• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    2016-11-23 03:30:17LIJinXiLIYiYunndWANGBin
    關(guān)鍵詞:氣壓梯度理想

    LI Jin-XiLI Yi-Yunnd WANG Bin,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    LI Jin-Xia,bLI Yi-Yuanaand WANG Bina,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    A new approach is proposed to use the covariant scalar equations of the σ-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next,the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal σ-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.

    ARTICLE HISTORY

    Revised 27 February 2016

    Accepted 25 March 2016

    Pressure gradient force errors; covariant scalar equations of the σcoordinate; steep terrain;computational and physical space; geometric analysis; non-orthogonal σ-coordinate

    本文針對(duì)經(jīng)典σ坐標(biāo)的氣壓梯度誤差(PGF誤差),采用多種地形展開(kāi)理想試驗(yàn),對(duì)比經(jīng)典σ坐標(biāo)的經(jīng)典方案和協(xié)變方案的PGF誤差。結(jié)果表明:計(jì)算空間中,協(xié)變方案始終能減小經(jīng)典方案的誤差,地形越陡,效果越明顯。然而,幾何分析和理想試驗(yàn)均表明:協(xié)變方案僅能減小計(jì)算空間的誤差,不能減小物理空間的誤差;相比經(jīng)典方案,正交地形追隨坐標(biāo)能同時(shí)減小計(jì)算空間和物理空間的誤差。

    1. Introduction

    The pressure gradient force computational errors (PGF errors) in a terrain-following coordinate (σ-coordinate) can signifcantly afect the performance of a model, including the vorticity in the downslope of steep terrain, the blocking of cold air in the upslope of steep terrain, the potential vorticity near the tropopause over steep terrain, and so on (Smagorinsky et al. 1967; Kasahara 1974; Mahrer 1984;Steppeler et al. 2003; Hoinka and Z?ngl 2004; Li, Chen, and Shen 2005; Hu and Wang 2007). The PGF computational form is expressed by two terms in each horizontal momentum equation in the σ-coordinate. Computational errors are therefore inevitable as these two terms are opposite in sign and typically of the same order near steep terrain(Haney 1991; Fortunato and Baptista 1996; Lin 1997; Ly and Jiang 1999; Berntsen 2002; Chu and Fan 2003; Shchepetkin and McWilliams 2003; Li, Chen, and Li 2012).

    Much efort has been made to alleviate the PGF errors to an acceptable level (Corby, Gilchrist, and Newson 1972;Gary 1973; Zeng 1979; Qian and Zhong 1986; Blumberg and Mellor 1987; Yu 1989; Qian and Zhou 1994; Berntsen 2011; Klemp 2011; Z?ngl 2012), without touching this twoterm PGF (the so-called classic method). Alternatively, two new methods have been proposed to create a one-term PGF to overcome the PGF errors. One is to adopt the covariant scalar equations of the σ-coordinate (the covariant method by Li, Wang, and Wang (2012)); and the other is to design an orthogonal terrain-following coordinate (the orthogonal method by Li et al. (2014)). Using two idealizedexperiments, Li, Wang, and Wang (2012) showed that the covariant method signifcantly reduces the errors, compared to the classic method, in the computational space.

    Figure 1.The pressure feld (shading) and terrain (black curve). The pressure scale (color bar on the right) is in hPa.

    Many researchers have pointed out that the PGF errors of the classic method are related to terrain slope (Yan and Qian 1981; Zeng and Ren 1995; Steppeler et al. 2003; Weller and Shahrokhi 2014; Li, Li, and Wang 2016). But can the covariant method consistently reduce the PGF errors compared to the classic method as terrain slope increases?Moreover, although the calculation of a model is in the computational space, the fnal application of model results is in the physical space; can the covariant method reduce the PGF errors in the physical space?

    In this study, we frst carry out a set of sensitivity experiments of increasing terrain slope to compare the PGF errors of the classic method and those of the covariant method in the computational space. Then, we use a geometric schematic and associated idealized experiments to further investigate the PGF errors of these methods in the physical space. The results of the idealized experiments using various terrain in the computational space are presented in Section 2. The PGF errors in the physical space are compared in Section 3. Concluding remarks and a discussion are given in Section 4.

    2. Idealized experiments in the computational space

    Since the covariant method was shown to significantly reduce the PGF errors in the computational space,compared to the classic method, in the experiments using one kind of terrain implemented by Li, Wang, and Wang (2012), we further investigate the PGF errors of the covariant method and those of the classic method in the computational space over different kinds of terrain. We first introduce the basic parameters for all the experiments, and then compare the PGF errors of the covariant method and those of the classic method in the computational space in experiments of increasing terrain slope.

    2.1. Basic parameters

    For consistency, we use the same parameters as Li, Wang,and Wang (2012), except for the terrain slope. First, the defnition of σ, proposed by Gal-Chen and Somerville (1975) is adopted, where z represents the height, HTis the top of the model, and h represents terrain. We use a 2D bell-shaped terrain (black curve in Figure 1),

    where H = 4 km is the maximum height, a = 5 km is the half width, and h0= 50 km is the middle point of the terrain.

    Second, we use the centeral spatial discretization for the PGF in the horizontal and the forward scheme in the vertical for both methods. The expressions are given as follows:

    Finally, we use a pressure feld,

    as shown in Figure 1, where h(x) is defned by Equation (1), H is the maximum height of terrain, Hp= 300 km is a parameter to adjust the pressure gradient, p0= 1,015.0 hPa is surface pressure, and λ = 8 km is the typical height of the atmosphere. The domain of all the experiments is 0-100 km in the horizontal and 0-37 km in the vertical (Figure 1). The horizontal and vertical resolutions are 0.5 km and 3.7 km, respectively.

    Figure 2.RMS-REs of two methods in the computational space in experiments of increasing terrain slope. The slope is calculated by arctan (H/2a) and shown in (a). The RMS-REs of each method are shown in (b).

    2.2. Sensitivity experiments

    Through increasing the maximum height H of terrain in Equation (1) at 50-m intervals from 3 to 9 km, we carry out 121 sets of experiments (Figure 2(a)). Note that the maximum slope is almost three times the minimum in Figure 2(a).

    We calculate the root-mean-square of relative errors(RMS-REs) of the PGF of the covariant method and those of the classic method (Figure 2(b)). The RMS-REs of the covariant method are consistently reduced by one order of magnitude, compared to those of the classic method. Moreover, as the terrain slope increases, the RMS-REs of the classic method significantly increase (red line in Figure 2(b) relative to black line in Figure 2(a)); however,the RMS-REs of the covariant method remain approximately the same (blue line in Figure 2(b) relative to black line in Figure 2(a)). Therefore, the steeper the terrain, the greater the reduction of the ratio of PGF errors via the covariant method.

    3. Comparison of the PGF errors in the physical space

    In order to compare the PGF errors of the covariant method and those of the classic method in the physical space, we frst use a geometric schematic to further investigate the PGF errors in the physical space, and then carry out a set of associated idealized experiments to validate the results obtained by the geometric analysis.

    The geometric schematic of PGF is shown in Figure 3. The relationship between the lines with arrow heads in Figure 3 and the variables related to PGF are all listed below:

    Figure 3.Schematic of PGF vectors and their components in diferent methods.

    The vertical PGF of the z-coordinate,

    The horizontal PGF of the covariant method in the computational space,The vertical PGF of the covariant method in the computational space,

    In addition, through the geometric relationship in Figure 3,we obtain

    where φ is terrain slope, and

    First, the expressions of the PGF of the covariant method and the classic method in the physical space are respectively given by

    According to Equation (7), the PGF of the covariant method expressed in Equation (9) equals the PGF of the classic method shown in Equation (10); namely, the covariant method cannot reduce the PGF errors in the physical space compared to the classic method.

    Note that both the classic method and the covariant method are non-orthogonal methods (Li, Wang, and Wang 2011, 2012), namely, the PGF errors in the physical space cannot be reduced by the coordinate transformation in the non-orthogonal σ-coordinate. But can the orthogonal method proposed by Li et al. (2014) reduce the PGF errors in the physical space?

    Second, according to Figure 3, the horizontal and vertical PGFs of the orthogonal method in the computational space are respectively, where x′ is the horizontal coordinate of the orthogonal terrain-following coordinate. Then, the PGF of the orthogonal method in the physical space can be expressed by

    Using the geometric relationship in Figure 3, we obtain

    Substituting Equations (5) and (7) into Equations (14) and(15), we obtain

    Note that the PGF of the orthogonal method in the physical space is AJ-AH and that of the non-orthogonal method is AB-BE. According to Equation (16), the PGF errors in the physical space can be reduced by the orthogonal method when the terrain slope φ is large enough:

    (1) If is large enough to make the order of AH smaller than that of AJ, i.e. AH and AJ are no longer of the same order, the PGF errors in the physical space can be reduced by the orthogonal method;

    Figure 4.REs of three methods in the computational and physical spaces. The dashed contours are for negative values. The contour interval in (a), (b), (d), and (f) is 1.0, while that in (c) and (e) is 0.1. The diferences between (a) and (c) in this study and Li, Wang, and Wang(2012, Figure 6(c) and (d)) on the boundaryare due to the revised boundary condition used in this study. The revised boundary condition is directly from the defnition of pressure , to obtain the value on each boundary grid.

    Finally, we calculate the PGF errors of the three methods, i.e. the classic method, the covariant method and the orthogonal method. Substituting Equations (4), (5), (6), (8),(11), and (12) into Equations (9), (10), and (13), and using the discretization schemes given in Section 2.1, we can obtain the discrete expressions of the PGF of the three methods in the physical space as follows:Using Equations (17)-(19) and the parameters given in Section 2.1, we calculate the REs of the PGF of the three methods in the computational space as well as in the physical space (Figure 4). As obtained in the geometric analysis,the PGF errors of the covariant method are the same as those of the classic method in the physical space (Figure 4(b) and(d)), whereas the PGF errors of the orthogonal method are much reduced compared to those of the classic method in the physical space (Figure 4(b) and (f)). In addition, as with the covariant method, the orthogonal method can also reduce the PGF errors of the classic method in the computational space (Figure 4(a), (c), and (e)).

    4. Conclusion and discussion

    Through idealized experiments using increasing terrain slope in the computational space and a geometric analysis in the physical space, the present study investigates the validity of reducing the PGF errors via the covariant method proposed by Li, Wang, and Wang (2012), compared to the classic method. First, sensitivity experiments of increasing terrain slope in the computational space show that the RMS-REs of the covariant method are consistently one order of magnitude smaller than those of the classic method (Figure 2). More importantly, the steeper the terrain, the greater the reduction in the ratio of PGF errors via the covariant method, indicating that the covariant method may perform better near steep terrain.

    The geometric analysis (Figure 3) and associated idealized experiments then demonstrate that, compared to the classic method, the covariant method based on the non-orthogonal σ-coordinate can reduce the PGF errors in the computational space but not in the physical space(Figure 4(a)-(d)). However, the orthogonal method proposed by Li et al. (2014) can reduce the PGF errors in the computational space as well as in the physical space(Figure 4(a) and (b), (e) and (f)).

    In addition, since the covariant method cannot reduce the PGF errors in the physical space, but can signifcantly reduce the errors in the computational space, especially over steep terrain, the covariant method may not improve the simulation of pressure itself but could lead to improvement in the velocity (relevant to pressure, according to the momentum equations). For example, Weller and Shahrokhi(2014) used the curl-free PGF (the PGF of the covariant method is curl-free in the computational space) to obtain a better hydrostatic balance and better energy conservation.

    Besides, the patterns of PGF error of the orthogonal method are diferent from those of the other two methods based on the non-orthogonal σ-coordinate (Figure 4(a)-(d), (e) and (f)). This is related to the diference between computational grids in the orthogonal σ-coordinate and those in the non-orthogonal σ-coordinate used in this study. Further analyses are needed to investigate the relationship between computational grids and PGF errors. Plus, the true benefts of the covariant method and the orthogonal method need to be tested using primitive equations in more idealized experiments and realistic simulations.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China (973 Program) [grant number 2015CB954102];the National Natural Science Foundation of China [grant number 41305095], [grant number 41175064].

    Notes on contributors

    LI Jin-Xi is a PhD candidate at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on dynamical core of atmospheric models. Recent publications include papers in Atmospheric and Oceanic Science Letters, Geoscientifc Model Development, Atmospheric Science Letters, and Chinese Science Bulletin.

    LI Yi-Yuan is an associated researcher at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. Her main research interests are the numerical methods for the dynamical core of atmospheric models, especially the methods related with the vertical. Recent publications include papers in Geoscientifc Model Development, Communication in Computational Physics,and Atmospheric Science Letters.

    WANG Bin is a professor at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University. His main research interests are the numerical methods and data assimilation for the atmospheric, oceanic, and coupled models. Recent publications include papers in Geoscientifc Model Development, Monthly Weather Review, and Tellus.

    References

    Berntsen, J. 2002. “Internal pressure errors in sigma-coordinate ocean models.” Journal of Atmospheric and Oceanic Technology 19: 1403-1414. doi:http://dx.doi.org/10.1175/1520-0426(2002)019<1403:IPE ISC>2.0.CO;2.

    Berntsen, J. 2011. “A perfectly balanced method for estimating the internal pressure gradients in sigma-coordinate ocean models.” Ocean Modelling 38: 85-95. doi:http://dx.doi. org/10.1016/j.ocemod.2011.02.006.

    Blumberg, A. F., and G. L. Mellor. 1987. “A description of a three-dimensional coastal ocean circulation model.”P(pán)aper presented at the annual meeting for the American Geophysical Union, Washington, DC, 1-16. doi:http://dx.doi. org/10.1029/CO004p0001.

    Chu, P. C., and C. Fan. 2003. “Hydrostatic correction for sigma coordinate ocean models.” Journal of Geophysical Research 108: 3206-3217. doi:http://dx.doi.org/10.1029/2002JC001668.

    Corby, G. A., A. Gilchrist, and R. L. Newson. 1972. “A general circulation model of the atmosphere suitable for long period integrations.” Quarterly Journal of the Royal Meteorological Society 98: 809-832. doi:http://dx.doi.org/10.1002/qj.49709841808.

    Fortunato, A. B., and A. M. Baptista. 1996. “Evaluation of horizontal gradients in sigma-coordinate shallow water models.” Atmosphere-Ocean 34: 489-514. doi:http://dx.doi.or g/10.1080/07055900.1996.9649574.

    Gal-Chen, T., and R. C. J. Somerville. 1975. “On the use of a coordinate transformation for the solution of the Navierstokes equations.” Journal of Computational Physics 17: 209-228. doi:http://dx.doi.org/10.1016/0021-9991(75)90037-6.

    Gary, J. M. 1973. “Estimate of truncation error in transformed coordinate, primitive equation atmospheric models.” Journal of the Atmospheric Sciences 30: 223-233. doi:http://dx.doi. org/10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2.

    Haney, R. L. 1991. “On the pressure gradient force over steep topography in sigma coordinate ocean models.” Journal of Physical Oceanography 21: 610-619. doi:http://dx.doi. org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    Hoinka, K. P., and G. Z?ngl. 2004. “The infuence of the vertical coordinate on simulations of a PV streamer crossing the Alps.”Monthly Weather Review 132: 1860-1867. doi:http://dx.doi. org/10.1175/1520-0493(2004)132h1860:TIOTVCi2.0.CO;2.

    Hu, J. L., and P. X. Wang. 2007. “The errors of pressure gradient force in high-resolution meso-scale model with terrainfollowing coordinate and its revised scheme.” Chinese Journal of Atmospheric Sciences 31: 109-118 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.2007.01.11.

    Kasahara, A. 1974. “Various vertical coordinate systems used for numerical weather prediction.” Monthly Weather Review 102: 509-522. doi:http://dx.doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    Klemp, J. B. 2011. “A terrain-following coordinate with smoothed coordinate surfaces.” Monthly Weather Review 139: 2163-2169. doi:http://dx.doi.org/10.1175/MWR-D-10-05046.1.

    Li, X. L., D. H. Chen, and X. S. Shen. 2005. “Impact study on the calculation of vertical velocity in diferent vertical coordinate.”Journal of Tropical Meteorology 21: 265-276 (In Chinese).

    Li, Y. Y., B. Wang, and D. H. Wang. 2011. “Characteristics of a terrain-following sigma coordinate.” Atmospheric and Oceanic Science Letters 4: 157-161. doi:http://dx.doi.org/10.1080/167 42834.2011.11446922.

    Li, Chao, D. H. Chen, and X. L. Li. 2012. “A design of heightbased terrain-following coordinates in the atmospheric numerical model: theoretical analysis and idealized tests.”Acta Meteorologica Sinica 70 (6): 1247-1259 (In Chinese).

    Li, Y. Y., D. H. Wang, and B. Wang. 2012. “A new approach to implement sigma coordinate in a numerical model.”Communications in Computational Physics 12: 1033-1050. doi:http://dx.doi.org/10.4208/cicp.030311.230911a.

    Li, Y. Y., B. Wang, D. H. Wang, and J. X. Li, and L. Dong. 2014.“An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments.”Geoscientifc Model Development 7: 1767-1778. doi:http:// dx.doi.org/10.5194/gmd-7-1-2014.

    Li, J. X., Y. Y. Li, and B. Wang. 2016. “Characteristics of Pressure Gradient Force Errors in a Terrain-Following Coordinate.” Atmospheric and Oceanic Science Letters 9(3): 211-218. doi:http://dx.doi.org/10.1080/16742834.2 016.1164570.

    Lin, S. J. 1997.“A fnite-volume integration method for computing pressure gradient force in general vertical coordinates.”Quarterly Journal of the Royal Meteorological Society 123: 1749-1762. doi:http://dx.doi.org/10.1002/qj.49712354214.

    Ly, L. N., and L. Jiang. 1999. “Horizontal pressure gradient errors of the Monterey bay sigma coordinate ocean model with various grids.” Journal of Oceanography 55: 87-97. doi:http:// dx.doi.org/10.1023/A:1007865223735.

    Mahrer, Y. 1984. “An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system.” Monthly Weather Review 112 (5): 918-922. doi:http:// dx.doi.org/10.1175/1520-0493(1984)112<0918:AINAOT>2.0 .CO;2.

    Qian, Y. F., and Z. Zhong. 1986. “General forms of dynamic equations for atmosphere in numerical models with topography.” Advances in Atmospheric Sciences 3: 10-22. doi:http://dx.doi.org/10.1007/BF02680042.

    Qian, Y. F., and T. J. Zhou. 1994. “Error subtraction method in computing pressure gradient force for high and steep topographic areas.” Journal of Tropical Meteorology 10: 358-368.

    Shchepetkin, A. F., and J. C. McWilliams. 2003. “A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate.” Journal of Geophysical Research 108: 3090-3123. doi:http://dx.doi. org/10.1029/2001JC001047.

    Smagorinsky, J., R. F. Strickler, W. E. Sangster, S. Manabe,J. L. Halloway Jr., and G. D. Hembree. 1967. “Prediction experiments with a general circulation model.” Paper presented at Dynamics of Large Scale Atmospheric Processes,Moscow, USSR, 70-134.

    Steppeler, J., R. Hess, U. Sch?ttler, and L. Bonaventura. 2003.“Review of numerical methods for nonhydrostatic weather prediction models.” Meteorology and Atmospheric Physics 82: 287-301. doi:http://dx.doi.org/10.1007/s00703-001-0593-8.

    Weller, H., and A. Shahrokhi. 2014. “Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves.” Monthly Weather Review 142: 4439-4457. doi:http:// dx.doi.org/10.1175/MWR-D-14-00054.1.

    Yan, H., and Y. F. Qian. 1981. “On the problems in the coordinate transformation and the calculation of the pressure gradient force in the numerical models with topography.” Chinese Journal of Atmospheric Sciences 5: 175-187. doi:http://dx.doi. org/10.3878/j.issn.1006-9895.1981.02.07.

    Yu, R. C. 1989. “Design of the limited area numerical weather prediction model with steep mountains.” Chinese Journal of Atmospheric Sciences 13: 145-158 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.1989.02.02.

    Z?ngl, G. 2012. “Extending the numerical stability limit of terrain following coordinate models over steep slopes.”Monthly Weather Review 140: 3722-3733. doi:http://dx.doi. org/10.1175/MWR-D-12-00049.1.

    Zeng, Q. C. 1979. “Basic equations and coordinate transformation.” Mathematical and physical fundamental theory for numerical weather prediction. vol. 1, 22-25. Beijing: Science Press.

    Zeng, X. P., and Z. H. Ren. 1995. “Quantitative analysis of the discretization errors of the horizontal pressure gradient force over sloping terrain.” Chinese Journal of Atmospheric Sciences 19: 722-732. doi:http://dx.doi.org/10.3878/j.issn.1006-9895.1995.06.09.

    氣壓梯度誤差;

    協(xié)變方案; 陡峭地形; 計(jì)算空間和物理空間; 幾何分析; 正交地形追隨坐標(biāo)

    9 November 2015

    CONTACT LI Yi-Yuan liyiyuan@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    氣壓梯度理想
    理想之光,照亮前行之路
    金橋(2022年7期)2022-07-22 08:32:10
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    看不見(jiàn)的氣壓
    2021款理想ONE
    理想
    你是我的理想型
    花火彩版A(2021年11期)2021-02-08 12:42:52
    一種自適應(yīng)Dai-Liao共軛梯度法
    壓力容器氣壓端蓋注射模設(shè)計(jì)
    模具制造(2019年4期)2019-06-24 03:36:46
    一類(lèi)扭積形式的梯度近Ricci孤立子
    電滲—堆載聯(lián)合氣壓劈烈的室內(nèi)模型試驗(yàn)
    深夜精品福利| 精品卡一卡二卡四卡免费| 后天国语完整版免费观看| cao死你这个sao货| 国产精品av久久久久免费| 成人免费观看视频高清| 美女高潮喷水抽搐中文字幕| 国产91精品成人一区二区三区| 国产不卡一卡二| 欧美日韩黄片免| 亚洲欧美日韩另类电影网站| 国产精品99久久99久久久不卡| 国产免费男女视频| 国产免费男女视频| 好看av亚洲va欧美ⅴa在| 中文字幕久久专区| 黄色a级毛片大全视频| 精品久久久久久久久久免费视频| 国产片内射在线| 日韩欧美国产在线观看| 亚洲天堂国产精品一区在线| 熟女少妇亚洲综合色aaa.| 久久草成人影院| 欧美黄色淫秽网站| 国产成人欧美在线观看| 两人在一起打扑克的视频| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| www国产在线视频色| 桃色一区二区三区在线观看| 欧美黑人欧美精品刺激| 国产男靠女视频免费网站| 97人妻精品一区二区三区麻豆 | 两个人看的免费小视频| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩高清在线视频| 国产精品一区二区免费欧美| 9色porny在线观看| 久久影院123| 亚洲精品国产色婷婷电影| 亚洲欧美精品综合久久99| av片东京热男人的天堂| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 香蕉国产在线看| 日韩大码丰满熟妇| 国产精品 国内视频| 视频在线观看一区二区三区| 亚洲七黄色美女视频| 久久久久久久午夜电影| 国内毛片毛片毛片毛片毛片| 免费观看人在逋| 天天添夜夜摸| 99国产综合亚洲精品| 一夜夜www| 久久久久国内视频| 国产av又大| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 丁香欧美五月| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产| 啦啦啦 在线观看视频| 亚洲狠狠婷婷综合久久图片| 男女之事视频高清在线观看| 一边摸一边抽搐一进一小说| 女警被强在线播放| 三级毛片av免费| 人妻久久中文字幕网| 国产片内射在线| 中文字幕久久专区| 看黄色毛片网站| 亚洲自偷自拍图片 自拍| 9热在线视频观看99| 亚洲熟女毛片儿| 999久久久国产精品视频| 色在线成人网| 久久婷婷人人爽人人干人人爱 | 欧美中文综合在线视频| 久久草成人影院| 国产日韩一区二区三区精品不卡| xxx96com| 丝袜美足系列| 在线十欧美十亚洲十日本专区| 一边摸一边做爽爽视频免费| 成人国产一区最新在线观看| 亚洲国产精品sss在线观看| 精品一品国产午夜福利视频| 91麻豆精品激情在线观看国产| 女生性感内裤真人,穿戴方法视频| 性色av乱码一区二区三区2| 一个人免费在线观看的高清视频| 琪琪午夜伦伦电影理论片6080| 极品教师在线免费播放| 亚洲七黄色美女视频| 18禁裸乳无遮挡免费网站照片 | 亚洲精品国产精品久久久不卡| 亚洲九九香蕉| 母亲3免费完整高清在线观看| 成年人黄色毛片网站| 精品无人区乱码1区二区| 亚洲avbb在线观看| 人妻丰满熟妇av一区二区三区| 午夜日韩欧美国产| 亚洲最大成人中文| 亚洲电影在线观看av| 午夜福利高清视频| 日本五十路高清| 日韩欧美一区视频在线观看| 午夜免费观看网址| 丝袜美腿诱惑在线| 一本久久中文字幕| 久久久精品国产亚洲av高清涩受| 女人被狂操c到高潮| 午夜久久久久精精品| 看片在线看免费视频| 好看av亚洲va欧美ⅴa在| 亚洲五月色婷婷综合| 日韩欧美国产一区二区入口| 日韩欧美一区视频在线观看| 淫秽高清视频在线观看| 亚洲国产精品成人综合色| 99riav亚洲国产免费| 国内精品久久久久久久电影| 欧美另类亚洲清纯唯美| 欧美最黄视频在线播放免费| 欧美 亚洲 国产 日韩一| 亚洲精品国产区一区二| 日韩精品青青久久久久久| 午夜a级毛片| 欧美日本亚洲视频在线播放| 黄色女人牲交| 国产色视频综合| 精品久久久久久久人妻蜜臀av | 制服诱惑二区| 国内精品久久久久精免费| 亚洲 国产 在线| 黄频高清免费视频| 精品一区二区三区av网在线观看| 久久人人97超碰香蕉20202| 性色av乱码一区二区三区2| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| av视频在线观看入口| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 亚洲国产精品999在线| 色精品久久人妻99蜜桃| 91老司机精品| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 黄片播放在线免费| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 看黄色毛片网站| 国产真人三级小视频在线观看| 久久精品成人免费网站| 亚洲国产欧美网| 啦啦啦免费观看视频1| 午夜免费激情av| 热re99久久国产66热| 免费少妇av软件| 又大又爽又粗| 一级毛片精品| av欧美777| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 国产成人啪精品午夜网站| 亚洲国产欧美日韩在线播放| а√天堂www在线а√下载| 国产片内射在线| 国产高清视频在线播放一区| 色播亚洲综合网| 看免费av毛片| av在线播放免费不卡| 青草久久国产| 757午夜福利合集在线观看| 88av欧美| 欧美黄色淫秽网站| 亚洲精品在线美女| 欧美在线一区亚洲| 久久国产亚洲av麻豆专区| 久久狼人影院| 精品国产一区二区久久| 夜夜看夜夜爽夜夜摸| 国产成人精品在线电影| 亚洲在线自拍视频| av在线播放免费不卡| 麻豆国产av国片精品| 日韩国内少妇激情av| 久久中文看片网| av片东京热男人的天堂| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 欧美久久黑人一区二区| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 91精品国产国语对白视频| 在线观看免费视频网站a站| tocl精华| 国语自产精品视频在线第100页| 美女高潮到喷水免费观看| 免费久久久久久久精品成人欧美视频| 18禁观看日本| 日本 欧美在线| 热re99久久国产66热| 黄色女人牲交| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱 | 国产又色又爽无遮挡免费看| 女警被强在线播放| 在线观看www视频免费| 99国产综合亚洲精品| 久久热在线av| 99国产极品粉嫩在线观看| 日韩高清综合在线| 免费在线观看视频国产中文字幕亚洲| 久久久久久国产a免费观看| 99久久综合精品五月天人人| 好男人电影高清在线观看| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 一本久久中文字幕| 色老头精品视频在线观看| 免费高清视频大片| 国产av一区在线观看免费| 韩国精品一区二区三区| 青草久久国产| 曰老女人黄片| 嫩草影院精品99| 国产精品一区二区在线不卡| 精品久久久久久,| 真人一进一出gif抽搐免费| 成人国产综合亚洲| av在线天堂中文字幕| 最近最新中文字幕大全电影3 | 国产精品久久久久久精品电影 | 国产免费男女视频| 91成年电影在线观看| 黄色丝袜av网址大全| 99国产极品粉嫩在线观看| 一区二区三区精品91| 久久精品亚洲熟妇少妇任你| 91成年电影在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 亚洲中文字幕一区二区三区有码在线看 | 欧美大码av| 欧美av亚洲av综合av国产av| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 欧美日韩精品网址| 精品免费久久久久久久清纯| 女人爽到高潮嗷嗷叫在线视频| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| 村上凉子中文字幕在线| 久99久视频精品免费| 国产精品一区二区精品视频观看| 搡老妇女老女人老熟妇| 亚洲一区二区三区不卡视频| 视频区欧美日本亚洲| 国产人伦9x9x在线观看| 色在线成人网| 人人妻人人澡人人看| 成人特级黄色片久久久久久久| 两个人视频免费观看高清| 午夜日韩欧美国产| 国产欧美日韩精品亚洲av| 法律面前人人平等表现在哪些方面| 亚洲伊人色综图| 一区在线观看完整版| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| www.999成人在线观看| 午夜亚洲福利在线播放| 怎么达到女性高潮| 免费在线观看完整版高清| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 女人精品久久久久毛片| 人人妻人人澡欧美一区二区 | 免费少妇av软件| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2 | 免费观看精品视频网站| 亚洲男人天堂网一区| 日本三级黄在线观看| 搡老岳熟女国产| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 欧美色视频一区免费| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 日本vs欧美在线观看视频| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 亚洲国产精品成人综合色| 亚洲自偷自拍图片 自拍| 亚洲人成77777在线视频| 国产精品电影一区二区三区| www.999成人在线观看| 久久影院123| 国产av一区二区精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 亚洲成a人片在线一区二区| 亚洲 国产 在线| 欧美人与性动交α欧美精品济南到| 黄网站色视频无遮挡免费观看| cao死你这个sao货| 免费无遮挡裸体视频| 日本免费a在线| 丝袜美足系列| av在线天堂中文字幕| 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 国产午夜精品久久久久久| 国产精品一区二区免费欧美| 天堂动漫精品| 日日夜夜操网爽| 亚洲av美国av| 啦啦啦观看免费观看视频高清 | av电影中文网址| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 免费高清视频大片| 精品一区二区三区av网在线观看| 长腿黑丝高跟| 国产激情欧美一区二区| 久久久国产精品麻豆| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 长腿黑丝高跟| 精品久久久久久久人妻蜜臀av | 黄片播放在线免费| 国产一区二区三区综合在线观看| 久久国产亚洲av麻豆专区| 黄色视频不卡| 波多野结衣巨乳人妻| 19禁男女啪啪无遮挡网站| 欧美一级a爱片免费观看看 | 美女高潮喷水抽搐中文字幕| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 在线天堂中文资源库| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区久久 | 国产免费男女视频| 久久人妻熟女aⅴ| 国产精品乱码一区二三区的特点 | 国产99白浆流出| 大香蕉久久成人网| 午夜视频精品福利| 日韩一卡2卡3卡4卡2021年| 神马国产精品三级电影在线观看 | 亚洲人成电影免费在线| 亚洲伊人色综图| 99久久精品国产亚洲精品| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 在线观看免费视频网站a站| 日韩欧美在线二视频| 久久婷婷人人爽人人干人人爱 | 久久精品人人爽人人爽视色| 一本综合久久免费| 日韩av在线大香蕉| 亚洲成人免费电影在线观看| 波多野结衣一区麻豆| 国产精品综合久久久久久久免费 | 亚洲中文字幕一区二区三区有码在线看 | 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 手机成人av网站| 亚洲黑人精品在线| 国产视频一区二区在线看| 亚洲五月婷婷丁香| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 亚洲国产精品久久男人天堂| 深夜精品福利| 丝袜美足系列| 欧美成人性av电影在线观看| av免费在线观看网站| 日韩高清综合在线| 一进一出抽搐gif免费好疼| 国产成人av教育| 亚洲伊人色综图| 国产单亲对白刺激| 日本 av在线| 国产av一区在线观看免费| 美女高潮喷水抽搐中文字幕| 一级毛片高清免费大全| 91av网站免费观看| 亚洲欧美精品综合一区二区三区| 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 午夜影院日韩av| 色av中文字幕| 久热这里只有精品99| 九色国产91popny在线| 亚洲熟妇熟女久久| 一本综合久久免费| 日本 欧美在线| 精品国产亚洲在线| 国产国语露脸激情在线看| 人人妻人人澡欧美一区二区 | 91精品三级在线观看| 真人做人爱边吃奶动态| 久久人妻熟女aⅴ| 国产精品一区二区精品视频观看| 精品欧美国产一区二区三| 91字幕亚洲| 桃色一区二区三区在线观看| 精品人妻在线不人妻| 国产精品一区二区免费欧美| 国产精品爽爽va在线观看网站 | 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 国产1区2区3区精品| 久久中文字幕一级| 在线观看66精品国产| 波多野结衣一区麻豆| av天堂在线播放| 成人亚洲精品av一区二区| 亚洲成人国产一区在线观看| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 久久久久九九精品影院| 午夜两性在线视频| 国产成人一区二区三区免费视频网站| 国产亚洲精品第一综合不卡| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久久久99蜜臀| 精品国产国语对白av| 久久精品国产亚洲av高清一级| 精品不卡国产一区二区三区| 中文字幕人妻熟女乱码| 美女大奶头视频| 国产精品 欧美亚洲| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 免费高清在线观看日韩| 九色亚洲精品在线播放| 一区在线观看完整版| 涩涩av久久男人的天堂| 久久伊人香网站| 国产精品二区激情视频| 国产伦一二天堂av在线观看| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 精品久久久久久成人av| 欧美日本中文国产一区发布| 99国产精品一区二区三区| a在线观看视频网站| 自线自在国产av| 亚洲av电影不卡..在线观看| 免费高清视频大片| 免费在线观看视频国产中文字幕亚洲| 一本久久中文字幕| 女人高潮潮喷娇喘18禁视频| 丰满人妻熟妇乱又伦精品不卡| 在线天堂中文资源库| 两性午夜刺激爽爽歪歪视频在线观看 | 一区福利在线观看| 日日夜夜操网爽| 亚洲av第一区精品v没综合| 国产亚洲精品久久久久久毛片| 99久久国产精品久久久| 久久精品aⅴ一区二区三区四区| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 中文亚洲av片在线观看爽| bbb黄色大片| 在线观看一区二区三区| 日韩大尺度精品在线看网址 | 久久精品91蜜桃| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区视频在线观看| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放 | 在线观看www视频免费| 97超级碰碰碰精品色视频在线观看| 国产免费av片在线观看野外av| 99精品在免费线老司机午夜| 亚洲av第一区精品v没综合| 亚洲精品在线美女| www国产在线视频色| 美女高潮喷水抽搐中文字幕| 亚洲专区字幕在线| 一本久久中文字幕| 国产亚洲精品第一综合不卡| 九色国产91popny在线| 99国产综合亚洲精品| 国产精品亚洲一级av第二区| 操美女的视频在线观看| 精品国产美女av久久久久小说| 在线国产一区二区在线| 日本 欧美在线| 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 亚洲无线在线观看| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 国产一区在线观看成人免费| 成人欧美大片| cao死你这个sao货| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看 | 桃色一区二区三区在线观看| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| avwww免费| 淫妇啪啪啪对白视频| 亚洲无线在线观看| 搞女人的毛片| av网站免费在线观看视频| 色哟哟哟哟哟哟| 两人在一起打扑克的视频| 久久精品aⅴ一区二区三区四区| 黄色a级毛片大全视频| 露出奶头的视频| 香蕉久久夜色| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 亚洲精品一区av在线观看| 十分钟在线观看高清视频www| 在线观看免费视频网站a站| 我的亚洲天堂| 亚洲人成77777在线视频| 老熟妇乱子伦视频在线观看| 后天国语完整版免费观看| av天堂在线播放| 欧美国产日韩亚洲一区| 欧美日本中文国产一区发布| 一本综合久久免费| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 久久久精品国产亚洲av高清涩受| av在线播放免费不卡| 高潮久久久久久久久久久不卡| 天天添夜夜摸| 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 精品人妻1区二区| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 国产成人精品久久二区二区免费| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 麻豆国产av国片精品| 国产亚洲精品第一综合不卡| 午夜福利成人在线免费观看| av欧美777| 精品国内亚洲2022精品成人| 性色av乱码一区二区三区2| 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 婷婷六月久久综合丁香| 丰满人妻熟妇乱又伦精品不卡| 变态另类丝袜制服| 亚洲国产精品合色在线| 在线观看免费日韩欧美大片| 精品人妻1区二区| 国产片内射在线| 欧美日韩中文字幕国产精品一区二区三区 | 黄色丝袜av网址大全| 午夜福利,免费看| 一区二区三区国产精品乱码| 99国产精品一区二区蜜桃av| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影 | 亚洲精品一卡2卡三卡4卡5卡| 99香蕉大伊视频| 国产又爽黄色视频| 黑人欧美特级aaaaaa片| 免费高清在线观看日韩| 亚洲av五月六月丁香网| 制服诱惑二区| 国产av在哪里看| 成人18禁在线播放| 国产午夜精品久久久久久|