphs of <r2> νs scale factor λ. The <r2> νs λ curve for CI1 in Fig.2a shows a minimum at λ = 1.0 near the first avoided crossing and in Fig.2b the <r2> curve for CI2 shows a minimum at λ = 3.2 near the second avoided crossing.

    Fig.1 ΔE νs exponent scale factor for 3 energy states of Be-, Eq.(20).

    The scaled diffuse STOs corresponding to the minima of<r2> for the two states were used to perform trajectory calculations using the complex-scaled Hamiltonian. The trajectories for the two states shown in Fig.3 illustrate the resonance points by a loop for resonance 1 in Fig.3a and the kink for resonance 2 in Fig.3b.

    A calculation was also performed on resonance state 2 using the unscaled basis set. Although a trajectory similar to Fig.3b with a less prominent kink was observed, the value of <r2> was around 200000 a.u. in this unscaled STO basis set. A minimum in <r2> is an indication of a resonance state8. Using the unscaled basis set in an attempt to calculate resonance 2 did not produce a resonance state as indicated by the large value of<r2>. A plot of the density, not shown here, shows that it oscillates far into the continuum.

    Values of the resonance energies are compared with other results34-36in Table 1. The present stabilization calculations were not analytically continued into the complex plane, but the numerical stabilization results in Table 1 were determined from the real wave functions at the <r2> minima. Most of the previous results include only one resonance state for Be-,except for ref.34. The resonance energy results reported here are similar to previous results.

    Fig.2 Values of in a.u. νs scale factor for (a) CI1, the first CI state of Be- and (b) CI2, the second CI state of Be-.

    Fig.3 (a) θ trajectory for Be- resonance 1 with the optimized α value of 0.84; (b) θ trajectory for Be- resonance 2 with the optimized α value of 0.80.

    As seen in Table 1 the <r2> values obtained from the real wave functions of the present stabilization calculations differ somewhat from those calculated from the complex wave functions obtained by the complex rotation of the Hamiltonian.This suggests that any properties calculated from these real wave functions may not be accurate.

    The Fukui functions and electron densities for Be-aremultiplied by 4πr2to obtain the radial quantities. The (Ν +1)-electron densities have been included for reference when examining the Fukui functions and have been scaled to emphasize the valence region in the Fukui plots. The inner shell regions of the electron densities are off the scale in the Fukui function plots.

    Table 1 Resonance energies (Er) and widths (Γr) in eV, and in a.u.

    Fig.4 Radial Fukui function and radial density νs r in a.u.

    The positive radial Fukui function for Be and its spin components are plotted in Fig.4 for the two resonance states of Be-. The radial Fukui function for resonance 1 has an outer peak near r = 20 a.u., in a position similar to the first outer peak in the radial density shown in Fig.2 of Venkatnathan et al.37.The f+ααclosely follows f+in the outer regions since the electron being added has α spin. The f+βαis near zero in the outer region, then shows both positive and negative values in the valence and inner shells. The f+βαfollows f+ααfairly closely in the valence and inner regions, more so for resonance 1 than resonance 2. This indicates that the outer, temporarily-attached electron effectively screens inner electrons with α spin as well as those with β spin. This effective screening of electrons with the same spin is supported by the magnitudes of I (f+βα) for Be in Table 2, which are similar to the magnitudes of IΩ(f+αα).Thus the screening of β-spin electrons by the temporarily attached α-spin electron is comparable to the screening of the α-spin electrons, so that the density of electrons of both spins is reduced in the inner region. Note that the resonance 2 value of IΩ(f+) = -0.620 in Table 2 has a magnitude that is larger than of IΩ(f+) = -0.456 for resonance 1 even though the resonance 2 temporary electron is further from the nucleus, indicated by the larger <r2> listed in Table 1.

    4.2 Mg-Mg- and Ca-Ca-

    Scaling the exponents of diffuse 3p orbitals for Mg-and diffuse 3d orbitals for Ca-did not produce the well-defined avoided crossings that are observed for the Be-resonance states.A non-systematic trial and error using <r2> and the total energy of the neutral was used to determine the even-tempered diffuse 3p STO basis functions for Mg-and the 3d STO basis functions for Ca-. The obtained energies are Ε0(Mg) = -200.0112 a.u.and Ε0(Ca) = -677.4501 a.u.

    These basis sets were used to perform the trajectory calculations shown in Fig.5 using the method of complex rotation of the Hamiltonian. There is a lack of sharp kinks or loops as seen for Be-, so there is some arbitrariness in selecting the resonance point based on increasing curvature in the trajectory. Although this might lead to loss in accuracy, the resonance energy Εr= 0.24 eV and width Γ = 0.1 eV for Mgreported in Table 1 are in fair agreement with the experimental results38of Εr= 0.15 eV and width Γ = 0.14 eV, as well as with other theoretical calculations listed in Table 1. The calculated resonance energy Εr= 0.50 eV for Ca-is significantly lower than the experimental value of 1.1 eV, possibly due to takingthe difference of large values of the energies. But the calculated width Γ = 0.40 eV is comparable to the experimental width Γ =0.50 eV for Ca-39. The values of <r2> change only slightly over a broad range of the complex scaling parameters, so it is expected that the densities and corresponding Fukui functions will be fairly representative of the exact values.

    Table 2 Values of the negativity I for the positive Fukui functions obtained by adding an α-spin electron to the closed shell neutral atoms.

    The Fukui functions for Mg and Ca shown if Fig.6 show an outer peak around r = 15.0-20.0 a.u. On this basis and the values of <r2>, the resonance electrons for Mg-and Ca-appear to be held more tightly than those in the resonance states for Be-.

    All three atoms have f+βαthat track fairly closely with the corresponding f+ααin the valence and inner shell regions. By contrast the negative regions of f+βαfor B and Al, as seen in Fig.7, are much more dominant than the corresponding f+αα.The Fukui functions for B and Al show more shielding of the β electrons than the α electrons by the added α electron, a result attributed to pairing up of α and β electrons, while two α electrons are spatially separate in conformance with the Pauli Principle. This can also be seen in Table 2 where the magnitudes of IΩ(f+βα) for B and Al are about an order of magnitude larger than the corresponding magnitudes of IΩ(f+αα).

    Fig.5 θ trajectory for (a) Mg-2P resonance and (b) Ca-2D resonance with the optimized α value of 0.99.

    Fig.6 (a) Radial Fukui functions and electron density νs r in a.u. for Mg, Mg-, and radial density for Mg-;(b) radial Fukui function and radial density νs r in a.u. for Ca, Ca-, and radial density for Ca-.

    Fig.7 (a) Radial Fukui function and radial density νs r in a.u. for B, B-, and radial density for B-;(b) Radial Fukui function and radial density νs r in a.u. for Al, Al-, and radial density for Al-.

    5 Remarks

    Selected CI along with complex rotation of the Hamiltonian provides an effective means of examining temporary anion states. The c-product of the resulting complex wave functions can be used for obtaining real properties such as the electron density and the hyper-radius.

    The magnitudes of the negativities IΩ(f+) appear to increase with increasing distance of the temporarily attached electron from the nucleus as illustrated by the values of <r2>. Negative regions of the positive Fukui functions in the valence and inner shells shown here for the temporary anion states demonstrate the sensitivity of the underlying electronic structure to a loosely attached electron. Even though the Fukui functions show that the attached electron has significant amplitude far from the nucleus, it also has sufficient amplitude in regions nearer the nucleus to provide screening in the valence and inner shells,reducing the electron density in those regions. The magnitudes of the negativities IΩ(f+) appear to increase with increasing distance of the electron from the nucleus as illustrated by the values of <r2>.

    In contrast to the stable anions B-and Al-, the added α electron in a temporary anion effectively screens electrons with α spin as well as those with β spin in the temporary anion states of Be-, Mg-, and Ca-. In addition, the magnitudes of the negativities IΩ(f+) are somewhat higher for the temporary anion states of Be-, Mg-and Ca-than for the stable anions B-and Al-.

    Outer electrons associated with resonance states have significant impact on the underlying electronic structure. This is in accordance with other work that shows that low energy electrons can lead to chemical dissociation. For example,Gallup et al. have reported the influence of the attachment of outer electrons in bond breaking in their dissociative electron attachment studies of formic acid and glycine40. Fukui functions provide an additional important tool in the analysis and prediction of chemical reactivity.

    Acknowledgements:The author thanks the East Carolina University Center for Applied Computational Studies for computational resources. And thanks to Professor Carlos F.Bunge for the continuing use of his atomic CI programs ATMOL and AUTOCL. The author also thanks Professors Libero J. Bartolotti and Paul W. Ayers for valuable discussion.

    (1)Cau?t, E.; Bogatko, S.; Liévin, J.; De Proft, F.; Geerlings, P. J. Phys.Chem. 2013, 117, 9669. doi: 10.1021/jp406320g

    (2)Aflatooni, K.; Gallup, G. A.; Burrow, P. D. J. Phys. Chem. A 1998,102, 6205. doi: 10.1021/jp980865n

    (3)Tozer, D. J.; De Proft, F. J. Chem. Phys. 2007, 127, 034108.doi: 10.1063/1.2751158

    (4)Jordan, K. D.; Voora, V. K.; Simons, J. Theor. Chem. Acc. 2014, 133,1445. doi: 10.1007/s00214-014-1445-1

    (5)Falcetta, M. F.; DiFalco, L. A.; Ackerman, D. S.; Barlow, J. C.;Jordan, K. D. J. Phys. Chem. A 2014, 118, 7489.doi: 10.1021/jp5003287

    (6)Macias, A.; Riera, A. J. Chem. Phys. 1992, 96, 2877.doi: 10.1063/1.461984

    (9)Moiseyev, N. Physics Reports 1998, 302, 212.doi: 10.1016/S0370-1573(98)00002-7

    (10)Doolen, G. D. J. Phys. B: At. Mol. Opt. Phys.1975, 8, 525.doi: 10.1088/0022-3700/8/4/010

    (11)Moiseyev, N.; Certain, P. R.; Weinhold, F. Mol. Phys. 1978,36, 1613. doi: 10.1080/00268977800102631

    (12)Mishra, M.; Goscinski, O.; ?hrn, Y. J. Chem. Phys. 1983, 79,5494. doi: 10.1063/1.445667

    (13)Moiseyev, N.; Friedland, S.; Certain, P. R. J. Chem. Phys.1981, 74, 4739. doi: 10.1063/1.441624

    (14)Br?ndas, E.; Elander, N. Lecture Νotes in Physics 1989, 325,541. doi: 10.1007/3-540-50994-1

    (15)Ried, C. E.; Br?ndas, E. Lecture Νotes in Physics 1989, 325,475. doi: 10.1007/3-540-50994-1

    (16)Riss, U. V.; Meyer, H. D. J. Phys. B: At. Mol. Opt. Phys. 1993,26, 4503. doi: 10.1088/0953-4075/26/23/021

    (17)Jagau, T. C.; Zuev, D.; Bravaya, K. B.; Epifanovsky, E.;Krylov, A. I. J. Phys. Chem. Lett. 2014, 5, 310.doi: 10.1021/jz402482a

    (18)Jagau, T. C.; Krylov, A. I. J. Chem. Phys. 2016, 144, 054113.doi: 10.1063/1.4940797

    (19)Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford Science Publications: New York, 1989.

    (20)Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353.doi: 10.1007/s002149900093

    (21)Chatteraj, P. K. Chemical Reactiνity Theory; CRC Press: Boca Roton, 2009.

    (22)Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (23)Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys.Reν. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    (24)Galván, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92,6470. doi: 10.1021/j100333a056

    (25)Garza, J.; Vargas, R.; Cedillo, A.; Galván, M.; Chattaraj, P. K.Theor. Chem. Acc. 2006, 115, 257.doi: 10.1007/s00214-005-0002-3

    (26)Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys.2002, 116, 8731. doi: 10.1063/1.1467338

    (28)Bunge, C. F. J. Chem. Phys. 2006, 125, 014107.doi: 10.1063/1.2207620

    (29)Bunge, C. F. Theor. Chem. Acc. 2010, 126, 139.doi: 10.1007/s00214-009-0601-5

    (30)Almora-Diaz, C. X.; Bunge, C. F. Int. J. Quantum Chem.2010, 110, 2982. doi: 10.1002/qua.22835

    (31)Lehoucq, R. B.; Sorensen, D. C.; Yang, C. ARPACK Users Guide: Solution of Large-Scale Εigenνalue Problems with Implicitly Restarted Arnoldi Methods; SIAM: Philadelphia,1998.

    (32)Jitrik, O.; Bunge, C. F. Phys. Reν. A 1997, 56, 2614.doi: 10.1103/PhysRevA.56.2614

    (33)Sajeev, Y. Chem. Phys. Lett. 2013, 587, 105.doi: 10.1016/j.cplett.2013.09.052

    (34)Samanta, K.; Yeager, D. L. Adν. Chem. Phys. 2012, 150, 103.doi: 10.1002/9781118197714.ch2

    (35)Tsogbaya, T.; Yeager, D. L. Chem. Phys. 2017, 482, 201.doi: 10.1016/j.chemphys.2016.07.020

    (36)Falcetta, M. F.; Reilly, N. D.; Jordan, K. D. Chem. Phys. 2017,482, 239. doi: 10.1016/j.chemphys.2016.09.005

    (37)Venkatnathan, A.; Mishra, M. K.; Jensen, H. J. A. Theor.Chem. Acc 2000, 104, 445. doi: 10.1007/s002140000164

    (38)Burrow, P. D.; Michejda, J. A.; Comer, J. J. Phys. B: Atom.Mol. Opt. Phys. 1976, 9, 3225.doi: 10.1088/0022-3700/9/18/014

    (39)Johnston, A. R.; Gallup, G. A.; Burrow, P. D. Phys. Reν. A 1989, 40, 4770. doi: 10.1103/PhysRevA.40.4770

    (40)Gallup, G. A.; Burrow, P. D.; Fabrikant, I. I. Phys. Reν. A 2009, 79, 042701. doi: 10.1103/PhysRevA.79.042701

    99国产精品99久久久久| 最近最新中文字幕大全免费视频| 午夜福利欧美成人| 久久人人97超碰香蕉20202| 亚洲午夜精品一区,二区,三区| 免费观看精品视频网站| 久久影院123| 91麻豆av在线| 国产一区二区三区视频了| 91麻豆av在线| 91国产中文字幕| 色综合站精品国产| 99国产精品免费福利视频| 一本大道久久a久久精品| 夜夜爽天天搞| 久久狼人影院| 国产一区二区三区视频了| 老司机深夜福利视频在线观看| 真人做人爱边吃奶动态| 黑人欧美特级aaaaaa片| 老司机福利观看| 18禁裸乳无遮挡免费网站照片 | 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 极品人妻少妇av视频| 最新在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲自偷自拍图片 自拍| 久久人人97超碰香蕉20202| 亚洲精品久久成人aⅴ小说| 国产精品九九99| 一个人观看的视频www高清免费观看 | 老司机深夜福利视频在线观看| 亚洲一区二区三区色噜噜 | 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 日韩欧美在线二视频| 国产单亲对白刺激| 欧美中文日本在线观看视频| 色老头精品视频在线观看| ponron亚洲| 午夜影院日韩av| 人人妻人人爽人人添夜夜欢视频| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 热re99久久国产66热| 女同久久另类99精品国产91| 亚洲国产毛片av蜜桃av| 性色av乱码一区二区三区2| 青草久久国产| 狂野欧美激情性xxxx| 欧美最黄视频在线播放免费 | 国产精品香港三级国产av潘金莲| 大型av网站在线播放| 18禁黄网站禁片午夜丰满| 成人18禁在线播放| 成人永久免费在线观看视频| 午夜免费成人在线视频| 日本黄色日本黄色录像| 成年人黄色毛片网站| 精品久久蜜臀av无| 精品国产国语对白av| 黄网站色视频无遮挡免费观看| 91字幕亚洲| 久久精品aⅴ一区二区三区四区| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 中文字幕色久视频| 国产1区2区3区精品| 12—13女人毛片做爰片一| 午夜福利一区二区在线看| 亚洲性夜色夜夜综合| 久久精品亚洲av国产电影网| 精品一区二区三区四区五区乱码| 久久久久久久久中文| 欧美成人午夜精品| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 精品一区二区三区四区五区乱码| 精品高清国产在线一区| 999久久久精品免费观看国产| 亚洲第一青青草原| 视频在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 成人18禁在线播放| 身体一侧抽搐| 老汉色av国产亚洲站长工具| tocl精华| 亚洲国产中文字幕在线视频| 色老头精品视频在线观看| 国产av在哪里看| 88av欧美| 国产极品粉嫩免费观看在线| 我的亚洲天堂| 亚洲av五月六月丁香网| 美女国产高潮福利片在线看| 99久久国产精品久久久| 亚洲成av片中文字幕在线观看| 国产99白浆流出| ponron亚洲| 精品人妻在线不人妻| 久久香蕉国产精品| 日韩人妻精品一区2区三区| 男女床上黄色一级片免费看| 村上凉子中文字幕在线| 亚洲久久久国产精品| 叶爱在线成人免费视频播放| www.www免费av| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 999精品在线视频| 日韩欧美三级三区| 久久精品成人免费网站| 亚洲男人的天堂狠狠| 国产伦一二天堂av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| av超薄肉色丝袜交足视频| 欧美丝袜亚洲另类 | 在线观看舔阴道视频| 色在线成人网| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 欧美日本视频| 久久久久久九九精品二区国产| 亚州av有码| 欧美xxxx黑人xx丫x性爽| 男人狂女人下面高潮的视频| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 亚洲国产欧美人成| or卡值多少钱| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一个人观看的视频www高清免费观看| 搡老妇女老女人老熟妇| 91在线精品国自产拍蜜月| or卡值多少钱| 国内毛片毛片毛片毛片毛片| 国产一区二区激情短视频| 色哟哟·www| 成人特级av手机在线观看| 女生性感内裤真人,穿戴方法视频| 床上黄色一级片| 乱人视频在线观看| 51午夜福利影视在线观看| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 精品人妻1区二区| 国产不卡一卡二| 精品久久国产蜜桃| 男女下面进入的视频免费午夜| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 一区二区三区免费毛片| 99热这里只有是精品50| 免费在线观看成人毛片| 内地一区二区视频在线| 久久久久久久亚洲中文字幕 | 日本 av在线| 国产精品野战在线观看| 日本一本二区三区精品| 亚洲国产日韩欧美精品在线观看| 久久久久久久亚洲中文字幕 | 琪琪午夜伦伦电影理论片6080| 国产中年淑女户外野战色| 深爱激情五月婷婷| 九九久久精品国产亚洲av麻豆| 国产野战对白在线观看| 小说图片视频综合网站| 看片在线看免费视频| 免费观看精品视频网站| 国产aⅴ精品一区二区三区波| 午夜激情福利司机影院| 国产淫片久久久久久久久 | 婷婷六月久久综合丁香| 国产精品,欧美在线| 久久99热这里只有精品18| 美女黄网站色视频| 精品人妻1区二区| 每晚都被弄得嗷嗷叫到高潮| 九九久久精品国产亚洲av麻豆| 亚洲av熟女| 人妻久久中文字幕网| 欧美绝顶高潮抽搐喷水| 精品福利观看| 在线天堂最新版资源| 久久99热这里只有精品18| 亚洲中文字幕一区二区三区有码在线看| 两性午夜刺激爽爽歪歪视频在线观看| 青草久久国产| 性插视频无遮挡在线免费观看| 嫩草影院入口| 国产在线男女| 国产又黄又爽又无遮挡在线| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 成人欧美大片| 久久草成人影院| 亚洲第一电影网av| 日韩av在线大香蕉| 亚洲人成电影免费在线| 欧美黄色淫秽网站| 精品福利观看| 免费看a级黄色片| 女生性感内裤真人,穿戴方法视频| 天堂动漫精品| 哪里可以看免费的av片| 1024手机看黄色片| av专区在线播放| 国产精品久久久久久亚洲av鲁大| av中文乱码字幕在线| 欧美性猛交黑人性爽| 亚洲人成伊人成综合网2020| 久久久久久久亚洲中文字幕 | 在线观看66精品国产| 国产欧美日韩一区二区三| 色综合站精品国产| 国产中年淑女户外野战色| 看免费av毛片| 国内少妇人妻偷人精品xxx网站| 国产精品亚洲一级av第二区| 美女大奶头视频| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 亚洲av免费高清在线观看| 亚洲在线观看片| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站高清观看| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 欧美色视频一区免费| 亚洲人成网站在线播| 看十八女毛片水多多多| 丁香六月欧美| 大型黄色视频在线免费观看| 国产三级在线视频| 嫩草影院精品99| av在线天堂中文字幕| 狠狠狠狠99中文字幕| 别揉我奶头~嗯~啊~动态视频| 又爽又黄a免费视频| 看免费av毛片| 欧美一区二区亚洲| 国产色婷婷99| 午夜影院日韩av| 欧美激情在线99| 久9热在线精品视频| 成人欧美大片| 欧美日本视频| 午夜a级毛片| 桃红色精品国产亚洲av| 亚洲无线在线观看| 色视频www国产| 人妻制服诱惑在线中文字幕| 午夜影院日韩av| 国产不卡一卡二| 男女做爰动态图高潮gif福利片| 欧美性感艳星| 精品乱码久久久久久99久播| 亚洲自拍偷在线| 久久精品国产亚洲av香蕉五月| 欧美黑人欧美精品刺激| 五月玫瑰六月丁香| 床上黄色一级片| 日本a在线网址| www.www免费av| 国产麻豆成人av免费视频| 午夜激情福利司机影院| 国产v大片淫在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 又黄又爽又刺激的免费视频.| 国产淫片久久久久久久久 | 精品久久久久久久久久久久久| 欧美xxxx性猛交bbbb| 两人在一起打扑克的视频| 亚洲精品456在线播放app | 精品欧美国产一区二区三| 久久99热6这里只有精品| 很黄的视频免费| 国产av一区在线观看免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美日韩无卡精品| 亚洲成人精品中文字幕电影| 每晚都被弄得嗷嗷叫到高潮| 看黄色毛片网站| 韩国av一区二区三区四区| 久久精品人妻少妇| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩综合久久久久久 | av在线天堂中文字幕| 一区福利在线观看| 成年女人看的毛片在线观看| 国内少妇人妻偷人精品xxx网站| 身体一侧抽搐| 国产老妇女一区| 99久久久亚洲精品蜜臀av| 97人妻精品一区二区三区麻豆| av欧美777| 亚洲自拍偷在线| 欧美日韩中文字幕国产精品一区二区三区| 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 欧美日韩黄片免| 少妇裸体淫交视频免费看高清| 色精品久久人妻99蜜桃| 中文字幕av在线有码专区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 极品教师在线视频| 我的老师免费观看完整版| 69人妻影院| 亚洲欧美日韩高清在线视频| 国产精品亚洲一级av第二区| 99久久久亚洲精品蜜臀av| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| 99久久成人亚洲精品观看| 国产v大片淫在线免费观看| 国产精品亚洲美女久久久| 男人狂女人下面高潮的视频| 久久久久免费精品人妻一区二区| 亚洲精品日韩av片在线观看| 午夜福利视频1000在线观看| 午夜免费激情av| 啦啦啦韩国在线观看视频| 久久国产乱子伦精品免费另类| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| 在线观看一区二区三区| 日韩高清综合在线| 亚洲人成电影免费在线| 变态另类成人亚洲欧美熟女| 国产高清视频在线播放一区| 国产精品久久久久久精品电影| 国产人妻一区二区三区在| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 免费观看的影片在线观看| 国产精品不卡视频一区二区 | 久久精品人妻少妇| 国模一区二区三区四区视频| 亚洲av免费高清在线观看| 成年免费大片在线观看| 女生性感内裤真人,穿戴方法视频| 久久精品影院6| 成人无遮挡网站| 欧美乱妇无乱码| 内地一区二区视频在线| 亚洲一区二区三区不卡视频| 久久久精品大字幕| 亚洲av五月六月丁香网| 国产av在哪里看| 精品福利观看| 九九久久精品国产亚洲av麻豆| 国产黄色小视频在线观看| 国产黄色小视频在线观看| 亚洲第一欧美日韩一区二区三区| 淫妇啪啪啪对白视频| 永久网站在线| 亚洲av五月六月丁香网| 757午夜福利合集在线观看| 在线播放无遮挡| 小说图片视频综合网站| 美女高潮的动态| 国产精品亚洲美女久久久| 国产野战对白在线观看| 久久中文看片网| 亚洲av第一区精品v没综合| 两人在一起打扑克的视频| 欧美潮喷喷水| 夜夜躁狠狠躁天天躁| 男女那种视频在线观看| 亚洲国产精品合色在线| 国产亚洲精品久久久久久毛片| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 久久久久久久久中文| 精品人妻熟女av久视频| 别揉我奶头 嗯啊视频| 黄色一级大片看看| 欧美一级a爱片免费观看看| 国产精品98久久久久久宅男小说| 亚洲欧美日韩高清专用| 1000部很黄的大片| 99在线人妻在线中文字幕| 麻豆久久精品国产亚洲av| 国产成人a区在线观看| 国产亚洲精品久久久久久毛片| 少妇被粗大猛烈的视频| 免费在线观看影片大全网站| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| 嫩草影视91久久| 午夜免费男女啪啪视频观看 | 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 有码 亚洲区| 一区二区三区四区激情视频 | 老鸭窝网址在线观看| 99精品在免费线老司机午夜| 成人亚洲精品av一区二区| 91麻豆av在线| a级一级毛片免费在线观看| 好男人在线观看高清免费视频| 51国产日韩欧美| 美女xxoo啪啪120秒动态图 | 亚洲精品在线美女| 国产三级在线视频| 人人妻人人看人人澡| 色av中文字幕| 日日夜夜操网爽| 波多野结衣高清无吗| 18禁在线播放成人免费| 欧美日韩福利视频一区二区| 男人狂女人下面高潮的视频| 又黄又爽又免费观看的视频| eeuss影院久久| 我的老师免费观看完整版| 在线观看66精品国产| 悠悠久久av| 免费在线观看日本一区| 日韩人妻高清精品专区| 亚洲内射少妇av| 亚洲欧美激情综合另类| 国内久久婷婷六月综合欲色啪| 中文亚洲av片在线观看爽| 久久久成人免费电影| 国模一区二区三区四区视频| 99热这里只有是精品在线观看 | 特大巨黑吊av在线直播| 搞女人的毛片| 真人做人爱边吃奶动态| 夜夜爽天天搞| 国内毛片毛片毛片毛片毛片| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 我的女老师完整版在线观看| 国产精品精品国产色婷婷| 久久亚洲精品不卡| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 看黄色毛片网站| 日本与韩国留学比较| 人妻夜夜爽99麻豆av| 别揉我奶头~嗯~啊~动态视频| 久久精品国产自在天天线| 久久99热这里只有精品18| 精品一区二区三区人妻视频| 精品国内亚洲2022精品成人| av专区在线播放| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 啪啪无遮挡十八禁网站| 日本一二三区视频观看| 国产黄片美女视频| 国产精品久久久久久亚洲av鲁大| 听说在线观看完整版免费高清| 好男人在线观看高清免费视频| 亚洲在线观看片| 精品99又大又爽又粗少妇毛片 | 99久久无色码亚洲精品果冻| 久久久国产成人精品二区| 成人国产综合亚洲| 国产主播在线观看一区二区| 哪里可以看免费的av片| 热99re8久久精品国产| 在线十欧美十亚洲十日本专区| 少妇被粗大猛烈的视频| 无人区码免费观看不卡| 国产精品亚洲av一区麻豆| 国产熟女xx| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 9191精品国产免费久久| 午夜福利欧美成人| 嫩草影院入口| 欧美精品啪啪一区二区三区| 12—13女人毛片做爰片一| 有码 亚洲区| 国产美女午夜福利| 欧美+日韩+精品| 亚洲美女视频黄频| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 欧美一区二区亚洲| 亚洲黑人精品在线| 99热6这里只有精品| 窝窝影院91人妻| 国产av在哪里看| 成人av在线播放网站| 麻豆一二三区av精品| 精品人妻1区二区| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 又粗又爽又猛毛片免费看| 午夜福利在线观看吧| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 少妇人妻精品综合一区二区 | 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看 | 国产乱人视频| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 成人av一区二区三区在线看| 极品教师在线免费播放| 内地一区二区视频在线| 伦理电影大哥的女人| 宅男免费午夜| 欧美色视频一区免费| 久久久久久久久久成人| 亚洲精品日韩av片在线观看| 久久久久九九精品影院| 9191精品国产免费久久| 久久婷婷人人爽人人干人人爱| 麻豆av噜噜一区二区三区| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 深夜a级毛片| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| 一级黄色大片毛片| 国产一区二区亚洲精品在线观看| 日韩欧美在线二视频| 嫩草影视91久久| 午夜激情欧美在线| 中文在线观看免费www的网站| 亚洲美女视频黄频| 久久九九热精品免费| 亚洲最大成人中文| 亚洲成人精品中文字幕电影| 亚洲成人久久爱视频| 久久久久国产精品人妻aⅴ院| 久久人人爽人人爽人人片va | 亚洲欧美日韩卡通动漫| 国产伦精品一区二区三区四那| 亚洲激情在线av| 午夜福利成人在线免费观看| 国产极品精品免费视频能看的| 亚洲熟妇熟女久久| 欧美成人a在线观看| 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 国产精华一区二区三区| 又爽又黄无遮挡网站| 国产大屁股一区二区在线视频| 日韩欧美在线乱码| 一区二区三区激情视频| 少妇被粗大猛烈的视频| 欧美精品国产亚洲| 真人一进一出gif抽搐免费| 老女人水多毛片| 全区人妻精品视频| 国产毛片a区久久久久| 88av欧美| 欧美日韩福利视频一区二区| 九色成人免费人妻av| 国产美女午夜福利| 国产黄片美女视频| 日本免费a在线| 99久久成人亚洲精品观看| 亚洲男人的天堂狠狠| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 亚洲国产精品久久男人天堂| 久久久久久九九精品二区国产| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| 国产精品久久久久久精品电影| 亚洲欧美日韩高清专用| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 亚洲激情在线av| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 色在线成人网| 精品欧美国产一区二区三| 在线观看免费视频日本深夜| 在线十欧美十亚洲十日本专区| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 1000部很黄的大片| 美女高潮喷水抽搐中文字幕| or卡值多少钱| 日本三级黄在线观看| 丁香欧美五月| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| 乱人视频在线观看| 亚洲在线观看片| 在线观看一区二区三区| 精品免费久久久久久久清纯| 91九色精品人成在线观看| 九色成人免费人妻av| 内地一区二区视频在线|