• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordinated Resource Allocation for Satellite-Terrestrial Coexistence Based on Radio Maps

    2018-04-04 08:21:18YanminWangZhouLu
    China Communications 2018年3期

    Yanmin Wang*, Zhou Lu

    China Academy of Electronics and Information Technology, Beijing 100041, China

    * The corresponding author, email: yanmin-226@163.com

    I. INTRODUCTION

    To meet the growing challenge of spectrum scarcity, various spectrum efficiency enhancement strategies are being promoted and putting into practice. Therein lies coexistence of satellite and terrestrial wireless communication systems in the same frequency band, which is considered to be a quite promising solution for unprecedented spectrum demands [1, 2]. Lots of satellite-terrestrial coexistence techniques have been proposed under the cognitive radio framework in literature, including cooperative spectrum sensing, beamforming, and adaptive resource allocation [3, 4, 5], etc. A seminal work can be found in reference [2], in which the practical limitation for spectrum sharing was precisely considered.

    As an enabler for practical cognitive radio networks (CRNs), radio map (RM) is attracting more and more interests from academia and industry [6, 7, 8]. The essential functionality of an RM is to construct a comprehensive dynamic spectrum map for a CRN, by merging multi-domain information from geolocation databases and continuous spectrum measurements collected from sensors. To estimate the state of locations where there is no measurement data, different kinds of RM construction techniques have been presented [9, 10, 11],which can be classified into spatial statistics based methods [9] and transmitter location determination based methods [10]. However,how to efficiently utilize RM for enhancing spectrum efficiency are still open and yet to be explored [7][8].

    Based on the largescale channel state information at the transmitter (CSIT),which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system.

    In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system (DAS) coexist via spectrum sharing, and propose a power allocation algorithm for the terrestrial system,as well as an opportunistic user scheduling scheme for the satellite system by utilizing RM. As an advantaged architecture for terrestrial wireless communication systems [12,13, 14], DAS has been widely adopted in 4G wireless networks and will continue to prop up 5G networks [15]. Specifically, the uplink of the satellite communication system acts as the incumbent link, and the downlink of the DAS tries to reuse the same frequency band as the cognitive link. To achieve a maximum system sum rate, power allocation is adopted in DAS to opportunistically transmit to users at less interfered locations, based on the interference distribution information derived from RM.Only the large-scale channel state information at the transmitter side (CSIT) is assumed in DAS, to ease practical implementations [15,16, 17] and match the long-term statistical characteristic of RM as well [7]. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful interference to the terrestrial mobile users.Similar to the terrestrial case, the scheduling scheme also uses only the large-scale CSIT.

    Fig. 1. Illustration of a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink.

    The rest of the paper is organized as follows. The system model is illustrated in Section II, and Section III presents the power allocation algorithm for the terrestrial system and the opportunistic user scheduling scheme for the satellite system based on RM. Simulation results are given in section IV, and Section V concludes the paper. Throughout the paper,lower case and upper case boldface symbols denote vectors and matrices, respectively. Inis an identity matrix with dimension n. (.)Hdenotes the transpose conjugate. ?M×Nrepresents the complex matrix space composed of M×N matrices and CN denotes a complex Gaussian distribution. E(.)and tr(.) represent the expectation and the trace operator, respectively.

    II. SYSTEM MODEL

    2.1 Scenario description

    As illustrated in figure 1, we consider a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink, e.g., both in the S band [2]. The satellite uplink is incumbent, and the DAS downlink reuses the same frequency band in a cognitive way. Note that due to the antenna pattern characteristics and the transit power constraints of terrestrial systems, the interference from the DAS to the satellite system can be ignored [2]. Consequently, the DAS only needs to deliberately avoid the interference from satellite terminals (STs) to its own users,and efficiently utilize the transmission power to achieve a maximum system sum rate. For the satellite side, it may adjust user scheduling strategy, so as to reduce the interference to the terrestrial users.

    Assume that L STs are located in the same area with the DAS, and there are N distributed antenna elements (DAEs) and K users in the DAS. To be general, the STs, the DAEs,and the users are all supposed to be geographically randomly deployed in the coverage area [2]. Without loss of generality, each user is equipped with M antenna elements, and N≥MK.

    2.2 Sum rate expression

    With the assumption that all transmitted signals for the N DAEs in the DAS are jointly processed in a centralized processor as shown in figure 1, the received signal yk∈?M×1at user k (k=1,2,...,K ) can be written as

    where Hk∈?M×Nis the channel matrix from the N DAEs to user k, and xk∈?N×1is the transmitted signal of user k (k=1,2,...,K ),andrepresents the channel vector between ST j (j=1,2,...,L ) and user k, and zj∈? is the transmitted signal of ST j, and nkdenotes the white Gaussian noise at user k with

    Composed of both random small-scale fading and slowly-varying large-scale fading [14][16], Hkcan be expressed as

    where Sk∈?M×Nrepresents the small-scale fading, and each entry follows the complex Gaussian distribution, and Lk∈?N×Nis a diagonal matrix, representing the large-scale channel fading. We have

    and

    which indicates the total transmission loss between DAE n and user k. Particularly, λ is the amendment factor depending on concrete propagation environments, and ψknrepresents the shadow fading with lognormal distribution, and dknis the transmission distance, and α denotes the path-loss exponent. λ, ψknand α depend on application scenarios, and these parameters impact the system performance significantly. In general, for the case with larger transmission loss, the interference from STs to the terrestrial system will become more dominant. It can be analogized from (2)thatcan be decomposed as

    As the RM is constructed via spectrum measurement, it can only indicate the large-scale CSIT with a construction cost limitation. Therefore, in the sequel,we assume only Lk(k=1,2,...,K ) and(j=1,2,...,L, k=1,2,...,K ) are available for the coordinated resource allocation optimization.

    Suppose that the elements of xkare all independently complex Gaussian distributed and the transmit power of DAE n for user k is pkn, we can get that

    For the satellite side, we assume the transmit power of ST j as

    Taking expectation over the unknown smallscale CSITwe derive the interference covariance from all the STs to user k as

    Similarly, taking expectation over the unknown small-scale CSIT Sk, we derive the interference covariance from all the other users to user k as

    Correspondingly, de fine

    and the average system sum rate of the DAS Rtcan be written as

    In the following, we try to maximize Rtby coordinated resource allocation at both the terrestrial and the satellite sides.

    III. COORDINATED RESOURCE ALLOCATION

    In this section, we first optimize the power allocation strategy for the DAS system, so as to adapt to the diverse interference level at different users. Then, we present an opportunistic scheduling method for the satellite system, to control its harmful interference to the terrestrial users.

    3.1 Power allocation for the terrestrial side

    Under a transmission power constraint for each user, we can formulate the following optimization problem

    Because of the expectation operator in the objective function, this optimization problem is dif ficult to solve. Moreover, the optimization variables exist in both the numerator and the denominator with the log function, which renders that the problem is non-convex [18].

    In order to simplify the problem, we first approximate Rtas

    with

    Using the random matrix theory [16][19], we can derive (14) and (15).

    Given Wk(k=1,2,...,K ), the problem in(13) can be recast as

    Noting that the log function is monotonically increasing, we can equivalently have the following transformed problem

    The problem in (17) is still challenging. However, we can transform it iteratively into a series of Geometric Programming (GP) problems [20].

    By ι we denote the iterative step. Then,given the power allocation results for the ι?1 step,, we can de fine

    Accordingly, we formulate the following optimization problem

    which fortunately is a standard GP problem.Consequently, we can solve it by using specialized tools. According to the inequality of arithmetic and geometric means and the fact that Rtis upper bounded, it is easy to prove that the iteration converges [13]. The details of the iterative algorithm is summarized in Algorithm 1.

    3.2 Opportunistic scheduling for the satellite side

    As shown in figure 2, for a given ST j, its interference to different terrestrial user is different. We can define the total leakage interference and the strongest leakage interference for ST j as follows

    Then, the L online STs can be selected in an opportunistic fashion. Particularly, an order of all the waiting STs is first generated in the satellite gateway, according to the interference knowledge derived from the RM. The order can be obtained based on either the sum leakage interference as

    or the strongest leakage interference as

    ?

    Fig. 2. Illustration of the inter-system interference. In this example, the leakage interference to user #1 (or #2) is the strongest one among those interference generated by ST #1 (or #2).

    For both cases, STs 1~L will be scheduled. In a mobile communication scenario, the RM will dynamically change, and thereby the order of all the waiting STs should be adaptively updated. Thus, although only the L STs with the smallest leakage interference are scheduled, all the waiting STs can be served in an opportunistic fashion [21].

    Moreover, the proposed scheduling method may largely reduce the leakage interference to the DAS users, hence the performance of the DAS can be improved.

    Fig. 3. Illustration of the simulation setups.

    Table I. Resource allocation schemes considered in the simulation.

    IV. SIMULATION RESULTS

    In this section, we evaluate the performance of the proposed power allocation scheme and opportunistic scheduling scheme. As shown in figure 3, a circular coverage area is assumed.N=12 DAEs, and K=3 users with M=4 antenna elements each are deployed following uniform distribution within the inner circular area with a radius of r1=1000m . 5 STs are randomly deployed in the ring zone with 1000m≤r≤1200m. L=2 STs will be activated among these waiting STs.

    The transmit power for each ST is assumed to be 30dBm, and the transmit power constraint for different users is supposed to be the same, which takes value from 20dBm to 40dBm. For the large-scale channel, the amendment factor is set as λ2= ?30 (in dB),and the path-loss exponent is set as α=4, and the standard deviation of the shadow fading is set to be 8dB. The noise power is -107dBm.

    We first compare the achievable sum rate of different resource allocation schemes. Four schemes have been taken into the comparison, as shown in table I. We can observe from figure 4 that the proposed power allocation scheme significantly outperforms the equal power allocation scheme. Because this scheme is designed according to only the large-scale CSIT (derived from the RM), it is hard to compare it with other existing schemes, which were designed based on full CSIT or imperfect CSIT with Gaussian errors. From the figure,we can also see that the proposed opportunistic scheduling scheme can provide a gain over traditional random scheduling, especially at the low signal to noise ratio (SNR) regime.The scheduling based on the strongest leakage interference performs a little better than that based on the sum leakage interference, which implies that the strongest leakage interference is the most dominant in fluence factor.

    When the number of DAEs goes larger,we give simulation results for scheme #1 in figure 5, when the transmit power constraint equals to 30dBm. It can be seen that network densification [14] is effective for improving the performance of terrestrial systems, under the interference from satellite systems. On one hand, the average access distance can be reduced by deploying more DAEs. On the other hand, it also provides more spatial degree of freedom to utilize the transmit power more efficiently.

    As for computational complexity, it is clear that the scheme #4 requires the least computational complexity. As the proposed opportunistic scheduling scheme only needs sorting the sum or the strongest leakage interference, it occupies negligible computational resources.The dominant computational complexity for schemes #1~#3 lies in the proposed power allocation scheme. In figure 6, the convergence performance of the proposed power allocation scheme is shown. 10 RMs (each RM corresponds to a random-generated system topology) are used in our simulations. We can find that for different RMs, 12 iterations are enough to converge for the proposed scheme.As the computational complexity of each iteration is quite low by adopting the mature tools for standard GP problem, the delay caused by the proposed power allocation scheme is quite short. This enables the practical implementation of the proposed scheme.

    V. CONCLUSIONS

    In this paper, we focus on the challenge of spectrum scarcity. A scenario where a satellite communication system and a terrestrial DAS coexist via spectrum sharing has been investigated. Particularly, we use the RM to derive the large-scale CSIT. For the terrestrial system, we have proposed an iterative power allocation scheme to adjust the transmit power of different DAEs, so as to adapt to the interference from the satellite system. For the satellite side, we have presented an opportunistic scheduling scheme, so as to carefully control the leakage interference. Simulation results have demonstrated that the proposed scheme outperforms traditional methods. Basically,the usage of RMs may greatly reduce the system overhead for channel estimation, thus it is quite promising for future dense hybrid satellite terrestrial networks.

    Fig. 5. System performance with network densi fication.

    Fig. 6. Convergence performance of the proposed power allocation scheme.

    ACKNOWLEDGEMENT

    This work was supported in part by the National Science Foundation of China under grant No. 61701457. The authors would like to sincerely thank the anonymous reviewers for their helpful comments.

    [1] Maleki S, Chatzinotas S, Evans B, et al. Cognitive spectrum utilization in Ka band multibeam satellite communications[J]. IEEE Communications Magazine, 2015, 53(3): 24-29.

    [2] Feng W, Ge N, Lu J. Coordinated satellite-ter-restrial networks: A robust spectrum sharing perspective[C]//Wireless and Optical Communication Conference (WOCC), 2017 26th. IEEE,2017: 1-5.

    [3] Pierucci L, Fantacci R. MIMO cooperative spectrum sensing in hybrid satellite/terrestrial scenario[C]//Communication Workshop (ICCW),2015 IEEE International Conference on. IEEE,2015: 1617-1622.

    [4] Sharma S K, Chatzinotas S, Grotz J, et al. 3D beamforming for spectral coexistence of satellite and terrestrial networks[C]//Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd.IEEE, 2015: 1-5.

    [5] Lagunas E, Maleki S, Chatzinotas S, et al. Power and rate allocation in cognitive satellite uplink networks[C]//Communications (ICC), 2016 IEEE International Conference on. IEEE, 2016: 1-6.

    [6] Akyildiz I F, Agusti R, Casadevall F, et al. Flexible and spectrum-aware radio access through measurements and modelling in cognitive radio systems[J]. FARAMIR Document: D2. 1,(ICT-248351), 2010.

    [7] Yilmaz H B, Tugcu T, Alagoz F, et al. Radio environment map as enabler for practical cognitive radio networks[J]. IEEE Communications Magazine, 2013, 51(12): 162-169.

    [8] Sharma S K, Bogale T E, Chatzinotas S, et al.Cognitive Radio Techniques Under Practical Imperfections: A Survey[J]. IEEE Communications Surveys and Tutorials, 2015, 17(4): 1858-1884.

    [9] Riihijarvi J, Mahonen P, Sajjad S. Influence of transmitter configurations on spatial statistics of radio environment maps[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. IEEE, 2009:853-857.

    [10] Ureten S, Yongacoglu A, Petriu E. A comparison of interference cartography generation techniques in cognitive radio networks[C]//Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012: 1879-1883.

    [11] Yilmaz H B, Tugcu T. Location estimation-based radio environment map construction in fading channels[J]. Wireless communications and mobile computing, 2015, 15(3): 561-570.

    [12] Feng W, Li Y, Gan J, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Networks and Applications, 2011, 16(1): 35-45.

    [13] Chen Y, Feng W, Zheng G. Optimum placement of UAV as relays[J]. IEEE Communications Letters, to appear, 2017.

    [14] Feng W, Wang Y, Lin D, et al. When mmWave communications meet network densification:A scalable interference coordination perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1459-1471.

    [15] Wei H, Feng W, Li Y, et al. Energy-efficient resource allocation for small-cell networks: a stable queue perspective[J]. China Communications, 2017, 14(10): 142-150.

    [16] Feng W, Wang Y, Ge N, et al. Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT[J].IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2067-2081.

    [17] Chen Y, Feng W, Shi R, et al. Pilot-based channel estimation for AF relaying using energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6877-6886.

    [18] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge university press, 2004.

    [19] Zhang Y, Feng W, Ge N. Pilot power adaptation for tomographic channel estimation in distributed MIMO systems[J]. IET Communications,2017, 11(1): 112-118.

    [20] Chiang M, Tan C W, Palomar D P, et al. Power control by geometric programming[J]. IEEE Transactions on Wireless Communications, 2007,6(7).

    [21] Liu X, Chong E K P, Shroff N B. Opportunistic transmission scheduling with resource-sharing constraints in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2001,19(10): 2053-2064.

    村上凉子中文字幕在线| 国产精品 国内视频| 热99re8久久精品国产| 最近最新中文字幕大全电影3| 欧美高清成人免费视频www| 久久香蕉精品热| 亚洲片人在线观看| 亚洲欧美日韩卡通动漫| www.精华液| 国产精品99久久久久久久久| 成人三级黄色视频| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 日本黄色视频三级网站网址| 国产精品一及| 丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 国产一区二区三区视频了| 久久天堂一区二区三区四区| 禁无遮挡网站| 亚洲 欧美一区二区三区| 免费av不卡在线播放| 午夜福利欧美成人| 夜夜爽天天搞| 久久久久国产一级毛片高清牌| 91九色精品人成在线观看| 亚洲成人久久性| 99热只有精品国产| 午夜精品在线福利| 国产激情偷乱视频一区二区| 韩国av一区二区三区四区| 亚洲成人久久性| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 怎么达到女性高潮| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 99热精品在线国产| 1000部很黄的大片| 床上黄色一级片| 精品一区二区三区视频在线 | 少妇熟女aⅴ在线视频| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 香蕉久久夜色| 精华霜和精华液先用哪个| 日韩欧美免费精品| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| 青草久久国产| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| a级毛片a级免费在线| 黄色片一级片一级黄色片| 丁香六月欧美| 国产男靠女视频免费网站| 天天添夜夜摸| 精品午夜福利视频在线观看一区| 国产精品99久久99久久久不卡| av欧美777| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站 | 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 免费看十八禁软件| 国产高清三级在线| 日本免费一区二区三区高清不卡| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| 精品人妻1区二区| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 成年女人看的毛片在线观看| www.999成人在线观看| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 国产一区二区三区视频了| 天堂动漫精品| 老司机午夜十八禁免费视频| 欧美激情久久久久久爽电影| 宅男免费午夜| 亚洲人与动物交配视频| 欧美绝顶高潮抽搐喷水| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 看黄色毛片网站| 国产精品影院久久| av视频在线观看入口| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频| 99久久国产精品久久久| 国产精品乱码一区二三区的特点| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看 | 久久精品影院6| 国产成人aa在线观看| 看片在线看免费视频| www.自偷自拍.com| 亚洲欧美日韩卡通动漫| 久久久精品大字幕| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 精品久久蜜臀av无| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 午夜精品在线福利| 欧美乱码精品一区二区三区| www日本黄色视频网| 日本 欧美在线| 日韩欧美国产在线观看| www.自偷自拍.com| 天天躁日日操中文字幕| 精品国产乱子伦一区二区三区| 久久久久久人人人人人| 久久中文字幕一级| 亚洲avbb在线观看| 不卡一级毛片| 91av网站免费观看| 日韩欧美国产在线观看| 精品人妻1区二区| 欧美成人性av电影在线观看| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 欧美在线一区亚洲| 淫妇啪啪啪对白视频| 国内少妇人妻偷人精品xxx网站 | 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 变态另类丝袜制服| 亚洲avbb在线观看| 国产精品综合久久久久久久免费| 亚洲av熟女| 最近最新中文字幕大全电影3| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| 美女扒开内裤让男人捅视频| 亚洲国产高清在线一区二区三| 成年女人永久免费观看视频| 欧洲精品卡2卡3卡4卡5卡区| 麻豆久久精品国产亚洲av| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| e午夜精品久久久久久久| 岛国在线观看网站| 国产午夜精品久久久久久| 欧美日韩福利视频一区二区| 一级毛片女人18水好多| 国产乱人视频| 久久精品91无色码中文字幕| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 国产免费男女视频| 久久久久久久久久黄片| 又爽又黄无遮挡网站| 黄色日韩在线| 天天添夜夜摸| 黑人欧美特级aaaaaa片| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 一本精品99久久精品77| 成人国产一区最新在线观看| 欧美黑人巨大hd| 亚洲天堂国产精品一区在线| 亚洲专区中文字幕在线| 91久久精品国产一区二区成人 | 真人做人爱边吃奶动态| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 在线国产一区二区在线| 美女黄网站色视频| 色综合欧美亚洲国产小说| 久久香蕉精品热| 淫秽高清视频在线观看| 伦理电影免费视频| 色在线成人网| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 成人亚洲精品av一区二区| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| 无遮挡黄片免费观看| cao死你这个sao货| 亚洲av片天天在线观看| 国产精品免费一区二区三区在线| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 男女之事视频高清在线观看| 中文字幕久久专区| 日本 av在线| 99精品久久久久人妻精品| 欧美绝顶高潮抽搐喷水| 久久久国产精品麻豆| 美女扒开内裤让男人捅视频| 神马国产精品三级电影在线观看| 日本一二三区视频观看| 成年版毛片免费区| 欧美性猛交╳xxx乱大交人| 国产高清videossex| 神马国产精品三级电影在线观看| 欧美乱妇无乱码| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| 色av中文字幕| 亚洲真实伦在线观看| a在线观看视频网站| netflix在线观看网站| 色综合亚洲欧美另类图片| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 一夜夜www| 亚洲在线自拍视频| 在线永久观看黄色视频| 欧美成人免费av一区二区三区| 999久久久精品免费观看国产| 在线观看美女被高潮喷水网站 | 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| 99热只有精品国产| 日韩欧美在线二视频| 波多野结衣高清无吗| 国产精品久久视频播放| 日韩国内少妇激情av| 国产高清视频在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 一个人观看的视频www高清免费观看 | 国产成人av激情在线播放| 久久国产乱子伦精品免费另类| 后天国语完整版免费观看| 天天一区二区日本电影三级| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 色在线成人网| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 中文字幕高清在线视频| 波多野结衣高清作品| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 最近在线观看免费完整版| 日韩精品中文字幕看吧| 精品久久久久久久毛片微露脸| 观看免费一级毛片| 啦啦啦免费观看视频1| 国产成人aa在线观看| 99视频精品全部免费 在线 | 两个人的视频大全免费| 男女视频在线观看网站免费| www日本在线高清视频| 国产亚洲欧美在线一区二区| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 97碰自拍视频| 女警被强在线播放| 午夜两性在线视频| 亚洲精品久久国产高清桃花| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 后天国语完整版免费观看| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 亚洲专区字幕在线| 香蕉丝袜av| 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 老司机午夜福利在线观看视频| 91字幕亚洲| 高清毛片免费观看视频网站| 三级男女做爰猛烈吃奶摸视频| 少妇裸体淫交视频免费看高清| 天堂av国产一区二区熟女人妻| 国产精品一及| 国内久久婷婷六月综合欲色啪| 亚洲美女黄片视频| 国产日本99.免费观看| 12—13女人毛片做爰片一| www.www免费av| 少妇熟女aⅴ在线视频| 精品久久久久久久毛片微露脸| 日韩大尺度精品在线看网址| 欧美黄色片欧美黄色片| 九色国产91popny在线| 国产精品av视频在线免费观看| 美女高潮的动态| 又粗又爽又猛毛片免费看| 欧美色视频一区免费| 黑人巨大精品欧美一区二区mp4| 国产成人精品无人区| 91在线观看av| 成在线人永久免费视频| 久久久久免费精品人妻一区二区| 男人的好看免费观看在线视频| 久久久久国产精品人妻aⅴ院| av在线天堂中文字幕| 真人做人爱边吃奶动态| 免费高清视频大片| 久久久精品大字幕| 亚洲av成人av| 亚洲天堂国产精品一区在线| 18禁国产床啪视频网站| 国产高清videossex| 精品国产三级普通话版| 国产久久久一区二区三区| 丁香欧美五月| 亚洲欧美精品综合久久99| 男女午夜视频在线观看| 国产69精品久久久久777片 | 制服人妻中文乱码| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 1024香蕉在线观看| 亚洲天堂国产精品一区在线| 久久中文看片网| 日韩欧美在线二视频| 国产不卡一卡二| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 美女高潮的动态| av中文乱码字幕在线| 黄色片一级片一级黄色片| 国内精品美女久久久久久| 黄片大片在线免费观看| 亚洲中文字幕日韩| 久久久色成人| 欧美一区二区精品小视频在线| 亚洲色图 男人天堂 中文字幕| 久久香蕉精品热| 一边摸一边抽搐一进一小说| 麻豆成人av在线观看| 欧美黑人巨大hd| 老司机在亚洲福利影院| 日本 欧美在线| 国语自产精品视频在线第100页| 亚洲欧美一区二区三区黑人| 日本熟妇午夜| 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲欧美一区二区三区黑人| 亚洲av五月六月丁香网| 欧美黑人巨大hd| h日本视频在线播放| cao死你这个sao货| 麻豆成人av在线观看| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 久久国产精品影院| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| bbb黄色大片| www.自偷自拍.com| 欧美3d第一页| 18禁黄网站禁片免费观看直播| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 成人鲁丝片一二三区免费| 国产野战对白在线观看| 国产v大片淫在线免费观看| 美女免费视频网站| 99热这里只有精品一区 | 美女高潮的动态| 日韩欧美精品v在线| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 中文字幕最新亚洲高清| 亚洲av成人av| 人人妻人人看人人澡| or卡值多少钱| 免费看光身美女| av视频在线观看入口| 手机成人av网站| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 悠悠久久av| 女警被强在线播放| 亚洲自拍偷在线| 99久久综合精品五月天人人| 久久99热这里只有精品18| 久久午夜综合久久蜜桃| 久久精品影院6| 国产激情偷乱视频一区二区| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 在线观看午夜福利视频| 两个人的视频大全免费| 免费在线观看亚洲国产| 亚洲成人中文字幕在线播放| 黄色丝袜av网址大全| 亚洲av美国av| 天堂av国产一区二区熟女人妻| 天天添夜夜摸| 国产精品一区二区三区四区免费观看 | 美女cb高潮喷水在线观看 | 国产单亲对白刺激| 久久精品国产亚洲av香蕉五月| 亚洲天堂国产精品一区在线| 九色成人免费人妻av| 色综合婷婷激情| 国内毛片毛片毛片毛片毛片| 国产黄片美女视频| 日本一二三区视频观看| 日韩人妻高清精品专区| 少妇的丰满在线观看| 亚洲片人在线观看| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品成人综合色| 黄色成人免费大全| 1024手机看黄色片| 2021天堂中文幕一二区在线观| 亚洲欧美精品综合久久99| 九九久久精品国产亚洲av麻豆 | 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久久久久| 男女床上黄色一级片免费看| 亚洲av成人一区二区三| 91在线精品国自产拍蜜月 | 精品乱码久久久久久99久播| 99国产精品99久久久久| 91在线精品国自产拍蜜月 | 精品乱码久久久久久99久播| 麻豆一二三区av精品| 国内毛片毛片毛片毛片毛片| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 国产真人三级小视频在线观看| 性欧美人与动物交配| 久久精品夜夜夜夜夜久久蜜豆| 校园春色视频在线观看| 亚洲18禁久久av| 人人妻人人看人人澡| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 一本一本综合久久| 日韩欧美国产一区二区入口| 亚洲avbb在线观看| 十八禁网站免费在线| 9191精品国产免费久久| 国产成人精品无人区| 日韩中文字幕欧美一区二区| 久久这里只有精品19| 91av网一区二区| 国产高清videossex| 亚洲精品粉嫩美女一区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 黄色 视频免费看| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| av黄色大香蕉| 欧美日韩中文字幕国产精品一区二区三区| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 日韩人妻高清精品专区| 亚洲av电影不卡..在线观看| 岛国视频午夜一区免费看| 久久久久久久久中文| 成人午夜高清在线视频| 日本黄大片高清| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 成人一区二区视频在线观看| 狠狠狠狠99中文字幕| 久久精品91蜜桃| 精品一区二区三区四区五区乱码| 国产高清激情床上av| 欧美高清成人免费视频www| 成人三级做爰电影| 丁香欧美五月| 国产精品久久电影中文字幕| 亚洲熟妇熟女久久| www日本在线高清视频| 禁无遮挡网站| 亚洲美女黄片视频| 国产 一区 欧美 日韩| 午夜福利免费观看在线| 欧美日韩精品网址| 日韩有码中文字幕| 国产真人三级小视频在线观看| 久久久久久久久免费视频了| 99国产综合亚洲精品| 亚洲欧美精品综合一区二区三区| 熟女人妻精品中文字幕| av欧美777| 99精品在免费线老司机午夜| av视频在线观看入口| 日本黄大片高清| 欧美黄色淫秽网站| 久久久久久久久久黄片| 久久精品亚洲精品国产色婷小说| 黄片大片在线免费观看| 午夜影院日韩av| 午夜久久久久精精品| or卡值多少钱| 在线观看免费视频日本深夜| aaaaa片日本免费| 婷婷六月久久综合丁香| 99久久精品一区二区三区| 岛国在线免费视频观看| 我的老师免费观看完整版| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区三区四区久久| 日韩国内少妇激情av| 欧美成狂野欧美在线观看| 亚洲欧美日韩无卡精品| 男女那种视频在线观看| 听说在线观看完整版免费高清| 日本成人三级电影网站| 美女 人体艺术 gogo| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看毛片的网站| 欧美激情在线99| 一进一出抽搐gif免费好疼| 精品久久蜜臀av无| 哪里可以看免费的av片| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区精品| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清在线视频| 最近最新中文字幕大全免费视频| 黄色 视频免费看| 成人三级做爰电影| 国产精品日韩av在线免费观看| 国产精品99久久99久久久不卡| 无人区码免费观看不卡| 久久99热这里只有精品18| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 亚洲五月婷婷丁香| 美女大奶头视频| 亚洲国产中文字幕在线视频| 一进一出好大好爽视频| 美女被艹到高潮喷水动态| 一个人观看的视频www高清免费观看 | 婷婷精品国产亚洲av在线| www.熟女人妻精品国产| 久久久精品欧美日韩精品| 九九在线视频观看精品| 欧美中文日本在线观看视频| 天堂√8在线中文| 婷婷亚洲欧美| bbb黄色大片| 香蕉av资源在线| 91九色精品人成在线观看| 给我免费播放毛片高清在线观看| 少妇人妻一区二区三区视频| 99精品在免费线老司机午夜| 亚洲五月天丁香| 亚洲精品一区av在线观看| 亚洲在线自拍视频| 色播亚洲综合网| 欧美又色又爽又黄视频| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| 国内少妇人妻偷人精品xxx网站 | 亚洲无线在线观看| 亚洲熟女毛片儿| 少妇的丰满在线观看| 国产成人福利小说| 在线a可以看的网站| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av | 亚洲成人免费电影在线观看| 免费看日本二区| 亚洲精品国产精品久久久不卡| 国产乱人伦免费视频| 精品无人区乱码1区二区| 黄片小视频在线播放| 一个人看视频在线观看www免费 | 日韩欧美在线乱码| 男人的好看免费观看在线视频| 美女免费视频网站| 亚洲av中文字字幕乱码综合| 午夜免费激情av| 国产一区二区在线观看日韩 | www日本在线高清视频| 三级毛片av免费| 美女高潮喷水抽搐中文字幕| 日韩精品中文字幕看吧| 国产日本99.免费观看| 长腿黑丝高跟| 在线a可以看的网站| 精品久久蜜臀av无| 亚洲无线在线观看| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 久久中文字幕人妻熟女| 两个人的视频大全免费| 级片在线观看| 国产高清有码在线观看视频| 久久欧美精品欧美久久欧美|