• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Phase Noise on TDMS Based Calibration for Spaceborne Multi-Beam Antennas

    2018-04-04 08:21:15YujieLinXiangyuanBuShuaiWangYuanChaiJianpingAn
    China Communications 2018年3期
    關(guān)鍵詞:單樁樁體承載力

    Yujie Lin, Xiangyuan Bu,*, Shuai Wang, Yuan Chai, Jianping An

    1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

    2 Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China

    * The corresponding author, email: bxy@bit.edu.cn

    I. INTRODUCTION

    Multi-beam antennas (MBAs) equipped in satellite communications systems have attracted growing attention recently due to their flexibility to control beam patterns and their potential to cover the service areas with high-gain spot beams [1]-[3], thereby improving the communication capacity and the spectrum utilization dramatically [4]. Accurate beam pointing is achieved by precise control of attenuators and phase shifters for each element to exhibit the de fined excitations in amplitudes and phases.However, electronic components of the satellite payload suffer from inevitable perturbations in the harsh space environment, such as temperature drift, aging [5], and single event upset (SEU), causing amplitude and phase errors [6], [7]. Therefore, accurate calibration is of crucial importance to maintain the optimal performance of space-borne MBA systems [8].

    Various kinds of calibration techniques have been proposed to obtain the amplitude and phase characteristics for MBA systems in orbit, which can be distinguished into two major categories, i.e., external calibration methods [9] and internal calibration methods [10],[11]. External calibration methods employ an additional source located in the fixed far- field region of the array aperture for monitoring purposes. One drawback of these methods is that the calibration performance is subjected to the space communication link [12], such as the path loss, fading, multipath, near-field scattering, etc. Another drawback is that it is difficult to satisfy the far-field conditions for large-aperture and high-frequency antennas.On the contrary, internal calibration methods inject a dedicated calibration network through coaxial cables to couple parts of the signals back to the calibration receiver. The physical connection ensures that the calibration process is performed with the least disturbance. The internal calibration method has been successfully veri fied in a spaceborne environment by TerraSAR-X launched in 2007 [11].

    With the scale of spaceborne MBAs enlarging continuously [13], the implementation cost of the internal calibration receiver is tremendous and the complex hardware circuit brings heavy burden of the mass and size to the limited satellite payloads [14]. An internal calibration receiver based on time division multiplexed switching (TDMS) [15] is very suitable for large-scale MBA systems. Only one element is activated at a time while the remaining ones are turned off. This procedure is repeated for each element of the array to calibrate the entire array. Since the switching time is in nanoseconds, the amplitude and phase errors are reasonably assumed to be stationary over the calibration time window.The advantage of the TDMS-based calibration receiver is that it requires only one receiving RF chain, no matter how many elements there are to be calibrated. Despite being a cost-effective implementation solution, this method suffers from the phase noise in the local oscillator [16], resulting in significant channel measurement errors [17], [18]. Characterizing how phase noise affects the calibration performance is therefore essential for practical applications. Moreover, to the best of the authors’ knowledge, previous studies lack of the theoretical analysis on the effects of the phase noise on the calibration performance. In fact,most of the calibration methods available in the literatures are under the assumption that the phase response of the oscillator is constant.This is the motivation of our work.

    The rest of this paper is organized as follows. In Section II, the system model for a TDMS-based calibration integrated with the phase noise source is discussed. After that, in Section III the theoretical calibration performance is analyzed in detail. Then the theoretical computation results of different representative cases are assessed by simulations in Section IV. Finally, the conclusions are drawn in Section V.

    Notation: The following notations are used throughout this paper. Boldface lowercase letters (like α ) denote vectors. The symbol [α]idenotes the i-th element of α . Superscript αTdenotes the transpose of the vector α. The notation ||x|| represents the complex modulus of a complex number x. N(μ,σ2) denotes the normal distribution with mean μ and variance σ2. Finally, the operators E(X) and var(X)represent the expectation and variance operations of the variable X, respectively.

    In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system.

    II. SYSTEM MODEL AND PROBLEM FORMULATION

    In this section, a TDMS-based calibration system model integrated with the phase noise source is explained. A MBA is de fined as an antenna capable of producing multiple spot beams simultaneously from a single aperture. Compared with the calibration for receiving array antennas, there are more challenges for trans-mitting array calibration. As shown in figure 1,a TDMS-based calibration system for transmitting multi-beam antennas consists of M beams and K antenna elements. First, M calibrating signals {cm(t)|m=1,2,…,M} enter into the M-input K-output BFN. The BFN is referred as the “heart of the MBA system” because of its ability to control the radiation pattern shape and direction. The internal structure of the M-input K-output BFN is shown in figure 2, where amkand φmkare the excitation coefficients of the attenuator and the phase shifter from the m-th input port to the k-th output port, respectively.The output signal at each channel is the sum of the M signals with attenuations and phase shifts dictated by the desired beam patterns. After the BFN, each output channel is followed by an up convertor (UC), multistage attenuators, power ampli fiers (PAs) and other RF components. In addition, an external oscillator provides clocks with the same frequency for UCs in all the RF chains. Finally, the input composite signal of the k-th antenna element of the MBA system is the sum of the M RF signals which can be described as

    Fig. 1. Block diagram of a TDMS-based calibration system for transmitting MBAs.

    where ftxis the carrier phase at the transmitter and cm(t ) is the m-th calibrating signal.Since all the M input calibrating signals reach an antenna element simultaneously with the same frequency, the calibration receiver must separate each calibrating signal from the composite signal. An effective separation approach is the code-division multiple access (CDMA)scheme [19], where each calibrating signal is encoded according to a unique signature code[20]. As a direct-sequence spread spectrum(DSSS) signal, the m-th calibrating signal can be formulated as [21]

    where h( t) represents the normalized rectangular pulse defined in [0,Tc), Tcis the chip duration, cmis the spreading code vector assigned to the m-th calibrating signal and the elements of the vector cmtake values of +1 or-1 with equal probability, and L is the length of cm(also known as the spreading gain). The relationship of two arbitrary code vectors satis fies the orthogonality as follows

    With the fast development of MBAs to large-scale, the circuit scale of the calibration receiver increases with the number of beams and antenna elements. In order to reduce the hardware implementation cost, the designed receiver in this paper employs the TDMS measurement approach which requires only one receiving RF chain, as shown in the lower right part of figure 1. A front-end electronic single-pole multi-throw (SPMT) RF switch,controlled by the field programmable gate array (FPGA), connects a single- channel signal in turn from all the K channels. The following low noise ampli fier (LNA) ampli fies the signal of the selected channel. Then a down converter (DC) converts the RF signal to a lower intermediate frequency (IF) signal. Without loss of generality, we assume that the first channel is selected. The output noise-free IF analog signal of the DC can be represented as

    試驗(yàn)2-40的樁土荷載分擔(dān)比僅4左右,而試驗(yàn)2-50與試驗(yàn)2-60的樁土荷載分擔(dān)比均近5。在荷載達(dá)到80 kPa前,樁體承擔(dān)荷載比例較大,樁土荷載分擔(dān)比略有上升。荷載達(dá)到80 kPa之后,由于單樁承載力有限,此時(shí)荷載繼續(xù)增加,樁體承擔(dān)比例降低,樁土荷載分擔(dān)比降低。

    where fIFis the IF carrier frequency at the receiver and phase disturbance θ1(t) is the phase noise in the local oscillator while switching to the first channel. The phase noise is widely modeled as a zero-mean Gaussian wide-sense stationary random process [22] expressed as N(0,). In this paper, we assume that the speed of the phase noise variations is faster than the measurement time of one physical channel, thus θ1(t) affects the calibration of the channel mismatch.

    The analog signal is processed by an analog-to-digital converter (ADC) and digital down converter (DDC). Since each calibrating signal corresponds to a unique signature code, K-channel parallel DMFs correlate the baseband composite signal with the following coefficients

    After L? Tcof time, correlation peaks appear on all the M-channel DMFs simultaneously.The peak value is the estimated complex excitation coefficient which can be written as

    where xm1is the additive white Gaussian noise(AWGN) introduced by the propagation channel from the m-th beam to the first element.The real and imaginary parts of xm1,xI,m1and xQ,m1, are independent and identically distributed random variables with mean zero and variance σ2/2. From (8) we can see that the power of the useful signal is constant while the power of the noise is reduced to 1/L2. The parameter SNR is defined as the ratio of the signal power to the noise power. The SNR of the m-th calibrating signal in the first channel can be expressed as

    The purpose of calibration is to estimate the complex excitations (amplitude and phase) of the individual elements and to compensate for the variations between all the M input beams and K output elements [23]. Without loss of generality, we set the first calibrating signal in the first element as the reference signal. The amplitude and phase of other (M-1) signals in this element and signals in other (K-1) elements are normalized to the reference signal.The estimated amplitude in decibel (dB) and phase in degree (deg) of the m-th signal in the k-th element are

    where

    The subscripts I and Q represent the inphase and quadrature components of noise,respectively. For simplicity, we omit the subscript of the above variables in the following analysis.

    III. THEORETICAL ANALYSIS OF CALIBRATION PERFORMANCE

    The calibration performance is in fluenced by various factors, such as power level of the calibrating signal, thermal noise, phase noise introduced by the local oscillator, noise figure of the receiver, and quantization noise, etc. It is of signi ficance to derive the relationship between the calibration performance and impact factors in order to evaluate the performance of the calibration receiver. In this paper, we con-sider only the first three impact factors. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and the given tolerance region, SNR,standard deviation of phase noise.

    3.1 Probability of correct amplitude estimation

    Given that the tolerance region of the estimated amplitude is ±A(dB), then the probability of correct amplitude estimation in the presence of the phase noise can be replaced as follows

    To further calculate (13), we first have to analyze the statistical characteristics of Z.According to the linear property of normal variables, the random variables Y1and Y2are distributed normally which can be written asandrespectively.Since Z is the sum of squares of two independent standard normally distributed random variables with non-zero mean,2L? Z σ2has a non-central chi-squared distribution with 2 degrees of freedom and (2L? a2)2σ non-centrality parameter. Referring to [24],the non-central chi-squared distribution can be approximated to a normal distribution for the large non-centrality parameter. While using the proposed calibration method, high SNR can be achieved for actual calibration systems because the transmitting signals are connected to the receiver by coaxial cables. Against this backcloth, the variable Z obeys the normal distributionapproximately. Finally, the probability of correct amplitude estimation in the presence of the phase noise can be calculated by

    where the SNR is de fined as (9) and the error function erf(x) is de fined as

    Equation (15) implies that the probability of correct amplitude estimation depends on the preset tolerance region (A), the length of the spreading code (L), and the SNR, instead of the phase noise in the local oscillator. Given the first three system parameters, the probability of correct amplitude estimation can be approximated with (15). Since calibration signals are DSSS signals, the probability of correct estimation can be improved by increasing the length of the spreading code (L) when the SNR is limited.

    3.2 Probability of correct phase estimation

    Given that the tolerance region of the estimated phase is ± Φ (deg) and the true phase is 0(deg), then the probability of correct phase estimation in the presence of the phase noise can be replaced as follows

    First, we analyze the statistical characteristics of Y2/Y1in (11). For a ratio of two independent normal variables, , the second-order Taylor series expansions give the following approximations [25]

    Then the probability of correct phase esti-mation in the presence of the phase noise can be calculated by

    In contrast to (15), the probability of correct phase estimation depends on not only the preset tolerance region (Φ), the length of the spreading code (L), and the SNR, but also the standard deviation of the phase noise.

    IV. SIMULATION RESULTS

    In order to con firm the validity of our theoretical analysis, three scenarios are performed in this section to compare the statistical analysis and simulation results. All calibrating signals are allocated with the equal power. In addition,the length of the spreading code (L) is selected as 256. In the following figures, blue lines are theoretical results discussed in Section III,while red lines represent Monte Carlo simulation results. Simulation results are obtained based on 10000 independent trials. In simulations, the probability of correct amplitude/phase estimation is defined as the number of trials when the amplitude/phase error is less than the tolerance region divided by the total trials.

    Firstly, the approximation accuracy of the theoretical analysis is assessed by the simulations. Figure 3 shows the correct probability of the estimated amplitude versus the SNR without the phase noise. The amplitude tolerance region (A) is set as {0.05dB, 0.1dB, 0.2dB}.We can conclude that theoretical results provide exactly the same performance as simulation results. As the SNR increases, the correct probability steadily increases. In addition, better performance can be achieved obviously for larger tolerance region. Similar conclusions can also be drawn for the estimated phase as depicted in figure 4, where the phase tolerance region (Φ) is set as {0.5deg, 1deg, 2deg}.

    Fig. 4. Probability of correct phase estimation versus SNR without phase noise.

    Fig. 5. Probability of correct amplitude estimation versus SNR with various standard deviation of the phase noise σθ and fixed tolerance region A=0.1dB.

    Fig. 6. Probability of correct phase estimation versus SNR with various standard deviation of the phase noise σθ and fixed tolerance region Φ =1deg.

    Then the impact of the phase noise on the performance is taken into account. Figure 5 illustrates that the probability of correct amplitude estimation versus the SNR with the tolerance region (A) fixed to 0.1dB and the standard deviation of the phase noise (σθ) set as{0.01, 0.02}. It demonstrates that despite the presence of phase noise, the calibration performance in terms of amplitude remains unaffected. When A = 0.2dB and 0.05dB, the curves for the approximation and the simulation with various standard deviations of the phase noise are consistent. They need not be covered here.Figure 6 illustrates that the correct probability of the estimated phase versus the SNR with the tolerance region (Φ) fixed to 1deg and the standard deviation of the phase noise (σθ) set as {0.01, 0.02}. If the standard deviation of the phase noise is as large as 0.02, the correct probability of the phase is only 60% regardless of the SNR. Figure 7 further shows the upper bound of the correct probability of the estimated phase versus σθwith the SNR fixed to be 0dB and the tolerance region (Φ) set as{0.5deg, 1deg, 2deg}. When the standard deviation σθincreases, the performances of all three conditions degrade. It can also be seen that the calibration performance of the theoretical analysis is in good agreement with that of simulations.

    V. CONCLUSIONS

    In this paper, we present an analysis of the impact of phase noise on the calibration performance for transmitting MBA based on TDMS which achieves its advantage in implementation costs. Given speci fic system parameters,the probability of correct estimation in terms of amplitude and phase can be effectively derived. Moreover, it is concluded that the calibration performance of amplitude is independent of the phase noise while the calibration performance of the phase is sensitive to the phase noise. Finally, simulation results assess the accuracy of our theoretical analysis.

    ACKNOWLEDGEMENT

    This work was supported by the NSFC (Joint Foundation of NSFC & Fundamental Research for General Purpose Technologies) under Grant U1636125.

    [1] M. Cheng, S. Yang, and X. Fang, "Adaptive antenna-activation based beamforming for largescale MIMO communication systems of high speed railway," China Communications, vol. 13,no. 9, 2016, pp. 12–23.

    [2] J. M. Montero, A. M. Ocampo, and N. J. G.Fonseca, “C-band multiple beam antennas for communication satellites,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, 2015,pp. 1263–1275.

    [3] P. K. Bailleul, “A new era in elemental digital beamforming for spaceborne communications phased arrays,” Proceedings of the IEEE, vol. 104,no. 3, 2016, pp. 623–632.

    [4] Y. Lin, X. Bu, W. Zhao, and S. Wang, “Parallel calibration method for phased array antennas with orthogonal and nonorthogonal codes,”P(pán)roc. 10th International Conference on Communications and Networking in China (ChinaCom),2015, pp. 883–886.

    [5] C. M. Schmid, S. Schuster, R. Feger, and A. Stelzer,“On the eあects of calibration errors and mutual coupling on the beam pattern of an antenna array,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, 2013, pp. 4063–4072.

    [6] W. P. M. N. Keizer, “Fast and accurate array calibration using a synthetic array approach,” IEEE Transactions on Antennas and Propagation, vol.59, no. 11, 2011, pp. 4115–4122.

    [7] D. Wang and Y. Wu, “Array errors active calibration algorithm based on instrumental sensors,”Science China Information Sciences, vol. 54, no.7, 2011, pp. 1500–1511.

    [8] T. Takahashi, Y. Konishi, and I. Chiba, “A novel amplitude-only measurement method to determine element fields in phased arrays,” IEEE Transactions on Antennas and Propagation, vol.60, no. 7, 2012, pp. 3222–3230.

    [9] H. Pawlak and A. F. Jacob, “An external calibration scheme for DBF antenna arrays,” IEEE Transactions on Antennas and Propagation, vol.58, no. 1, 2010, pp. 59–67.

    [10] S. Wang, H. Qi, and W. Yu, “An internal calibration scheme for polarimetric synthetic aperture radar system,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, 2011, pp.15–20.

    [11] S. Wang, H. Qi, and W. Yu, “Polarimetric SAR internal calibration scheme based on T/R module orthogonal phase coding,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 12,2009, pp. 3969–3980.

    [12] L. Gao, S. Zhang, Z. Liu, J. Lin, S. Wang, and C.Xing, “An overview of multi-antenna technologies for space-ground integrated networks,”Science China Information Sciences, vol. 59, no.12, 2016, pp. 121301:1–121301:18.

    [13] X. Sun, X. Yang, Z. Zeng, C. Zhang, and B. Bai, "A study on the multi-antenna geometrical depolarization channel modeling," China Communications, vol. 13, no. 3, 2016, pp. 105–114.

    Fig. 7. Upper bound of the probability of correct phase estimation versus σθ with various tolerance region Φ and fixed SNR=0dB.

    [14] S. Wang, J. Dai, Y. Lin, and X. Bu, “A low complexity calibration method for space-borne phased array antennas,” Proc. IEEE 83rd Vehicular Technology Conference (VTC2016-Spring),2016, pp. 1–5.

    [15] D. S. Baum and H. Bolcskei, “Impact of phase noise on MIMO channel measurement accuracy,” Proc. IEEE 60th Vehicular Technology Conference (VTC2004-Fall), 2004, pp. 1614–1618.

    [16] R. Krishnan, M. R. Khanzadi, N. Krishnan, Y. Wu,A. G. Amat, T. Eriksson, and R. Schober, “Linear massive MIMO precoders in the presence of phase noise—a large-scale analysis,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5,2016, pp. 3057–3071.

    [17] A. A. Abouda, H. M. El-Sallabi, and S. G. Haggman, “Reducing impact of phase noise on accuracy of measured MIMO channel capacity,” IEEE Antennas and Wireless Propagation Letters, vol.6, no. 11, 2007, pp. 419–422.

    [18] X. Luo, X. Wang, Z. Suo, and Z. Li, “Efficient InSAR phase noise reduction via total variation regularization,” Science China Information Sciences, vol. 58, no. 8, 2015, pp. 082306:1–082306:13.

    [19] M. Schwerdt, B. Brautigam, M. Bachmann, B.Doring, D. Schrank, and J. H. Gonzalez, “Final TerraSAR-X calibration results based on novel eきcient methods,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 2, 2010,pp. 677–689.

    [20] O. Besson, S. Bidon, and C. L. de Tournemine,“Robust approaches to remote calibration of a transmitting array,” Signal Processing, vol. 90,no. 5, 2010, pp. 1373–1381.

    [21] Y. Zhang, Y. Zhuo, J. Wang, and S. Jiang, " A power reduction method for pilot channel of LEO satellite based on dynamic compensation,"China Communications, vol. 14, no. 3, 2017, pp.55–65.

    [22] X. Yi, S. Hu, H. Zhou, C. Tang, B. Xu, J. Zhang,and K Qiu, “Phase noise eあ ects on phase-modulated coherent optical OFDM,” IEEE Photonics Journal, vol. 8, no. 1, 2016, pp. 1–8.

    [23] H. Chou and D. Cheng, “Beam-pattern calibration in a realistic system of phased-array antennas via the implementation of a genetic algorithm with a measurement system,” IEEE Transactions on Antennas and Propagation, vol.65, no. 2, 2017, pp. 593–601.

    [24] P. B. Patnaik, “The non-central 2-and F-distribution and their applications,” Biometrika, vol. 36,no. 1/2, 1949, pp. 202–232.

    [25] T. Pham-Gia, N. Turkkan, and E. Marchand,“Density of the ratio of two normal random variables and applications,” Communications in Statistics, vol. 35, no. 9, 2007, pp. 1569–1591.

    猜你喜歡
    單樁樁體承載力
    盾構(gòu)隧道近接側(cè)穿引起橋梁樁體的變形規(guī)律*
    樁體模量和加筋體剛度對(duì)路堤穩(wěn)定性影響分析
    地鐵車站支撐拆除對(duì)圍護(hù)結(jié)構(gòu)的影響
    單樁豎向抗壓靜載試驗(yàn)與研究
    基于單樁豎向承載力計(jì)算分析研究
    剛性嵌巖樁單樁剛度系數(shù)推導(dǎo)
    上海公路(2017年2期)2017-03-12 06:23:40
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    基于ABAQUS軟件的單樁靜載試驗(yàn)數(shù)值模擬
    潛艇極限承載力計(jì)算與分析
    无人区码免费观看不卡| 亚洲国产精品999在线| avwww免费| 脱女人内裤的视频| 国产99白浆流出| 国产不卡一卡二| 超碰av人人做人人爽久久 | 91在线观看av| 好男人电影高清在线观看| 久久99热这里只有精品18| 国产精品精品国产色婷婷| 成人性生交大片免费视频hd| 日本一本二区三区精品| 老汉色∧v一级毛片| 国产私拍福利视频在线观看| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| 国产午夜精品论理片| 日韩欧美国产一区二区入口| 久久久精品欧美日韩精品| 在线观看免费午夜福利视频| 国产伦精品一区二区三区四那| 国产一区二区三区视频了| 免费av毛片视频| 欧美在线一区亚洲| 高清在线国产一区| 精品国产亚洲在线| 九色成人免费人妻av| 免费观看的影片在线观看| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 丝袜美腿在线中文| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 欧美一区二区国产精品久久精品| 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 国产三级中文精品| 香蕉丝袜av| 非洲黑人性xxxx精品又粗又长| 久久国产精品人妻蜜桃| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 久久久久性生活片| 好看av亚洲va欧美ⅴa在| 欧美又色又爽又黄视频| 欧美性猛交╳xxx乱大交人| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 老汉色∧v一级毛片| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 91字幕亚洲| 国产精品三级大全| 在线免费观看不下载黄p国产 | 高清在线国产一区| 欧美日韩黄片免| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 欧美一级a爱片免费观看看| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 男插女下体视频免费在线播放| xxx96com| 大型黄色视频在线免费观看| 我要搜黄色片| 欧美中文综合在线视频| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 亚洲国产色片| 中文字幕av在线有码专区| 亚洲 国产 在线| 国产精品日韩av在线免费观看| 久久人妻av系列| 国产精品乱码一区二三区的特点| 国产精品香港三级国产av潘金莲| 91久久精品国产一区二区成人 | 日日干狠狠操夜夜爽| 亚洲欧美激情综合另类| 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 亚洲五月天丁香| 久久伊人香网站| 久久香蕉精品热| 亚洲av免费在线观看| 欧美乱妇无乱码| 午夜精品一区二区三区免费看| 身体一侧抽搐| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 色老头精品视频在线观看| 午夜a级毛片| 中亚洲国语对白在线视频| www.熟女人妻精品国产| 91久久精品电影网| 观看美女的网站| 99久久综合精品五月天人人| 午夜福利在线观看免费完整高清在 | 亚洲精品亚洲一区二区| 精品免费久久久久久久清纯| 国产 一区 欧美 日韩| 999久久久精品免费观看国产| www.999成人在线观看| 成人av在线播放网站| 国产精品野战在线观看| 亚洲成人中文字幕在线播放| 国产精品 国内视频| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 精品一区二区三区视频在线观看免费| 亚洲精品粉嫩美女一区| 久久草成人影院| 精品福利观看| 亚洲内射少妇av| 一级黄片播放器| 国产成+人综合+亚洲专区| 3wmmmm亚洲av在线观看| 午夜免费激情av| 免费观看精品视频网站| 男女午夜视频在线观看| 老鸭窝网址在线观看| 最新美女视频免费是黄的| 色哟哟哟哟哟哟| 久久久久久大精品| 国产成人啪精品午夜网站| 在线a可以看的网站| 波多野结衣高清作品| 国产中年淑女户外野战色| 内射极品少妇av片p| 99国产精品一区二区三区| 欧美日韩黄片免| 精品乱码久久久久久99久播| 女人十人毛片免费观看3o分钟| tocl精华| 亚洲avbb在线观看| 午夜免费男女啪啪视频观看 | 日韩 欧美 亚洲 中文字幕| 一区福利在线观看| 国产精品精品国产色婷婷| 国产精品嫩草影院av在线观看 | 亚洲乱码一区二区免费版| 天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 中文资源天堂在线| 国产欧美日韩一区二区三| 久久久色成人| 日韩精品中文字幕看吧| 国产黄a三级三级三级人| 国产日本99.免费观看| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 精品无人区乱码1区二区| 国产免费男女视频| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 手机成人av网站| 在线免费观看的www视频| 少妇人妻精品综合一区二区 | 亚洲精品在线美女| 观看美女的网站| 国产综合懂色| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 69人妻影院| 国产高清三级在线| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 欧美日韩国产亚洲二区| 亚洲激情在线av| 成人av在线播放网站| 一个人看视频在线观看www免费 | 亚洲最大成人中文| 麻豆国产97在线/欧美| 最新在线观看一区二区三区| 小说图片视频综合网站| 嫩草影院精品99| 日本三级黄在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 久久久久亚洲av毛片大全| 夜夜爽天天搞| 国产激情欧美一区二区| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 国语自产精品视频在线第100页| 久久精品影院6| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 99热这里只有精品一区| 国产av在哪里看| 久久精品91无色码中文字幕| 国产伦一二天堂av在线观看| 国产91精品成人一区二区三区| 51国产日韩欧美| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 尤物成人国产欧美一区二区三区| 亚洲乱码一区二区免费版| 十八禁人妻一区二区| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 欧美日韩一级在线毛片| 欧美日韩综合久久久久久 | 午夜福利18| 午夜福利视频1000在线观看| 色老头精品视频在线观看| 久久精品影院6| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 精品久久久久久久末码| 特级一级黄色大片| 久久精品影院6| 校园春色视频在线观看| 国产av在哪里看| 亚洲五月婷婷丁香| 网址你懂的国产日韩在线| 久久久久久久午夜电影| 欧美大码av| 国产午夜精品久久久久久一区二区三区 | 国产精品永久免费网站| 日韩欧美国产一区二区入口| 久久久国产成人免费| 99久久九九国产精品国产免费| 中文字幕人妻丝袜一区二区| 色尼玛亚洲综合影院| 此物有八面人人有两片| 亚洲av免费高清在线观看| 内射极品少妇av片p| 亚洲av成人av| 国产 一区 欧美 日韩| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 国产精品1区2区在线观看.| 亚洲无线在线观看| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 欧美乱码精品一区二区三区| 九色成人免费人妻av| 成人18禁在线播放| av国产免费在线观看| 亚洲国产色片| 不卡一级毛片| 俺也久久电影网| 伊人久久精品亚洲午夜| 淫秽高清视频在线观看| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 97碰自拍视频| 国产淫片久久久久久久久 | 国产精品综合久久久久久久免费| 高清毛片免费观看视频网站| 国产黄片美女视频| av视频在线观看入口| 色综合婷婷激情| 丰满人妻一区二区三区视频av | 男女午夜视频在线观看| 在线免费观看不下载黄p国产 | 国产精品99久久99久久久不卡| 嫩草影院精品99| 看免费av毛片| 男女床上黄色一级片免费看| 观看免费一级毛片| 丰满人妻一区二区三区视频av | 99国产极品粉嫩在线观看| 一本一本综合久久| 全区人妻精品视频| 久久天躁狠狠躁夜夜2o2o| 国产熟女xx| 少妇的逼好多水| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美精品v在线| 在线观看日韩欧美| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 亚洲欧美日韩卡通动漫| 欧美绝顶高潮抽搐喷水| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 国产私拍福利视频在线观看| av黄色大香蕉| 精品国产三级普通话版| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 超碰av人人做人人爽久久 | 欧美黄色片欧美黄色片| 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜| 色视频www国产| 精品电影一区二区在线| 操出白浆在线播放| 亚洲专区中文字幕在线| 女警被强在线播放| 中文字幕av成人在线电影| 毛片女人毛片| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 51午夜福利影视在线观看| 午夜免费男女啪啪视频观看 | www.熟女人妻精品国产| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 91九色精品人成在线观看| 九色成人免费人妻av| 99热这里只有是精品50| 亚洲,欧美精品.| 尤物成人国产欧美一区二区三区| 欧美午夜高清在线| 亚洲人成网站在线播| 午夜福利18| 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼| 午夜精品在线福利| 亚洲成人久久性| 国产亚洲精品久久久com| 欧美区成人在线视频| 最近最新免费中文字幕在线| 精品不卡国产一区二区三区| 桃红色精品国产亚洲av| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 婷婷精品国产亚洲av| 久久6这里有精品| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站 | 婷婷亚洲欧美| 免费人成视频x8x8入口观看| www日本在线高清视频| 男女之事视频高清在线观看| 岛国在线观看网站| 99国产精品一区二区蜜桃av| 99国产精品一区二区三区| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 亚洲性夜色夜夜综合| 看黄色毛片网站| 国产精品日韩av在线免费观看| 窝窝影院91人妻| 色av中文字幕| 免费在线观看影片大全网站| 久久精品91无色码中文字幕| 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| a级一级毛片免费在线观看| 不卡一级毛片| av视频在线观看入口| 成人一区二区视频在线观看| av国产免费在线观看| 午夜激情欧美在线| 少妇的逼水好多| av中文乱码字幕在线| 男人和女人高潮做爰伦理| 久久久久国产精品人妻aⅴ院| 久久精品综合一区二区三区| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 少妇人妻精品综合一区二区 | 18禁在线播放成人免费| 久久久精品大字幕| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 久久久久久久久大av| 免费在线观看亚洲国产| 日本成人三级电影网站| 乱人视频在线观看| 黄色丝袜av网址大全| 国产精品影院久久| 十八禁人妻一区二区| 最新美女视频免费是黄的| 亚洲国产精品999在线| 成年人黄色毛片网站| 国产伦一二天堂av在线观看| 99精品欧美一区二区三区四区| 性欧美人与动物交配| 国产一级毛片七仙女欲春2| 久久久久久大精品| 亚洲天堂国产精品一区在线| 国产三级在线视频| 午夜免费激情av| 国产探花极品一区二区| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 人妻夜夜爽99麻豆av| 我要搜黄色片| 脱女人内裤的视频| 国产真人三级小视频在线观看| 日韩有码中文字幕| 精品福利观看| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 99久久精品国产亚洲精品| 久久国产乱子伦精品免费另类| 久久久国产成人精品二区| 久久精品国产自在天天线| svipshipincom国产片| 国产精品一及| 人妻丰满熟妇av一区二区三区| 国产三级黄色录像| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 青草久久国产| 欧美+亚洲+日韩+国产| 久久性视频一级片| 国语自产精品视频在线第100页| 99精品欧美一区二区三区四区| 天堂√8在线中文| 在线免费观看不下载黄p国产 | 久久精品综合一区二区三区| 怎么达到女性高潮| 久久中文看片网| 91麻豆av在线| 啦啦啦免费观看视频1| 在线看三级毛片| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 国内精品美女久久久久久| 亚洲最大成人手机在线| 免费看美女性在线毛片视频| 亚洲午夜理论影院| 成年女人永久免费观看视频| 高清在线国产一区| 黄色女人牲交| 国产老妇女一区| 99热这里只有是精品50| 男女下面进入的视频免费午夜| 99久久精品国产亚洲精品| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 久久精品夜夜夜夜夜久久蜜豆| 51国产日韩欧美| 三级国产精品欧美在线观看| 一夜夜www| 免费在线观看日本一区| 色噜噜av男人的天堂激情| 久久久久性生活片| 国产高潮美女av| 久久久国产成人免费| av在线蜜桃| 男人和女人高潮做爰伦理| 国产午夜福利久久久久久| 黄片大片在线免费观看| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说| 欧美日韩精品网址| 亚洲五月天丁香| 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 99视频精品全部免费 在线| 十八禁人妻一区二区| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 国产黄片美女视频| 日韩av在线大香蕉| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 中文字幕高清在线视频| 九九热线精品视视频播放| 天堂网av新在线| 波多野结衣高清作品| 窝窝影院91人妻| 成人特级av手机在线观看| 亚洲成av人片在线播放无| 香蕉丝袜av| 一个人看视频在线观看www免费 | 亚洲国产欧美网| 俄罗斯特黄特色一大片| 国产成+人综合+亚洲专区| 国产黄色小视频在线观看| 国产免费男女视频| 欧美在线一区亚洲| av天堂中文字幕网| www.www免费av| 色老头精品视频在线观看| 午夜亚洲福利在线播放| 香蕉久久夜色| 极品教师在线免费播放| 精品久久久久久久久久免费视频| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 久久久久国产精品人妻aⅴ院| 性色av乱码一区二区三区2| 久久精品国产亚洲av涩爱 | 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 午夜福利高清视频| 精品一区二区三区视频在线 | 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 国产高清有码在线观看视频| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| 亚洲精品日韩av片在线观看 | 欧美绝顶高潮抽搐喷水| 欧美在线一区亚洲| 全区人妻精品视频| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 九九在线视频观看精品| 成人无遮挡网站| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 免费看光身美女| 亚洲七黄色美女视频| 成人国产综合亚洲| 午夜老司机福利剧场| 91久久精品电影网| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| 青草久久国产| 精品国产亚洲在线| 成人性生交大片免费视频hd| av中文乱码字幕在线| 一级黄片播放器| 日韩欧美国产一区二区入口| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 国产精品亚洲美女久久久| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 少妇的逼水好多| 听说在线观看完整版免费高清| 两性午夜刺激爽爽歪歪视频在线观看| 制服丝袜大香蕉在线| 国产伦在线观看视频一区| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 亚洲av免费高清在线观看| 两个人的视频大全免费| 美女高潮的动态| 国产主播在线观看一区二区| 怎么达到女性高潮| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 男女视频在线观看网站免费| 久久香蕉精品热| 狂野欧美白嫩少妇大欣赏| 神马国产精品三级电影在线观看| 国内精品久久久久久久电影| 欧美在线黄色| 精品人妻一区二区三区麻豆 | 哪里可以看免费的av片| 又黄又粗又硬又大视频| 最近最新中文字幕大全免费视频| 国内精品一区二区在线观看| 在线观看午夜福利视频| 精品一区二区三区人妻视频| 99在线视频只有这里精品首页| 波多野结衣高清无吗| 亚洲精品乱码久久久v下载方式 | 亚洲午夜理论影院| 51午夜福利影视在线观看| h日本视频在线播放| 亚洲五月天丁香| 亚洲精品在线美女| 在线观看午夜福利视频| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 日韩精品青青久久久久久| 国产成人欧美在线观看| 免费av毛片视频| 在线国产一区二区在线| 免费搜索国产男女视频| 亚洲成人久久性| 国产视频内射| 亚洲精品日韩av片在线观看 | 在线天堂最新版资源| 一级作爱视频免费观看| 无遮挡黄片免费观看| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 亚洲欧美日韩东京热| 色精品久久人妻99蜜桃| 老汉色∧v一级毛片| 首页视频小说图片口味搜索| 他把我摸到了高潮在线观看| 成人欧美大片| 91在线精品国自产拍蜜月 | 国产精品嫩草影院av在线观看 | 亚洲国产色片| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 少妇的逼水好多|