• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strength of lntramolecular Hydrogen Bonds

    2018-04-10 11:24:18JIANGXiaoyuWUWeiMOYirong
    物理化學(xué)學(xué)報(bào) 2018年3期

    JIANG Xiaoyu, WU Wei, MO Yirong

    1 College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, P. R. China.

    2 The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R.China.

    3 Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA.

    1 lntroduction

    As one of the most fundamental concepts in chemistry,biology and material science, hydrogen bond (H-bond) has been extensively studied experimentally and theoretically1-6. It ubiquitously exists among molecules (intermolecularly) or within a single molecule (intramolecularly). One kind of prominent examples for the intramolecular H-bond (IMHB) is nucleic acids where H-bonding interactions among base pairs dominate the three-dimensional structures and help determine the physiological or biochemical properties of DNA molecules.In the past two decades, a number of strong and unconventional hydrogen bonds, such as resonance-assisted hydrogen bonds(RAHBs)7-11, have been identified and recognized. The proposal of RAHB comes from the observation of the crystal structures of β-diketo enols by Gilli and coworkers, who interpreted the enhanced intramolecular (also intermolecular)H-bonding interaction evidenced by the shortened H-bond distance in terms of resonance7. In β-diketone enols, the intramolecular ···O=C―C=C―OH··· H-bond, where donor and acceptor are connected through π-conjugated double bonds,is enhanced by the resonance and results in the shortening of O···O distances (2.39-2.44 ?, 1 ? = 0.1 nm)11. This shortening of the hydrogen bonds is associated with a decrease (i.e.,red-shift) of O―H vibrational frequencies and abnormal downfield1H NMR chemical shifts8. In general, π-electron delocalization results in the effective mixing of resonance forms, and is responsible for very strong H-bonds with low energy-barrier height for the proton-transfer reaction. For the instance of the enol form of acetylacetone (AcAc), which is a prototypical enolone and has been well studied both experimentally and theoretically, the ground state can be treated as a mixture of tautomeric forms I (enol-keto) and II(keto-enol)7,12,13.

    Scheme 1 Tautomeric forms of acetylacetone (AcAc).

    However, as Sanz et al. argued, the seemingly enhanced IMHBs in unsaturated compounds may simply result from the constraints imposed by the σ-skeleton framework14,15. Alkorta et al. also computed magnetic properties as a probe for the RAHB phenomenon and found that neither the spin-spin coupling constants nor the proton chemical shifts provide any evidenceforthe existenceof RAHBs16,17. Energy decomposition analysis of a series of conjugated dimers linked by H-bonds showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic)attraction as resonance redistributes the electron density and increases the dipole moments in monomers, and the covalence of H-bonds changes very little if the resonance is quenched at the same nuclear arrangement18. But we note that intramolecular H-bonds differ from intermolecular H-bonds,irrespective of whether they are coupled with the -conjugated system or not. As such, we need figure out computational strategies of evaluating both the strength of resonance19and the strength of IMHB20-28. The former can be tackled with our block-localized wavefunction (BLW) method which is the simplest variant of ab initio valence bond (VB) theory29-32and can shut down the resonance to efficiently derive the geometry and energetics for an electron-localized state33-35. Thus, the remaining question is how to evaluate the strength of IMHBs.

    While the strength of intermolecular H-bond in a complex can be easily evaluated through a supramolecular approach where the H-bond strength is the energy variation from free monomers to the complex, there are difficulties in the proper evaluation of the strength of IMHB. Various approximated approaches thus have been developed28,36-39. Gilli et al.suggested that the H-bond strengths can be reasonably predicted from acid-base molecular properties, or the pKaslide rule27. But the simplest and most popular one is to rotate the bridging X―H group around the vicinal C―X bond by 180ofrom its equilibrium position between the two heavy atoms, and the subsequent energy variation along the rotation is taken as the H-bond energy19,40-42. As a further improvement, Wang et al. rotated relevant dihedral angles to disable IMHBs but compensated the steric effect involved in the rotation process which is derived from a model system where the H-bond donor is substituted by a methylene group23,43. A complex conformational analysis adopted by Jablonski et al. is also based on the energy differences among the conformers resulting from the rotation of the donor and acceptor groups to predict the energy of the H-bond24. By the use of appropriate reference molecules, isodesmic reactions can be designed to derive the H-bond energy44. Deshmukh et al. proposed the molecular tailoring approach on the basis of the systematic fragmentation scheme26,45. Obviously, the use of model systems or the change of geometries in the above approaches inevitably introduces indefinite factors to the measure of IMHB strengths.Alternatively, Bader's quantum theory of atoms in molecules(QTAIM) approach46has been extensively applied to the study of H-bonds39,47,48. But evidences show that the estimate of H-bond strengths based on the QTAIM topological properties is imperfect49. The natural bond orbital (NBO) method has been broadly used for the study of H-bonds50,51. But due to the non-optimalnatureofNBOs,thechargetransfer(hyperconjugation) energy has been proved to be highly overestimated52-56.

    To shed light into the nature of IMHB assisted by resonance,in this paper we lay out a novel strategy including two unique approaches, namely our BLW method33-35and Edmiston's truncated localized molecular orbital (TLMO) technique57, to study two exemplary systems of intramolecular homonuclear O―H···O H-bonds including acetylacetone (AcAc) and o-hydroxyacetophenone (oHAP), as shown in Fig.1. Whereas the BLW method can examine the impact of π resonance on the structures and energetics of molecules with intramolecular H-bonding interaction, the TLMO technique can probe the magnitude of covalence in IMHBs57,58.

    2 Method

    2.1 Block-localized wavefunction (BLW) method

    Within the VB theory, a conjugated system is described by a number of resonance structures whose wavefunctions can be individually defined with Heitler-London-Slater-Pauling(HLSP) functions as

    where MLis the normalization constant,A? is the antisymmetrizer and φ2i-1,2iis a bond function composed of non-orthogonal orbitals φ2i-1and φ2i(or a lone pair if φ2i-1= φ2i).

    The overall many-electron wave function for an adiabatic state is a linear combination of several important VB functions and the resonance energy is the energy difference between the most stable resonance structure and the adiabatic state. Ab initio VB theory has been rejuvenated in the past two decades with a few practical programs notably the XMVB32,59,60. To simplify the computational costs involved in Eq.(1), we can represent bond orbitals with nonorthogonal doubly occupied fragment-localized orbitals (or group functions)61-66. Based on the conventional VB ideas, we proposed the BLW method where a BLW corresponds to a unique electron-localized diabatic state (usually the most stable resonance state). The fundamental assumption is that the total electrons and primitive basis functions (χμ) can be divided into k subgroups (blocks),and each MO is block-localized and expanded in only one block. Assuming that there are mibasis and nielectrons for block i, we can express block-localized MOs for this block as

    Fig.1 Two molecules of IMHBs studied in this work.

    Subsequently, the BLW for a closed-shell is defined using a Slater determinant as

    Orbitals in the same subspace are subject to the orthogonality constraint, but orbitals belonging to different subspaces are nonorthogonal. Thus, the BLW method combines the advantages of both MO and VB theories. The BLW method is available at the DFT level with the geometry optimization and frequency computation capabilities34,67. We note that the electron density (ρBLW) corresponding to the BLW state is different from the density for the ground state (ρ) which can be obtained by standard MO or DFT calculations.

    2.2 Truncated localized MOs (LMO) approach

    A covalent bond (Eq.(2)) is characteristic of sharing a pair of electrons between two bonding atoms. In the case of the X―H··Y H-bond, Y (typically O or N) supplies its lone pair to the opposite positively charged hydrogen and a H-bond thus in many ways is comparable to a dative bond, albeit with much lower strength. Consequently, the covalence in the H-bond can be similarly measured by the electron transfer from the lone pair to the X―H antibond orbital. Within the MO theory, this kind of n → σXH*hyperconjugative interaction can be well illustrated with the perturbation of the lone pair orbital by the anti-bond orbital as

    where both φ(n) and φ(σ*XH) are strictly localized orbitals and φ'is a delocalized orbital with a small tail from the X―H antibond orbital. To properly evaluate the magnitude of n →σ*XHinteraction, it is necessary to get optimal localized orbitals.The conventional localization of canonical MOs νia unitary transformation results in localized MOs which are not strictly localized on bonds or atoms and possess small tails which reflect both the orthogonalization and delocalization effects.The orthogonalization of MOs within the constraint of one Slater determinant does not change the energy, and only the delocalization tail measures the n → σ*XHinteraction. Edmiston proposed a simple solution to evaluate the n → σ*XHenergy by truncating the tails of LMOs to get the strictly LMOs57. The truncated LMOs (TLMOs) can be subsequently reorthogonalized and used to compute the molecular energy.Compared with the original energy before the LMO truncation,the molecular energy change from LMOs to TLMOs is the n →σ*XHelectron transfer (or delocalization) energy. In addition,TLMOs result in the third kind of electron density ρTLMO. We have examined the hyperconjugation energy in propene with the TLMO method, and found that the results are quite accurate compared with the BLW data58.

    2.3 Computational details

    Standard B3LYP density functional theory (DFT)calculations with the basis set of 6-311+G(d,p) were performed throughout the work as this level of theory has been assessed for IMHBs and shown comparable with MP2/6-311+G(d,p)results14,15.Geometries of acetylacetone (AcAc) and o-hydroxyacetophenone (oHAP) were optimized with the GAMESS software68. The optimal localized structure of AcAc where electron pairs are strictly localized on the CC or CO bond or O atom are obtained with the BLW method, which is implemented to the in-house version of GAMESS. For the BLW computation of oHAP, there are six electrons localized on the benzene ring. Vibrational frequencies are computed with a scaling factor of 0.967969. The comparison of the geometrical parameters and vibrational frequencies computed with the standard B3LYP and the BLW-DFT methods reveals the impact of the resonance on both the structures and energetics of molecules with resonance-assisted IMHBs.

    The nature of IMHB, which is of -symmetry in AcAc and oHAP, is further investigated with the truncated LMOs. Tails of LMOs of either the carbonyl or hydroxyl functional groups from the other group are truncated to get the TLMOs. This truncation procedure follows the unitary transformation of delocalized MOs to LMOs. All three major localization criteria,including the Boys scheme70, the Edmiston-Ruedenberg (E-R)scheme71and the Pipek-Mezey (P-M) scheme72, will be adopted for comparison. In addition, the QTAIM method is employed to analyze the topological properties of the electron densities in both delocalized and π localized states. The consequence of the truncation of LMOs in terms of energy and electron density changes will also be probed.

    3 Results and discussion

    3.1 Resonance effect on geometry and energy

    Using the BLW method, we usually derive the most stable resonance (Lewis) structure which can be served as a reference for the evaluation of resonance effect on geometry, energetic and other properties by comparing with the ground state which can be derived with conventional MO or DFT methods at the same theoretical level. In AcAc (1), there are six conjugated electrons and the conjugation effect can be monitored by the variations of the CC and CO bond lengths. Our major results related to the H-bonds are listed in Table 1. Similar to malonaldehyde49, the conjugation remarkably shortens the single bonds of C―C (from 1.551 to 1.445 by 0.106 ?) and C―O (from 1.440 to 1.326 by 0.114 ?) but modestly lengthens both the double bonds of C=C (from 1.322 to 1.370 by 0.048?) and C=O (from 1.204 to 1.245 by 0.041 ?). At the DFT optimal geometry, the strict localization of π electrons on double bonds and oxygen atoms increases the molecular energy by 63.0 kcal·mol-1(1 kcal = 4.1868 kJ) which is defined as the vertical resonance energy (VRE). This is higher than the value in malonaldehyde (51.2 kcal·mol-1). The discrepancy (11.8 kcal·mol-1) reflects the hyperconjugation energy of the two methyl groups in AcAc to the π space. The BLW optimization results in the optimal localized structure whose parameters are comparable to those in non-conjugated systems. For instance,the C―C bond stretches to 1.551 ?, comparable to the bond length in ethane, while the C=C bond shortens to 1.322 ?,identical to the bond length in ethylene. Similarly, the C―O single and C=O double bond lengths are 1.440 ? and 1.204 ?,respectively. These numbers can be justified by the values in methanol and formaldehyde. The energy difference between the optimal delocalized and localized structures corresponds to the adiabatic resonance energy (ARE), which is 48.8 kcal·mol-1for AcAc, again higher than the value in malonaldehyde (37.7 kcal·mol-1).

    Table 1 Selected optimal bond distances (?), νOa-H stretching vibrational frequency (cm-1) and resonance energy (RE, kcal·mol-1) at the B3LYP/6-311+G(d,p) level.

    The structural and energetic changes for oHAP are much like the case of AcAc, but the magnitudes are reduced slightly. For instances, the conjugation shortens the single bonds of C―C and C―O by 0.091 (from 1.564 to 1.473) and 0.102 ? (from 1.442 to 1.340) and lengthens the double bonds of C=C and C=O by 0.027 and 0.032 ?, respectively. Accordingly, both the VRE and ARE are 46.6 and 37.3 kcal·mol-1, respectively, and higherthanthecorrespondingvaluesin o-hydroxybenzaldehyde(41.8and32.9kcal·mol-1,respectively). The differences, which are 40% of the gaps between AcAc and malonaldehyde, again reflect the hyperconjugation energy of the methyl group in oHAP to the π space. We also note the resonance energies (VRE and ARE) in oHAP are even lower than those in AcAc or malonaldehyde,and apparently due to the π pair on the C1=C2bond which prefers to participate the resonance within the benzene ring and achieve the largest stability (aromaticity). This can be verified by the optimal C1=C2bond distance (1.395 ?) in the BLW optimal geometry, which is close to the bond distance in benzene much more than in ethylene.

    Apart from the expected changes as discussed in above, the localization of π electrons obviously weakens the IMHB in both systems. Experimentally it has been suggested that the strength of a H-bond (X―H··Y) is associated with the H-bond distances including X···Y and H···Y73,74. For the present cases of AcAc and oHAP, the O―H bond shortens by 0.034 and 0.021 ?, while the Oa···Odnotably increases by 0.25 and 0.16 ?, respectively. These changes are in accord with the red-shifting of the stretching vibrational frequency of the O―H bond (by 633 and 338 cm-1, respectively). The comparison of the data for AcAc and oHAP in Table 1 also indicates that the IMHB in oHAP is somewhat weaker than the H-bond in AcAc,as suggested by the H-bond lengths and vibrational frequencies.All these results seemingly provide very strong proofs for the proposal of resonance-assisted H-bond and differ from the criticism by Yá?ez and coworkers that RAHBs result from the constraints imposed by the σ-skeleton framework14-17.

    The impact of π conjugation can also be visualized by plotting the electron density difference map (EDD) between DFT and BLW densities at the DFT optimal geometries, as shown in Fig.2 where the orange/cyan surface represents an increase/decrease in electron density. In both cases, we observe the movement of the π electrons away from the hydroxyl oxygen to the carbonyl oxygen through the CC double bond.Significantly, there is electron density depletion from the hydrogen atom which can be verified by population analyses.Thus, π electron resonance does reduce the hydrogen population and makes the hydrogen carry more positive charge.

    3.2 Strength of intramolecular RAHB

    As there is no clear-cut definition for the energy of IMHBs,differentapproacheswithvariousassumptionsand approximations have been proposed. Notably, Woodford examined the H-bond energies in MA and its substituted derivatives with five different approaches, and found significant differences among these estimates. For instance, the IMHB energy in malonaldehyde ranges from 9.8 to 15.8 kcal·mol-139.

    Fig.2 Electron density difference (EDD) isosurface maps showing the movement of electron density due to π conjugation in (a) AcAc and (b) oHAP.

    We computed the most important index for the covalence of H-bonds, namely the electron transfer energy between the hydroxyl and carbonyl groups using the truncation approach.57For comparison, we also examined the energy change by flipping the ―OH group by 180°. Table 2 lists the results for AcAc and oHAP. It is notable that all three localization criteria result in very close values, though the Pipek-Mezey scheme based on the maximization of Mulliken populations gives slightly low numbers which will be used in the following discussion. Among the three localization schemes, the Pipek-Mezey scheme is the most effective one in differentiating σ and π MOs. This is important as the H-bond is of σ-symmetry and thus only σ-tails need be truncated, though the role of π tails should be negligible and in the present study both σ and π interactions are considered. For AcAc, the electron transfer,which is mainly the n → σ*XHhyperconjugative interaction but also composed of other trivial contributions, stabilizes the molecule by 14.6 kcal·mol-1, implying considerable covalent nature of the IMHB. For comparison, in the formic acid dimer which involves two intermolecular H-bonds, the optimal H-bond length R(O···O) is 2.701 ?, and the intermolecular interaction energy decomposition based on the BLW method(BLW-ED75,76) estimates the electron transfer stabilization energy for each H-bond as 5.3 kcal·mol-1, compared with the overall H-bond energy 8.3 kcal·mol-1if the deformation energy cost is not considered18.

    However, the H-bond energy also concerns the repulsive Pauli exchange energy and the stabilizing electrostatic and polarization energies. This partly explains why the TLMO stabilization energies are lower than the energy variation by flipping the hydroxyl group out of the bonding area (11.0 kcal·mol-1for AcAc). The Pauli repulsion energy increases exponentially with the shortening of the H-bond length. The large electron transfer energy derived from TLMOs hardly offsets the fast increasing Pauli repulsion. Once the resonance is deactivated, we see the immediate lengthening of the H-bond(Table 1), and accordingly, there is a reduction of the electron transfer energy. There is an obvious correlation between the TLMO energy values and the H-bonding distances. However,we found that the H-bonding in oHAP is stronger than in AcAc if we estimate the H-bond strength by flipping the involved hydroxyl group, and this seems counterintuitive.

    Table 2 H-bonding strengths (kcal?mol-1) estimated with the truncated LMO's based on various localization schemes.

    Previous study with a series of resonance-assisted H-bonding systems including malonaldehyde showed that there is little change on the topological properties of electron densities at hydrogen bond critical points (HBCPs) when the resonance is shut down49. This raises a serious question whether QTAIM topological parameters can be a measure of H-bonding strength, though there are claims that the electron density at HBCPs is a good descriptor as it correlates well with hydrogen bond strengths77-79. Popelier et al. even suggested that the typical topological parameters at HBCPs are 0.002-0.04 a.u.for the electron density (ρ) and 0.02-0.15 au for its Laplacian(?2ρ).80,81Here we similarly compare the QTAIM topological parameters with the resonance turned on and off (Table 3). By retaining the same geometry, we again observe little changes between DFT and BLW densities. According to the concept of RAHB, the deactivation of the resonance would significantly weaken the H-bonding strength. Yet, we found that the topological parameters at HBCPs are dependent on the H-bond distance rather than the H-bond strength. In other words, the topological parameters will vary monotonously along with the H-bond distance, while the H-bonding strength would behave along a Morse curve like any interactions.

    Table 3 The density and Laplacian of density at the BCP (in a.u.) with the DFT/6-311+G(d,p) geometries.

    4 Conclusions

    In this work, we employed the BLW method and the TLMO technique to study the impact of resonance on the structures and intramolecular hydrogen bonding in acetylacetone and o-hydroxyacetophenone which are exemplary for the concept of resonance-assisted hydrogen bond (RAHB). RAHB is characteristic of the cooperativity between the π-electron delocalization and H-bonding interactions. Computational results show that the π resonance significantly changes the molecular structures and shorten the IMHBs. Accordingly,remarkable red-shifting of the O―H stretching vibrational frequency is also verified, and the magnitude in acetylacetone is higher than in o-hydroxybenzaldehyde, suggesting the stronger bonding in the former. This is supported by the TLMO results, which show the significant covalence in IMHBs.

    (1)Scheiner, S. Hydrogen Bonding: A Theoretical Perspectiνe; Oxford University Press: New York, 1997.

    (2)Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

    (3)Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: New York, 2001.

    (4)Hydrogen Bonding - Νew Insights; Grabowski, S. J., Ed.; Springer:Berlin, 2006; Vol.3.

    (5)Gilli, G.; Gilli, P. The Νature of the Hydrogen Bond: Outline of a Comprehensiνe Hydrogen Bond Theory; Oxford University Press:New York, 2009; Vol.23.

    (6)Supramolecular Assembly νia Hydrogen Bonds; Mingos, D. M. P.Ed.; Springer: Berlin, 2010; Vol.108.

    (7)Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc.1989, 111, 1023. doi: 10.1021/ja00185a035

    (8)Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991,113, 4917. doi: 10.1021/ja00013a030

    (9)Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000,122, 10405. doi: 10.1021/ja000921+

    (10)Gilli, P.; Bertolasi, V.; Pretto, L.; Ly?ka, A.; Gilli, G. J. Am.Chem. Soc. 2002, 124, 13554. doi: 10.1021/ja020589x

    (11)Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. J. Am.Chem. Soc. 2004, 126, 3845. doi: 10.1021/ja030213z

    (12)Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S.; Zewail, A.H. J. Am. Chem. Soc. 2004, 126, 2266.doi: 10.1021/ja031927c

    (13)Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. Reν.2005, 105, 3513. doi: 10.1002/chin.200603277

    (14)Sanz, P.; Mó, O.; Yá?ez, M.; Elguero, J. J. Phys. Chem. A 2007, 111, 3585. doi: 10.1021/jp067514q

    (15)Sanz, P.; Mó, O.; Yá?ez, M.; Elguero, J. Chem. Εur. J. 2008,14, 4225. doi: 10.1002/chem.200701827

    (16)Alkorta, I.; Elguero, J.; Mó, O.; Yá?ez, M.; Del Bene, J. E.Mol. Phys. 2004, 102, 2563.doi: 10.1080/00268970412331292885

    (17)Alkorta, I.; Elguero, J.; Mó, O.; Yá?ez, M.; Del Bene, J. E.Chem. Phys. Lett. 2005, 411, 411.doi: 10.1016/j.cplett.2005.06.061

    (18)Beck, J. F.; Mo, Y. J. Comput. Chem. 2007, 28, 455.doi: 10.1002/jcc.20523

    (19)Grabowski, S. J. J. Phys. Org. Chem. 2003, 16, 797.doi: 10.1002/poc.675

    (20)Grabowski, S. J. J. Mol. Struct. 2001, 562, 137.doi: 10.1016/S0022-2860(00)00863-2

    (21)Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739.doi: 10.1021/jp011819h

    (22)Grabowski, S. J. J. Phys. Org. Chem. 2004, 17, 18.doi: 10.1002/poc.685

    (23)Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys.2005, 123, 024307. doi: 10.1063/1.1979471

    (24)Jablonski, M.; Kaczmarek, A.; Sadlej, A. J. J. Phys. Chem. A 2006, 110, 10890. doi: 10.1021/jp062759o

    (25)Liu, T.; Li, H.; Huang, M. B.; Duan, Y.; Wang, Z. X. J. Phys.Chem. A 2008, 112, 5436. doi: 10.1021/jp712052e

    (26)Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113,7927. doi: 10.1021/jp9031207

    (27)Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res.2009, 42, 33. doi: 10.1021/ar800001k

    (28)Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. J. Phys. Chem.A 2010, 114, 9529. doi: 10.1021/jp103470e

    (29)Valence Bond Theory; Cooper, D. L. Ed.; Elsevier:Amsterdam, 2002.

    (30)Gallup, G. A. Valence Bond Methods: Theory and Applications; Cambridge University Press: New York, 2002.

    (31)Shaik, S. S.; Hiberty, P. C. A Chemist's Guide to Valence Bond Theory; Wiley: Hoboken, New Jersey, 2008.

    (32)Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Reν. 2011,111, 7557. doi: 10.1021/cr100228r

    (33)Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687.doi: 10.1063/1.476742

    (34)Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291.doi: 10.1021/jp0724065

    (35)Mo, Y. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds.; Wiley-VCH:Weinheim, Germany, 2014, p. 199.doi: 10.1002/9783527664696.ch6

    (36)Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782.doi: 10.1039/B618225A

    (37)Estácio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.;Minas da Piedade, M. E.; Martinho Sim?es, J. A. J. Phys.Chem. A 2004, 108, 10834. doi: 10.1021/jp0473422

    (38)Lipkowskia, P.; Kolla, A.; Karpfenb, A.; Wolschannb, P.Chem. Phys. Lett. 2002, 360, 256.doi: 10.1016/S0009-2614(02)00830-8

    (39)Woodford, J. N. J. Phys. Chem. A 2007, 111, 8519.doi: 10.1021/jp073098d

    (40)Latajka, Z.; Scheiner, S. J. Phys. Chem. 1994, 96, 9764.doi: 10.1021/j100203a035

    (41)Scheiner, S.; Kar, T.; ?uma, M. J. Phys. Chem. A 1997, 101,5901. doi: 10.1021/jp9713874

    (42)González, L.; Mó, O.; Yá?ez, M. J. Phys. Chem. A 1997, 101,9710. doi: 10.1021/ jp970735z

    (43)Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251.doi: 10.1002/jcc.21141

    (44)Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2001, 105,10462. doi: 10.1021/jp013125e

    (45)Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys.Chem. A 2006, 110, 12519. doi: 10.1021/jp065836o

    (46)Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Oxford University Press: Oxford, U. K., 1990.

    (47)Pacios, L. F. J. Phys. Chem. A 2004, 108, 1177.doi: 10.1021/jp030978t

    (48)LaPointe, S. M.; Farrag, S.; Bohrquez, H. J.; Boyd, R. J. J.Phys. Chem. B 2009, 113, 10957. doi: 10.1021/jp903635h

    (50)Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Reν. 1988,88, 899. doi: 10.1021/cr00088a005

    (51)Weinhold, F.; Landis, C. Valency and Bonding; Cambridge University Press: Cambridge, England, 2005.

    (52)Pophristic, V.; Goodman, L. Νature 2001, 411, 565.doi: 10.1038/35079036

    (53)Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Εd.2003, 42, 4183. doi: 10.1002/anie.200350947

    (54)Weinhold, F. Angew. Chem. Int. Εd. 2003, 42, 4188.doi: 10.1002/anie.200351777

    (55)Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113.doi: 10.1021/ar068073w

    (56)Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J.Angew. Chem. Int. Εd. 2004, 43, 1986.doi: 10.1002/anie.200352931

    (58)Mo, Y.; Zhang, Q. J. Mol. Struct. (Theochem) 1995, 357, 171.doi: 10.1016/0166-1280(95)04274-A

    (59)Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005,26, 514. doi: 10.1002/jcc.20187

    (60)Song, L.; Chen, Z.; Ying, F.; Song, J.; Chen, X.; Su, P.; Mo,Y.; Zhang, Q.; Wu, W. XMVB 2.0: An ab initio Νon-orthogonal Valence Bond Program; Xiamen University:Xiamen, 2012.

    (61)Mulliken, R. S.; Parr, R. G. J. Chem. Phys. 1951, 19, 1271.doi: 10.1063/1.1748011

    (62)Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J.Chem. Phys. 1968, 49, 2592. doi: 10.1063/1.1681576

    (63)Stoll, H.; Preuss, H. Theor. Chim. Acta 1977, 46, 11.doi: 10.1007/BF02401407

    (64)Kollmar, H. J. Am. Chem. Soc. 1979, 101, 4832.doi: 10.1021/ja00511a009

    (65)Mehler, E. L. J. Chem. Phys. 1977, 67, 2728.doi: 10.1063/1.435187

    (66)Gianinetti, E.; Raimondi; Tornaghi, E. Int. J. Quantum Chem.1996, 60, 157. doi: 10.1002/(SICI)1097-461X(1996)60:1<157:AID-QUA17>3.0.CO;2-C

    (68)Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.;Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.doi: 10.1002/jcc.540141112

    (69)Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109,2937. doi: 10.1021/jp045733a

    (70)Boys, S. F. Reν. Mod. Phys. 1960, 32, 296.doi: 10.1103/RevModPhys.32.296

    (71)Edmiston, C.; Ruedenberg, K. Reν. Mod. Phys. 1963, 35, 457.doi: 10.1103/RevModPhys.35.457

    (72)Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916.doi: 10.1063/1.456588

    (74)Steiner, T.; Saenger, W. Acta Cryst. 1994, B50, 348.doi: 10.1107/S0108768193011966

    (75)Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112,5530. doi: 10.1063/1.481185

    (76)Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13,6760. doi: 10.1039/c0cp02206c

    (77)Mó, O.; Yánez, M.; Elguero, J. J. Chem. Phys. 1992, 97,6628. doi: 10.1063/1.463666

    (78)Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998,285, 170. doi: 10.1016/S0009-2614(98)00036-0

    (79)Espinosa, E.; Molins, E. J. Chem. Phys. 2000, 113, 5686.doi: 10.1063/1.1290612

    (80)Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99, 9747.doi: 10.1021/j100024a016

    (81)Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873.doi: 10.1021/jp9805048

    19禁男女啪啪无遮挡网站| 久久热在线av| 制服人妻中文乱码| 亚洲自偷自拍图片 自拍| 久久久欧美国产精品| 国产av又大| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 我的亚洲天堂| 国产男靠女视频免费网站| 一二三四社区在线视频社区8| 精品福利永久在线观看| 一本久久精品| 亚洲伊人色综图| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 91成人精品电影| 国产极品粉嫩免费观看在线| 在线av久久热| 高清av免费在线| 欧美中文综合在线视频| 青青草视频在线视频观看| 亚洲精品久久午夜乱码| 99国产精品99久久久久| 成年人午夜在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 一本久久精品| 黄色视频在线播放观看不卡| 动漫黄色视频在线观看| 久久久精品区二区三区| videos熟女内射| 国产又色又爽无遮挡免费看| 国产精品香港三级国产av潘金莲| 亚洲第一青青草原| 男女边摸边吃奶| 国产日韩欧美在线精品| 国产主播在线观看一区二区| 国产精品麻豆人妻色哟哟久久| 乱人伦中国视频| 在线永久观看黄色视频| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 99久久精品国产亚洲精品| 亚洲综合色网址| 国产精品免费大片| 精品少妇久久久久久888优播| 在线观看免费高清a一片| 色播在线永久视频| 欧美精品亚洲一区二区| 18禁观看日本| 99re在线观看精品视频| 人人妻人人澡人人爽人人夜夜| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看| 国产精品 国内视频| 精品熟女少妇八av免费久了| 亚洲成国产人片在线观看| 免费人妻精品一区二区三区视频| 波多野结衣一区麻豆| 亚洲伊人久久精品综合| 久久国产精品人妻蜜桃| 人人澡人人妻人| 夜夜骑夜夜射夜夜干| 麻豆成人av在线观看| 亚洲精品中文字幕在线视频| 国产日韩欧美亚洲二区| 老熟妇仑乱视频hdxx| 国产xxxxx性猛交| 精品视频人人做人人爽| 人妻一区二区av| 99精国产麻豆久久婷婷| 久9热在线精品视频| 成人国语在线视频| 免费日韩欧美在线观看| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| av欧美777| a级片在线免费高清观看视频| 18禁国产床啪视频网站| 肉色欧美久久久久久久蜜桃| 亚洲视频免费观看视频| 久久精品熟女亚洲av麻豆精品| 午夜精品国产一区二区电影| 精品一品国产午夜福利视频| 国产在线免费精品| 亚洲av第一区精品v没综合| 国产精品偷伦视频观看了| 日本vs欧美在线观看视频| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 少妇猛男粗大的猛烈进出视频| 丰满迷人的少妇在线观看| 咕卡用的链子| 黄色 视频免费看| 亚洲国产成人一精品久久久| 久久精品国产亚洲av香蕉五月 | 九色亚洲精品在线播放| 97在线人人人人妻| 免费在线观看完整版高清| 日韩熟女老妇一区二区性免费视频| 母亲3免费完整高清在线观看| 三级毛片av免费| 欧美久久黑人一区二区| 99精品在免费线老司机午夜| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| 国产一区有黄有色的免费视频| 十八禁网站网址无遮挡| 视频在线观看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产成人一区二区三区免费视频网站| 搡老乐熟女国产| 精品久久久精品久久久| √禁漫天堂资源中文www| 国产99久久九九免费精品| 欧美人与性动交α欧美软件| 9热在线视频观看99| 不卡一级毛片| 亚洲男人天堂网一区| 日本黄色日本黄色录像| 亚洲精品国产精品久久久不卡| 天天操日日干夜夜撸| 久久国产精品大桥未久av| 男人操女人黄网站| 精品少妇久久久久久888优播| 久久精品亚洲精品国产色婷小说| 最新在线观看一区二区三区| 久久青草综合色| 美女国产高潮福利片在线看| 亚洲 国产 在线| 他把我摸到了高潮在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲人成77777在线视频| 久久99一区二区三区| 国产精品美女特级片免费视频播放器 | 精品少妇黑人巨大在线播放| 1024视频免费在线观看| 老司机午夜福利在线观看视频 | 美女扒开内裤让男人捅视频| 精品卡一卡二卡四卡免费| 九色亚洲精品在线播放| 久久亚洲精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 大码成人一级视频| 精品国产乱子伦一区二区三区| 日韩中文字幕欧美一区二区| a级片在线免费高清观看视频| 天堂动漫精品| 91成年电影在线观看| 久久久水蜜桃国产精品网| 国产男女超爽视频在线观看| 波多野结衣一区麻豆| 可以免费在线观看a视频的电影网站| 亚洲九九香蕉| 天堂8中文在线网| 飞空精品影院首页| 老司机福利观看| 国产精品麻豆人妻色哟哟久久| 欧美另类亚洲清纯唯美| 人人妻人人澡人人爽人人夜夜| 免费日韩欧美在线观看| 极品教师在线免费播放| 久久久国产成人免费| 9色porny在线观看| 黄色视频在线播放观看不卡| videos熟女内射| 国产午夜精品久久久久久| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 色老头精品视频在线观看| av天堂在线播放| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 亚洲中文字幕日韩| 亚洲成人国产一区在线观看| 母亲3免费完整高清在线观看| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| av线在线观看网站| av网站在线播放免费| 一二三四社区在线视频社区8| 伦理电影免费视频| 久久人妻福利社区极品人妻图片| 麻豆乱淫一区二区| 国产成人免费观看mmmm| 考比视频在线观看| 最近最新中文字幕大全免费视频| 久久精品国产99精品国产亚洲性色 | 日本黄色日本黄色录像| 男人操女人黄网站| 免费在线观看日本一区| 午夜激情av网站| 蜜桃在线观看..| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 啦啦啦 在线观看视频| av超薄肉色丝袜交足视频| 亚洲精品乱久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人人爽av亚洲精品天堂| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 精品国产亚洲在线| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲av高清一级| 国产在线观看jvid| 中文字幕av电影在线播放| 性色av乱码一区二区三区2| 国产免费视频播放在线视频| 亚洲黑人精品在线| 日韩免费av在线播放| 777米奇影视久久| 国产主播在线观看一区二区| 婷婷丁香在线五月| 国产欧美日韩一区二区精品| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 久久亚洲真实| 国产成人影院久久av| 久久精品成人免费网站| 成年人黄色毛片网站| 一区二区三区精品91| 久久午夜亚洲精品久久| 中国美女看黄片| 桃红色精品国产亚洲av| 欧美精品一区二区大全| 久久人人爽av亚洲精品天堂| 国产不卡一卡二| 亚洲精华国产精华精| 国产精品免费大片| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕一二三四区 | 久久精品亚洲精品国产色婷小说| 亚洲伊人色综图| 免费观看av网站的网址| 国产单亲对白刺激| 在线观看66精品国产| av视频免费观看在线观看| 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| av不卡在线播放| 日韩精品免费视频一区二区三区| 麻豆国产av国片精品| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 桃红色精品国产亚洲av| netflix在线观看网站| 日韩欧美一区二区三区在线观看 | 热99re8久久精品国产| 香蕉久久夜色| 国产伦理片在线播放av一区| av网站在线播放免费| 建设人人有责人人尽责人人享有的| 精品人妻熟女毛片av久久网站| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 蜜桃在线观看..| 久久香蕉激情| av不卡在线播放| 欧美日本中文国产一区发布| 久久久久视频综合| 一边摸一边做爽爽视频免费| 国产有黄有色有爽视频| 最近最新中文字幕大全电影3 | 亚洲自偷自拍图片 自拍| 精品一品国产午夜福利视频| 香蕉国产在线看| 在线观看舔阴道视频| 男女无遮挡免费网站观看| 男女下面插进去视频免费观看| 91精品国产国语对白视频| 一个人免费看片子| 欧美精品一区二区免费开放| 777久久人妻少妇嫩草av网站| 日韩欧美三级三区| 这个男人来自地球电影免费观看| 国产在线精品亚洲第一网站| 精品国产超薄肉色丝袜足j| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 国产成人系列免费观看| 无人区码免费观看不卡 | 日韩欧美国产一区二区入口| 丝袜人妻中文字幕| 一级毛片精品| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产精品免费视频内射| 90打野战视频偷拍视频| 婷婷丁香在线五月| 亚洲伊人色综图| 国产在线免费精品| 高清av免费在线| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 精品少妇久久久久久888优播| 国产日韩欧美亚洲二区| 满18在线观看网站| 男女高潮啪啪啪动态图| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 高清在线国产一区| 国产欧美日韩一区二区三区在线| 在线看a的网站| 欧美国产精品一级二级三级| 国产又爽黄色视频| 美女主播在线视频| 手机成人av网站| 91av网站免费观看| 最近最新中文字幕大全电影3 | 丰满少妇做爰视频| 宅男免费午夜| 高清av免费在线| 在线亚洲精品国产二区图片欧美| 人成视频在线观看免费观看| 国产成人av激情在线播放| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 人人妻人人澡人人爽人人夜夜| 国产精品欧美亚洲77777| 每晚都被弄得嗷嗷叫到高潮| 欧美精品一区二区大全| 免费在线观看视频国产中文字幕亚洲| 精品少妇黑人巨大在线播放| 国产一区二区 视频在线| 在线观看人妻少妇| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品成人av观看孕妇| 午夜福利在线免费观看网站| av天堂久久9| 99久久人妻综合| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 1024视频免费在线观看| 香蕉久久夜色| 久久中文字幕人妻熟女| 国产av国产精品国产| 日本欧美视频一区| 人人妻人人澡人人看| 亚洲色图av天堂| 精品久久久久久久毛片微露脸| 亚洲欧洲精品一区二区精品久久久| 精品亚洲成国产av| 国产麻豆69| 另类精品久久| 一级,二级,三级黄色视频| 成年版毛片免费区| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| 啦啦啦 在线观看视频| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕一二三四区 | 国产成人精品在线电影| 欧美精品av麻豆av| 亚洲成人国产一区在线观看| www.精华液| 国产精品香港三级国产av潘金莲| 女人精品久久久久毛片| 不卡一级毛片| 中国美女看黄片| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三| 成人国语在线视频| 国产日韩欧美在线精品| 成人国语在线视频| 大型黄色视频在线免费观看| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| 极品人妻少妇av视频| 老汉色∧v一级毛片| 亚洲一区二区三区欧美精品| 亚洲熟女毛片儿| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 中文字幕最新亚洲高清| kizo精华| 91老司机精品| 亚洲男人天堂网一区| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 国产精品秋霞免费鲁丝片| 12—13女人毛片做爰片一| 视频在线观看一区二区三区| 精品福利观看| 亚洲av欧美aⅴ国产| 男男h啪啪无遮挡| 亚洲av电影在线进入| 日本av手机在线免费观看| 成年动漫av网址| √禁漫天堂资源中文www| 色在线成人网| www.精华液| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| tube8黄色片| 国产成人影院久久av| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 久久久久网色| 一区二区三区精品91| 变态另类成人亚洲欧美熟女 | 国精品久久久久久国模美| 视频区欧美日本亚洲| 一级毛片女人18水好多| 亚洲av美国av| 美女福利国产在线| 五月开心婷婷网| 午夜日韩欧美国产| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | 丰满迷人的少妇在线观看| 婷婷丁香在线五月| 婷婷成人精品国产| 国产av又大| a级毛片黄视频| 一边摸一边抽搐一进一小说 | 激情视频va一区二区三区| 18禁美女被吸乳视频| 免费日韩欧美在线观看| 国产免费福利视频在线观看| 亚洲精品成人av观看孕妇| 最近最新免费中文字幕在线| 欧美人与性动交α欧美软件| 一级,二级,三级黄色视频| 成年版毛片免费区| 国产精品av久久久久免费| 国产精品久久久久久精品电影小说| 51午夜福利影视在线观看| 久久国产精品影院| 国产黄频视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 国产精品久久久久久精品古装| a在线观看视频网站| 亚洲欧美激情在线| 男女边摸边吃奶| 国产精品国产高清国产av | 亚洲精华国产精华精| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| 亚洲色图av天堂| 五月开心婷婷网| 国产成人啪精品午夜网站| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 日韩视频一区二区在线观看| 久久人妻av系列| 极品少妇高潮喷水抽搐| 性少妇av在线| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲| 视频在线观看一区二区三区| 一区二区三区国产精品乱码| 美女高潮到喷水免费观看| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 啦啦啦 在线观看视频| 777米奇影视久久| 乱人伦中国视频| 久久久国产成人免费| 激情视频va一区二区三区| 久久精品成人免费网站| 九色亚洲精品在线播放| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 精品国产国语对白av| 90打野战视频偷拍视频| 久久 成人 亚洲| 亚洲精品国产精品久久久不卡| 脱女人内裤的视频| 精品人妻熟女毛片av久久网站| 人人妻人人添人人爽欧美一区卜| 国产一卡二卡三卡精品| 高清在线国产一区| 另类亚洲欧美激情| 免费av中文字幕在线| 久久精品国产亚洲av香蕉五月 | 午夜福利欧美成人| 免费观看a级毛片全部| 日韩免费av在线播放| 热99re8久久精品国产| 久久精品国产a三级三级三级| 最黄视频免费看| 久久国产精品男人的天堂亚洲| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 成人国产av品久久久| 叶爱在线成人免费视频播放| av不卡在线播放| 两性夫妻黄色片| 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区 | 亚洲性夜色夜夜综合| 91精品国产国语对白视频| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 69精品国产乱码久久久| 嫩草影视91久久| av又黄又爽大尺度在线免费看| 韩国精品一区二区三区| 亚洲人成伊人成综合网2020| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 免费高清在线观看日韩| 黑人操中国人逼视频| 国产在线免费精品| 777久久人妻少妇嫩草av网站| 国产亚洲精品久久久久5区| 激情视频va一区二区三区| 最新的欧美精品一区二区| 老汉色∧v一级毛片| 18禁黄网站禁片午夜丰满| 久久精品熟女亚洲av麻豆精品| 日韩中文字幕视频在线看片| 婷婷成人精品国产| 午夜激情久久久久久久| 啦啦啦免费观看视频1| 国产99久久九九免费精品| 五月开心婷婷网| 亚洲精品一卡2卡三卡4卡5卡| 91国产中文字幕| 在线亚洲精品国产二区图片欧美| 国产亚洲午夜精品一区二区久久| 欧美黄色片欧美黄色片| 夜夜骑夜夜射夜夜干| videosex国产| 亚洲专区字幕在线| 久久99一区二区三区| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 久久国产精品人妻蜜桃| 国产av一区二区精品久久| 久久久久久亚洲精品国产蜜桃av| 在线观看www视频免费| 国产精品久久久久久人妻精品电影 | 久久青草综合色| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 欧美 日韩 精品 国产| 黄色片一级片一级黄色片| 超碰97精品在线观看| 99riav亚洲国产免费| 我要看黄色一级片免费的| 久久久久久久精品吃奶| 我要看黄色一级片免费的| 国产av精品麻豆| 久久热在线av| 亚洲精品美女久久av网站| 国产片内射在线| 乱人伦中国视频| 99精品在免费线老司机午夜| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 水蜜桃什么品种好| 99久久国产精品久久久| 男女无遮挡免费网站观看| 黄片播放在线免费| 国产午夜精品久久久久久| 一本综合久久免费| 满18在线观看网站| 精品卡一卡二卡四卡免费| 久久中文字幕一级| 国产亚洲精品一区二区www | 久久精品人人爽人人爽视色| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 免费看a级黄色片| 人妻久久中文字幕网| 亚洲精品粉嫩美女一区| 国产精品熟女久久久久浪| 久9热在线精品视频| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 精品亚洲成国产av| www.熟女人妻精品国产| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区精品视频观看| 亚洲国产av新网站| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 久久中文看片网| 午夜日韩欧美国产| 国产av又大|