• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordinated Resource Allocation for Satellite-Terrestrial Coexistence Based on Radio Maps

    2018-04-04 08:21:18YanminWangZhouLu
    China Communications 2018年3期

    Yanmin Wang*, Zhou Lu

    China Academy of Electronics and Information Technology, Beijing 100041, China

    * The corresponding author, email: yanmin-226@163.com

    I. INTRODUCTION

    To meet the growing challenge of spectrum scarcity, various spectrum efficiency enhancement strategies are being promoted and putting into practice. Therein lies coexistence of satellite and terrestrial wireless communication systems in the same frequency band, which is considered to be a quite promising solution for unprecedented spectrum demands [1, 2]. Lots of satellite-terrestrial coexistence techniques have been proposed under the cognitive radio framework in literature, including cooperative spectrum sensing, beamforming, and adaptive resource allocation [3, 4, 5], etc. A seminal work can be found in reference [2], in which the practical limitation for spectrum sharing was precisely considered.

    As an enabler for practical cognitive radio networks (CRNs), radio map (RM) is attracting more and more interests from academia and industry [6, 7, 8]. The essential functionality of an RM is to construct a comprehensive dynamic spectrum map for a CRN, by merging multi-domain information from geolocation databases and continuous spectrum measurements collected from sensors. To estimate the state of locations where there is no measurement data, different kinds of RM construction techniques have been presented [9, 10, 11],which can be classified into spatial statistics based methods [9] and transmitter location determination based methods [10]. However,how to efficiently utilize RM for enhancing spectrum efficiency are still open and yet to be explored [7][8].

    Based on the largescale channel state information at the transmitter (CSIT),which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system.

    In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system (DAS) coexist via spectrum sharing, and propose a power allocation algorithm for the terrestrial system,as well as an opportunistic user scheduling scheme for the satellite system by utilizing RM. As an advantaged architecture for terrestrial wireless communication systems [12,13, 14], DAS has been widely adopted in 4G wireless networks and will continue to prop up 5G networks [15]. Specifically, the uplink of the satellite communication system acts as the incumbent link, and the downlink of the DAS tries to reuse the same frequency band as the cognitive link. To achieve a maximum system sum rate, power allocation is adopted in DAS to opportunistically transmit to users at less interfered locations, based on the interference distribution information derived from RM.Only the large-scale channel state information at the transmitter side (CSIT) is assumed in DAS, to ease practical implementations [15,16, 17] and match the long-term statistical characteristic of RM as well [7]. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful interference to the terrestrial mobile users.Similar to the terrestrial case, the scheduling scheme also uses only the large-scale CSIT.

    Fig. 1. Illustration of a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink.

    The rest of the paper is organized as follows. The system model is illustrated in Section II, and Section III presents the power allocation algorithm for the terrestrial system and the opportunistic user scheduling scheme for the satellite system based on RM. Simulation results are given in section IV, and Section V concludes the paper. Throughout the paper,lower case and upper case boldface symbols denote vectors and matrices, respectively. Inis an identity matrix with dimension n. (.)Hdenotes the transpose conjugate. ?M×Nrepresents the complex matrix space composed of M×N matrices and CN denotes a complex Gaussian distribution. E(.)and tr(.) represent the expectation and the trace operator, respectively.

    II. SYSTEM MODEL

    2.1 Scenario description

    As illustrated in figure 1, we consider a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink, e.g., both in the S band [2]. The satellite uplink is incumbent, and the DAS downlink reuses the same frequency band in a cognitive way. Note that due to the antenna pattern characteristics and the transit power constraints of terrestrial systems, the interference from the DAS to the satellite system can be ignored [2]. Consequently, the DAS only needs to deliberately avoid the interference from satellite terminals (STs) to its own users,and efficiently utilize the transmission power to achieve a maximum system sum rate. For the satellite side, it may adjust user scheduling strategy, so as to reduce the interference to the terrestrial users.

    Assume that L STs are located in the same area with the DAS, and there are N distributed antenna elements (DAEs) and K users in the DAS. To be general, the STs, the DAEs,and the users are all supposed to be geographically randomly deployed in the coverage area [2]. Without loss of generality, each user is equipped with M antenna elements, and N≥MK.

    2.2 Sum rate expression

    With the assumption that all transmitted signals for the N DAEs in the DAS are jointly processed in a centralized processor as shown in figure 1, the received signal yk∈?M×1at user k (k=1,2,...,K ) can be written as

    where Hk∈?M×Nis the channel matrix from the N DAEs to user k, and xk∈?N×1is the transmitted signal of user k (k=1,2,...,K ),andrepresents the channel vector between ST j (j=1,2,...,L ) and user k, and zj∈? is the transmitted signal of ST j, and nkdenotes the white Gaussian noise at user k with

    Composed of both random small-scale fading and slowly-varying large-scale fading [14][16], Hkcan be expressed as

    where Sk∈?M×Nrepresents the small-scale fading, and each entry follows the complex Gaussian distribution, and Lk∈?N×Nis a diagonal matrix, representing the large-scale channel fading. We have

    and

    which indicates the total transmission loss between DAE n and user k. Particularly, λ is the amendment factor depending on concrete propagation environments, and ψknrepresents the shadow fading with lognormal distribution, and dknis the transmission distance, and α denotes the path-loss exponent. λ, ψknand α depend on application scenarios, and these parameters impact the system performance significantly. In general, for the case with larger transmission loss, the interference from STs to the terrestrial system will become more dominant. It can be analogized from (2)thatcan be decomposed as

    As the RM is constructed via spectrum measurement, it can only indicate the large-scale CSIT with a construction cost limitation. Therefore, in the sequel,we assume only Lk(k=1,2,...,K ) and(j=1,2,...,L, k=1,2,...,K ) are available for the coordinated resource allocation optimization.

    Suppose that the elements of xkare all independently complex Gaussian distributed and the transmit power of DAE n for user k is pkn, we can get that

    For the satellite side, we assume the transmit power of ST j as

    Taking expectation over the unknown smallscale CSITwe derive the interference covariance from all the STs to user k as

    Similarly, taking expectation over the unknown small-scale CSIT Sk, we derive the interference covariance from all the other users to user k as

    Correspondingly, de fine

    and the average system sum rate of the DAS Rtcan be written as

    In the following, we try to maximize Rtby coordinated resource allocation at both the terrestrial and the satellite sides.

    III. COORDINATED RESOURCE ALLOCATION

    In this section, we first optimize the power allocation strategy for the DAS system, so as to adapt to the diverse interference level at different users. Then, we present an opportunistic scheduling method for the satellite system, to control its harmful interference to the terrestrial users.

    3.1 Power allocation for the terrestrial side

    Under a transmission power constraint for each user, we can formulate the following optimization problem

    Because of the expectation operator in the objective function, this optimization problem is dif ficult to solve. Moreover, the optimization variables exist in both the numerator and the denominator with the log function, which renders that the problem is non-convex [18].

    In order to simplify the problem, we first approximate Rtas

    with

    Using the random matrix theory [16][19], we can derive (14) and (15).

    Given Wk(k=1,2,...,K ), the problem in(13) can be recast as

    Noting that the log function is monotonically increasing, we can equivalently have the following transformed problem

    The problem in (17) is still challenging. However, we can transform it iteratively into a series of Geometric Programming (GP) problems [20].

    By ι we denote the iterative step. Then,given the power allocation results for the ι?1 step,, we can de fine

    Accordingly, we formulate the following optimization problem

    which fortunately is a standard GP problem.Consequently, we can solve it by using specialized tools. According to the inequality of arithmetic and geometric means and the fact that Rtis upper bounded, it is easy to prove that the iteration converges [13]. The details of the iterative algorithm is summarized in Algorithm 1.

    3.2 Opportunistic scheduling for the satellite side

    As shown in figure 2, for a given ST j, its interference to different terrestrial user is different. We can define the total leakage interference and the strongest leakage interference for ST j as follows

    Then, the L online STs can be selected in an opportunistic fashion. Particularly, an order of all the waiting STs is first generated in the satellite gateway, according to the interference knowledge derived from the RM. The order can be obtained based on either the sum leakage interference as

    or the strongest leakage interference as

    ?

    Fig. 2. Illustration of the inter-system interference. In this example, the leakage interference to user #1 (or #2) is the strongest one among those interference generated by ST #1 (or #2).

    For both cases, STs 1~L will be scheduled. In a mobile communication scenario, the RM will dynamically change, and thereby the order of all the waiting STs should be adaptively updated. Thus, although only the L STs with the smallest leakage interference are scheduled, all the waiting STs can be served in an opportunistic fashion [21].

    Moreover, the proposed scheduling method may largely reduce the leakage interference to the DAS users, hence the performance of the DAS can be improved.

    Fig. 3. Illustration of the simulation setups.

    Table I. Resource allocation schemes considered in the simulation.

    IV. SIMULATION RESULTS

    In this section, we evaluate the performance of the proposed power allocation scheme and opportunistic scheduling scheme. As shown in figure 3, a circular coverage area is assumed.N=12 DAEs, and K=3 users with M=4 antenna elements each are deployed following uniform distribution within the inner circular area with a radius of r1=1000m . 5 STs are randomly deployed in the ring zone with 1000m≤r≤1200m. L=2 STs will be activated among these waiting STs.

    The transmit power for each ST is assumed to be 30dBm, and the transmit power constraint for different users is supposed to be the same, which takes value from 20dBm to 40dBm. For the large-scale channel, the amendment factor is set as λ2= ?30 (in dB),and the path-loss exponent is set as α=4, and the standard deviation of the shadow fading is set to be 8dB. The noise power is -107dBm.

    We first compare the achievable sum rate of different resource allocation schemes. Four schemes have been taken into the comparison, as shown in table I. We can observe from figure 4 that the proposed power allocation scheme significantly outperforms the equal power allocation scheme. Because this scheme is designed according to only the large-scale CSIT (derived from the RM), it is hard to compare it with other existing schemes, which were designed based on full CSIT or imperfect CSIT with Gaussian errors. From the figure,we can also see that the proposed opportunistic scheduling scheme can provide a gain over traditional random scheduling, especially at the low signal to noise ratio (SNR) regime.The scheduling based on the strongest leakage interference performs a little better than that based on the sum leakage interference, which implies that the strongest leakage interference is the most dominant in fluence factor.

    When the number of DAEs goes larger,we give simulation results for scheme #1 in figure 5, when the transmit power constraint equals to 30dBm. It can be seen that network densification [14] is effective for improving the performance of terrestrial systems, under the interference from satellite systems. On one hand, the average access distance can be reduced by deploying more DAEs. On the other hand, it also provides more spatial degree of freedom to utilize the transmit power more efficiently.

    As for computational complexity, it is clear that the scheme #4 requires the least computational complexity. As the proposed opportunistic scheduling scheme only needs sorting the sum or the strongest leakage interference, it occupies negligible computational resources.The dominant computational complexity for schemes #1~#3 lies in the proposed power allocation scheme. In figure 6, the convergence performance of the proposed power allocation scheme is shown. 10 RMs (each RM corresponds to a random-generated system topology) are used in our simulations. We can find that for different RMs, 12 iterations are enough to converge for the proposed scheme.As the computational complexity of each iteration is quite low by adopting the mature tools for standard GP problem, the delay caused by the proposed power allocation scheme is quite short. This enables the practical implementation of the proposed scheme.

    V. CONCLUSIONS

    In this paper, we focus on the challenge of spectrum scarcity. A scenario where a satellite communication system and a terrestrial DAS coexist via spectrum sharing has been investigated. Particularly, we use the RM to derive the large-scale CSIT. For the terrestrial system, we have proposed an iterative power allocation scheme to adjust the transmit power of different DAEs, so as to adapt to the interference from the satellite system. For the satellite side, we have presented an opportunistic scheduling scheme, so as to carefully control the leakage interference. Simulation results have demonstrated that the proposed scheme outperforms traditional methods. Basically,the usage of RMs may greatly reduce the system overhead for channel estimation, thus it is quite promising for future dense hybrid satellite terrestrial networks.

    Fig. 5. System performance with network densi fication.

    Fig. 6. Convergence performance of the proposed power allocation scheme.

    ACKNOWLEDGEMENT

    This work was supported in part by the National Science Foundation of China under grant No. 61701457. The authors would like to sincerely thank the anonymous reviewers for their helpful comments.

    [1] Maleki S, Chatzinotas S, Evans B, et al. Cognitive spectrum utilization in Ka band multibeam satellite communications[J]. IEEE Communications Magazine, 2015, 53(3): 24-29.

    [2] Feng W, Ge N, Lu J. Coordinated satellite-ter-restrial networks: A robust spectrum sharing perspective[C]//Wireless and Optical Communication Conference (WOCC), 2017 26th. IEEE,2017: 1-5.

    [3] Pierucci L, Fantacci R. MIMO cooperative spectrum sensing in hybrid satellite/terrestrial scenario[C]//Communication Workshop (ICCW),2015 IEEE International Conference on. IEEE,2015: 1617-1622.

    [4] Sharma S K, Chatzinotas S, Grotz J, et al. 3D beamforming for spectral coexistence of satellite and terrestrial networks[C]//Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd.IEEE, 2015: 1-5.

    [5] Lagunas E, Maleki S, Chatzinotas S, et al. Power and rate allocation in cognitive satellite uplink networks[C]//Communications (ICC), 2016 IEEE International Conference on. IEEE, 2016: 1-6.

    [6] Akyildiz I F, Agusti R, Casadevall F, et al. Flexible and spectrum-aware radio access through measurements and modelling in cognitive radio systems[J]. FARAMIR Document: D2. 1,(ICT-248351), 2010.

    [7] Yilmaz H B, Tugcu T, Alagoz F, et al. Radio environment map as enabler for practical cognitive radio networks[J]. IEEE Communications Magazine, 2013, 51(12): 162-169.

    [8] Sharma S K, Bogale T E, Chatzinotas S, et al.Cognitive Radio Techniques Under Practical Imperfections: A Survey[J]. IEEE Communications Surveys and Tutorials, 2015, 17(4): 1858-1884.

    [9] Riihijarvi J, Mahonen P, Sajjad S. Influence of transmitter configurations on spatial statistics of radio environment maps[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. IEEE, 2009:853-857.

    [10] Ureten S, Yongacoglu A, Petriu E. A comparison of interference cartography generation techniques in cognitive radio networks[C]//Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012: 1879-1883.

    [11] Yilmaz H B, Tugcu T. Location estimation-based radio environment map construction in fading channels[J]. Wireless communications and mobile computing, 2015, 15(3): 561-570.

    [12] Feng W, Li Y, Gan J, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Networks and Applications, 2011, 16(1): 35-45.

    [13] Chen Y, Feng W, Zheng G. Optimum placement of UAV as relays[J]. IEEE Communications Letters, to appear, 2017.

    [14] Feng W, Wang Y, Lin D, et al. When mmWave communications meet network densification:A scalable interference coordination perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1459-1471.

    [15] Wei H, Feng W, Li Y, et al. Energy-efficient resource allocation for small-cell networks: a stable queue perspective[J]. China Communications, 2017, 14(10): 142-150.

    [16] Feng W, Wang Y, Ge N, et al. Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT[J].IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2067-2081.

    [17] Chen Y, Feng W, Shi R, et al. Pilot-based channel estimation for AF relaying using energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6877-6886.

    [18] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge university press, 2004.

    [19] Zhang Y, Feng W, Ge N. Pilot power adaptation for tomographic channel estimation in distributed MIMO systems[J]. IET Communications,2017, 11(1): 112-118.

    [20] Chiang M, Tan C W, Palomar D P, et al. Power control by geometric programming[J]. IEEE Transactions on Wireless Communications, 2007,6(7).

    [21] Liu X, Chong E K P, Shroff N B. Opportunistic transmission scheduling with resource-sharing constraints in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2001,19(10): 2053-2064.

    欧美另类一区| 菩萨蛮人人尽说江南好唐韦庄| 搡女人真爽免费视频火全软件| 亚洲欧洲精品一区二区精品久久久 | 天天躁夜夜躁狠狠久久av| 美女主播在线视频| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 日韩精品免费视频一区二区三区 | 特大巨黑吊av在线直播| 十八禁网站网址无遮挡 | 久久久久久人妻| 日日摸夜夜添夜夜添av毛片| 22中文网久久字幕| 黑人高潮一二区| 国产成人免费无遮挡视频| 另类精品久久| 日本黄色日本黄色录像| 看非洲黑人一级黄片| 视频中文字幕在线观看| a级毛色黄片| 免费人成在线观看视频色| 精品熟女少妇av免费看| 日韩大片免费观看网站| 亚洲四区av| 国产日韩欧美亚洲二区| 黄色配什么色好看| 成年人免费黄色播放视频 | 日日爽夜夜爽网站| 日本爱情动作片www.在线观看| 啦啦啦视频在线资源免费观看| 精品卡一卡二卡四卡免费| 亚洲四区av| 久久精品久久久久久久性| 亚洲精品国产av蜜桃| 亚洲不卡免费看| 人妻 亚洲 视频| 黄色一级大片看看| 三级经典国产精品| 黑丝袜美女国产一区| 色网站视频免费| 老司机影院毛片| 国产黄片美女视频| 性高湖久久久久久久久免费观看| 欧美精品一区二区大全| 国产欧美另类精品又又久久亚洲欧美| 在线 av 中文字幕| 在线观看免费视频网站a站| 国产成人精品无人区| 国产男人的电影天堂91| 欧美xxxx性猛交bbbb| 两个人免费观看高清视频 | 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 亚洲美女黄色视频免费看| 久久影院123| 国产中年淑女户外野战色| 99久久精品一区二区三区| 男的添女的下面高潮视频| 久久久国产一区二区| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 午夜91福利影院| av黄色大香蕉| 欧美日韩一区二区视频在线观看视频在线| 国产国拍精品亚洲av在线观看| 久久久久网色| 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 久久97久久精品| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 777米奇影视久久| 女性被躁到高潮视频| 青春草视频在线免费观看| 日韩欧美 国产精品| 有码 亚洲区| 黄色视频在线播放观看不卡| 中文资源天堂在线| 精品久久久久久久久亚洲| 高清不卡的av网站| 97在线人人人人妻| 美女大奶头黄色视频| 久久久精品94久久精品| 超碰97精品在线观看| 欧美人与善性xxx| 日本午夜av视频| 久久6这里有精品| 亚洲国产成人一精品久久久| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 我要看黄色一级片免费的| 国产成人精品一,二区| 人妻夜夜爽99麻豆av| 国产亚洲午夜精品一区二区久久| 少妇熟女欧美另类| 不卡视频在线观看欧美| 亚洲怡红院男人天堂| 国模一区二区三区四区视频| 国产av一区二区精品久久| 男人舔奶头视频| 国产综合精华液| 亚洲av不卡在线观看| 国产在线视频一区二区| 欧美日韩综合久久久久久| 亚洲av国产av综合av卡| 国产一区二区在线观看av| 午夜老司机福利剧场| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| 97在线视频观看| 国产日韩欧美视频二区| 国产在线免费精品| 一级毛片 在线播放| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 精品久久久久久久久亚洲| 王馨瑶露胸无遮挡在线观看| 日韩一区二区视频免费看| 日日啪夜夜撸| 美女内射精品一级片tv| 秋霞伦理黄片| 日韩中字成人| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 午夜激情福利司机影院| 黑丝袜美女国产一区| 久久久国产一区二区| 日韩 亚洲 欧美在线| 日日摸夜夜添夜夜添av毛片| 最近最新中文字幕免费大全7| 色婷婷久久久亚洲欧美| 亚洲在久久综合| 精品一区二区免费观看| 久久精品夜色国产| 国产探花极品一区二区| 久久久久视频综合| 啦啦啦啦在线视频资源| 久久国产精品大桥未久av | 人妻 亚洲 视频| 国产精品偷伦视频观看了| 91久久精品国产一区二区成人| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 精品少妇久久久久久888优播| 蜜桃久久精品国产亚洲av| 熟女电影av网| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| av黄色大香蕉| 亚洲一区二区三区欧美精品| 午夜91福利影院| 亚洲丝袜综合中文字幕| 少妇人妻 视频| 老司机影院成人| 亚洲无线观看免费| 亚洲伊人久久精品综合| 人妻系列 视频| 成人亚洲精品一区在线观看| 久久ye,这里只有精品| 纯流量卡能插随身wifi吗| 精品国产露脸久久av麻豆| 有码 亚洲区| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 一级a做视频免费观看| 久久精品夜色国产| 老司机影院毛片| 国产男女内射视频| 18禁动态无遮挡网站| 三级经典国产精品| 一级a做视频免费观看| a级毛色黄片| 国产精品一区二区在线观看99| 高清av免费在线| 国产一级毛片在线| 国产永久视频网站| 日韩欧美精品免费久久| 久热这里只有精品99| 国产精品无大码| 99九九在线精品视频 | 国产高清有码在线观看视频| 秋霞伦理黄片| 精品国产一区二区久久| 在线观看www视频免费| 国产av精品麻豆| 国产视频首页在线观看| 内地一区二区视频在线| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 亚洲丝袜综合中文字幕| 色吧在线观看| 久久久久久久国产电影| 日韩人妻高清精品专区| 午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 国产亚洲最大av| 丝瓜视频免费看黄片| 精品人妻偷拍中文字幕| 一区二区三区乱码不卡18| 少妇被粗大的猛进出69影院 | 国产欧美亚洲国产| a级毛片免费高清观看在线播放| 在线观看www视频免费| 色网站视频免费| 国产精品一区二区在线不卡| 中文字幕制服av| 男女免费视频国产| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 亚洲不卡免费看| 久久免费观看电影| 99久久综合免费| 夜夜爽夜夜爽视频| 99热网站在线观看| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 成人特级av手机在线观看| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆| 噜噜噜噜噜久久久久久91| 免费黄色在线免费观看| 亚洲成人av在线免费| 成人影院久久| 成人美女网站在线观看视频| 美女国产视频在线观看| 国产91av在线免费观看| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡 | 亚洲,欧美,日韩| 777米奇影视久久| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 在线 av 中文字幕| av.在线天堂| 人人澡人人妻人| 中文字幕久久专区| 久久精品国产自在天天线| 国产精品99久久99久久久不卡 | 十分钟在线观看高清视频www | 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 国产成人freesex在线| 多毛熟女@视频| av黄色大香蕉| 精品国产一区二区久久| 国产精品蜜桃在线观看| 国产精品无大码| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 久久午夜福利片| 国产伦理片在线播放av一区| 一级毛片电影观看| 99热这里只有是精品50| 久久久久久伊人网av| 男人狂女人下面高潮的视频| 国内少妇人妻偷人精品xxx网站| 99久久综合免费| 欧美+日韩+精品| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 亚洲精品色激情综合| 熟妇人妻不卡中文字幕| 五月伊人婷婷丁香| 免费看av在线观看网站| 国产极品天堂在线| 老司机亚洲免费影院| 国产黄片美女视频| 卡戴珊不雅视频在线播放| 97超碰精品成人国产| 99九九在线精品视频 | 午夜91福利影院| 十八禁网站网址无遮挡 | 波野结衣二区三区在线| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 高清av免费在线| 中文在线观看免费www的网站| 精品国产乱码久久久久久小说| a级毛色黄片| 女性生殖器流出的白浆| av在线播放精品| 国产又色又爽无遮挡免| av一本久久久久| 中文字幕久久专区| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 少妇丰满av| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| 精品国产露脸久久av麻豆| 啦啦啦视频在线资源免费观看| 久久av网站| 亚洲欧洲日产国产| 黄色欧美视频在线观看| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级 | 草草在线视频免费看| 夜夜骑夜夜射夜夜干| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 久久精品夜色国产| 久久鲁丝午夜福利片| 中国三级夫妇交换| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 高清av免费在线| 99热这里只有精品一区| 91午夜精品亚洲一区二区三区| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 亚洲成人手机| 国产av一区二区精品久久| 日韩中字成人| videossex国产| 国产欧美日韩精品一区二区| 国产亚洲欧美精品永久| 成人综合一区亚洲| 自拍欧美九色日韩亚洲蝌蚪91 | av一本久久久久| 男人添女人高潮全过程视频| 777米奇影视久久| videos熟女内射| 久久精品国产自在天天线| 免费看日本二区| 黄片无遮挡物在线观看| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 51国产日韩欧美| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| av视频免费观看在线观看| 男的添女的下面高潮视频| 在线观看人妻少妇| 国产真实伦视频高清在线观看| 中文字幕精品免费在线观看视频 | 国产成人精品婷婷| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 日本猛色少妇xxxxx猛交久久| 中文字幕免费在线视频6| 91久久精品电影网| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 大片电影免费在线观看免费| 免费在线观看成人毛片| 欧美日韩一区二区视频在线观看视频在线| 中文字幕av电影在线播放| 少妇的逼水好多| 观看av在线不卡| 99九九在线精品视频 | 日韩中文字幕视频在线看片| 欧美丝袜亚洲另类| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 日本午夜av视频| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 日韩强制内射视频| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 美女cb高潮喷水在线观看| 国产成人一区二区在线| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 嫩草影院入口| 伦精品一区二区三区| av又黄又爽大尺度在线免费看| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 熟女人妻精品中文字幕| 国产精品国产三级专区第一集| 三级国产精品片| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 日本vs欧美在线观看视频 | 丰满乱子伦码专区| 人妻一区二区av| 观看美女的网站| 国产探花极品一区二区| 精品卡一卡二卡四卡免费| 美女脱内裤让男人舔精品视频| 婷婷色综合www| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 国产欧美日韩一区二区三区在线 | 国语对白做爰xxxⅹ性视频网站| 插逼视频在线观看| 五月天丁香电影| 久久免费观看电影| 超碰97精品在线观看| 日韩中字成人| 中文在线观看免费www的网站| 日韩中文字幕视频在线看片| 国产在线男女| 国产综合精华液| 国产精品一区二区三区四区免费观看| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 亚洲国产av新网站| 欧美精品高潮呻吟av久久| 精品久久久久久久久av| 麻豆成人av视频| 免费观看无遮挡的男女| av.在线天堂| 国产精品久久久久久精品电影小说| 一级,二级,三级黄色视频| 天堂俺去俺来也www色官网| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 亚州av有码| 两个人免费观看高清视频 | 你懂的网址亚洲精品在线观看| 一本一本综合久久| 亚洲精品亚洲一区二区| 国产一级毛片在线| 一级毛片 在线播放| 久久狼人影院| 一级二级三级毛片免费看| 不卡视频在线观看欧美| 日韩欧美精品免费久久| 久久热精品热| 妹子高潮喷水视频| 久久久久久伊人网av| 久久狼人影院| 综合色丁香网| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 日日啪夜夜撸| 亚洲av不卡在线观看| av免费在线看不卡| 成人午夜精彩视频在线观看| 亚洲色图综合在线观看| 肉色欧美久久久久久久蜜桃| 少妇人妻精品综合一区二区| 精品久久久久久久久亚洲| 精品亚洲成a人片在线观看| 少妇的逼好多水| 国产伦理片在线播放av一区| 美女内射精品一级片tv| 少妇的逼好多水| 18+在线观看网站| 91在线精品国自产拍蜜月| 最近中文字幕2019免费版| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 夫妻性生交免费视频一级片| 我要看黄色一级片免费的| 亚洲三级黄色毛片| 精品久久久久久久久av| 不卡视频在线观看欧美| 中文字幕精品免费在线观看视频 | 日本黄大片高清| 国产日韩欧美视频二区| 亚洲怡红院男人天堂| 青春草视频在线免费观看| 9色porny在线观看| 免费av不卡在线播放| 成年人午夜在线观看视频| 日本与韩国留学比较| 黑人巨大精品欧美一区二区蜜桃 | 一级毛片 在线播放| 两个人免费观看高清视频 | 大话2 男鬼变身卡| 狂野欧美白嫩少妇大欣赏| av免费观看日本| 久久久a久久爽久久v久久| 国产精品欧美亚洲77777| 亚洲国产日韩一区二区| 在现免费观看毛片| 国产精品偷伦视频观看了| 久久精品国产鲁丝片午夜精品| 少妇的逼好多水| 免费看光身美女| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 高清毛片免费看| 免费久久久久久久精品成人欧美视频 | 免费大片18禁| 99精国产麻豆久久婷婷| 久久精品夜色国产| 日本wwww免费看| 国产淫语在线视频| 91在线精品国自产拍蜜月| 免费观看在线日韩| 日本黄色片子视频| 桃花免费在线播放| 欧美高清成人免费视频www| 一二三四中文在线观看免费高清| 人妻夜夜爽99麻豆av| 国产一级毛片在线| 在线观看三级黄色| 久久精品国产亚洲av涩爱| 我要看黄色一级片免费的| 亚洲精品,欧美精品| 精品亚洲成a人片在线观看| 成人影院久久| 国产av码专区亚洲av| 三级国产精品片| 亚洲av男天堂| 久久亚洲国产成人精品v| 美女内射精品一级片tv| freevideosex欧美| videos熟女内射| 久久影院123| 插逼视频在线观看| 日本黄色片子视频| 日韩三级伦理在线观看| 国产探花极品一区二区| 日韩亚洲欧美综合| 亚洲天堂av无毛| 成人综合一区亚洲| 黄色毛片三级朝国网站 | 国产91av在线免费观看| 国产精品欧美亚洲77777| 日韩熟女老妇一区二区性免费视频| 曰老女人黄片| 国内揄拍国产精品人妻在线| av视频免费观看在线观看| 亚洲成人手机| 最新的欧美精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 噜噜噜噜噜久久久久久91| 美女脱内裤让男人舔精品视频| 99热这里只有是精品在线观看| 最近最新中文字幕免费大全7| 国产毛片在线视频| 大香蕉97超碰在线| 免费观看a级毛片全部| 99热这里只有是精品50| 国产高清有码在线观看视频| 91久久精品电影网| av线在线观看网站| 男女国产视频网站| 插逼视频在线观看| 国产精品久久久久久精品古装| 国产男人的电影天堂91| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 中文资源天堂在线| 男人和女人高潮做爰伦理| 久久精品国产自在天天线| 两个人免费观看高清视频 | 午夜日本视频在线| 老女人水多毛片| 精品少妇久久久久久888优播| 成人毛片60女人毛片免费| 免费黄网站久久成人精品| 狂野欧美激情性xxxx在线观看| 最近中文字幕2019免费版| 免费看av在线观看网站| 少妇的逼好多水| 国产精品一区二区在线观看99| 三级国产精品片| 在线观看三级黄色| h日本视频在线播放| 三级国产精品片| av又黄又爽大尺度在线免费看| 黄色一级大片看看| 亚洲精品成人av观看孕妇| 亚洲精品乱久久久久久| 欧美激情极品国产一区二区三区 | 久久国内精品自在自线图片| 成人黄色视频免费在线看| 日韩一区二区视频免费看| 午夜91福利影院| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 亚洲国产最新在线播放| 日本色播在线视频| 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 国产熟女午夜一区二区三区 | 日产精品乱码卡一卡2卡三| 亚洲av成人精品一区久久| 国产免费视频播放在线视频| 欧美亚洲 丝袜 人妻 在线| 国产色婷婷99| 嫩草影院入口| 深夜a级毛片| 精品一品国产午夜福利视频| 一级毛片我不卡| 美女主播在线视频| 人人妻人人看人人澡| 99久国产av精品国产电影| 精品国产乱码久久久久久小说| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪| 亚洲国产av新网站| 精品少妇黑人巨大在线播放| 97精品久久久久久久久久精品| 亚洲自偷自拍三级|