• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Roll Compensation Method for Two-Axis Transportable Satellite Antennas

    2018-04-04 08:21:16LaidingZhaoJidongXieXiaodongBaiZhichengQu
    China Communications 2018年3期

    Laiding Zhao , Jidong Xie , Xiaodong Bai , Zhicheng Qu

    1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

    2 Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210003, China

    I. INTRODUCTION

    Currently, transportable satellite antennas(TSAs) can be categorized into four-axis [1],three-axis [2]-[5] and two-axis (TA) [3]-[9]kinds based on the structure of antenna pedestal. Since four-axis and three-axis antenna platforms have higher tracking costs, then the TA platform is widely adopted in transportable satellite communication systems due to its advantages of simpler mechanical structure and much lower cost. Generally, there are several methods to measure the pitch and roll angle of TATSAs. The inertial navigation system(INS) with high-precise gyroscope can read high space directing accuracy but this method is expensive [10]. Using differential global positioning system (GPS) to determine the azimuth direction also has disadvantages of slow locating output rate and long installation baseline even though it has a medium cost[11], [12]. When utilizing the electronic compass, due to the disturbance of the magnetic declination and environmental magnetic field,horizontal rotating calibration for long period of time is needed to avoid severe directing deviation [13]. Therefore, all these methods have limitations in engineering realization.

    The principle of gravity acceleration can also be adopted to measure the pitch and roll angle with a much lower cost than the aforementioned methods [14]-[16]. When horizontally placed it has the highest accuracy and the measure error increases with the increased tilt angle. Based on this, the acceleration sensor should be directed at a certain angle from the axis of antenna beam in practical engineering design. However, when the roll axis is non-ze-ro, there will be a shift to both the azimuth angle and the pitch angle of the TSAs, which will deteriorate the received signal. Satellite antennas with roll axis can easily sense the angle variation and compensate it by means of turning the roll axis around. However, for the low cost TA, it only has the azimuth and elevation axes due to its simple structure.Thus, conventional TATSAs receivers in sale track the target satellite by using wide-range tracking. However, this method has a very long tracking time and it will even fail to work in some conditions such as large roll angle.Thus, users are usually asked to lay antennas horizontally to the greatest extent to ensure reliable link performance.

    In order to solve these problems of TATSAs,we propose a novel roll compensation (RC)method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing projection of the change of roll axis to the azimuth elevation and polarization axes, formulas of the tracking method are derived. Also, simulations of measuring error are conducted. Results indicate that with roll angle ≤ 30°, utilizing the RC method enables system to lock satellite by only a single round of tracking, which increases the efficiency of initial searching step remarkably. In addition, compared with conventional tracking modes, tracking in the ellipse trace with the RC method provides the highest tracking efficiency. Experiments show that the RC method is an effective engineering method.

    The paper proposes a novel roll compensation (RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor.

    Fig. 1. Structure of the TATSA system.

    II. MECHANICAL STRUCTURES OF TATSA

    Generally, the structures of the TATSA pedestal structure can be classi fied into X-Y pedestals [17]-[19] and elevation-over-azimuth pedestals [20], [21]. For X-Y pedestals, when the target satellite has a lower pitch angle, the outputs of the control system will have large variation, which requires a much stricter overloading than elevation-over-azimuth pedestals.Meanwhile, this variation requires higher tracking speed and acceleration, which makes the system dif ficult to react in time. Therefore,X-Y pedestals tend to lose the target satellite in the scenario of low orbit pitch angle.

    For elevation-over-azimuth pedestals, the azimuth is the angle between antenna pointing and due north, where the positive angular values are assumed to be corresponding to clockwise. The elevation is the angle between terminal-satellite link and the horizon, where the positive angular values are assumed to be corresponding to upper angles. When the target satellite is geostationary earth orbit (GEO)satellite, the TATSA system can track the target accurately and stably. When the target satellite is polar-orbit satellite with lower pitch angle, the azimuth axis can also achieve stable tracking. When the target satellite passes over the top, the azimuth axis should turn around 180° instantly. This requires infinite angular speed and acceleration, which is very hard to realize. However, in practical application of TATSA systems, the scenario of target satellite passing over the top seldom appears in the antenna’s elevating mode. Therefore, proposed RC method will be discussed and analyzed based on the common elevation-over-azimuth pedestals TATSA system.

    The speci fic structure diagram of the TATSA system is shown in figure 1. The locations and rotation modes are also shown in the figure. Three electric motors, i.e., the azimuth motor, the elevation motor and the polarization motor, are used in the TATSA structure.

    III. THEORETICAL MODEL

    In this section, three-axis earth coordinate system and three-axis geographic coordinate system are used for discussion, respectively.As shown in figure 2, earth coordinate system is set as OeXeYeZe, which take the geocentre as origin and OeZe-axis as the direction of due north of earth. Plane OeXeYeis in the equatorial plane with OeXe-axis pointing longitude 0° and OeYe-axis pointing east longitude 90°. The geographic coordinate system is set as OXgYgZgwhich take the pattern of the north-east-ground coordinate system with OXg-axis pointing to north, OYg-axis pointing to east and OZg-axis pointing to the gravity direction, respectively.

    Assumingrsat_cenandrstation_cenare vectors from geocentre to the target satellite and the TATSA system, respectively, in earth coordinate system. After transform from earth coordinate system to geographic coordinate system, we can get

    WhereTstation_cenis the transition matrix, which can be written as [12]-[16] shown in bottom at this page.

    Here φsatand ηsatare the longitude and latitude of the TATSA system, respectively.

    Assuming the polarization angle of satellite is κsat, φsatand ηsatare the longitude and latitude of the satellite, therefore, the transition from the satellite coordinate system to the earth coordinate system can be seen as the rotation around OeXe-axis by κsatfirst, then OeYe-axis by ?ηsat, and finally OeZe-axis by φsatin order, respectively. These can be respectively represented by:

    The transition matrix from the satellite to receiving station can be calculated as:

    whereTsat_stationcan be also written as:

    Thus, the theoretical locating matrix of the receiving station can be described as:

    Fig. 2. Satellite in the geographic coordinate system.

    where each coordinate component is given as:

    Assuming that σel, σazand σpolare the theoretical locating elevation, azimuth and polarization angles of the receiving station. As a result, they can be finally derived as follows,respectively:

    To be noticed, the atan2 (*, *) in formulas is a function, and it is de fined as:

    IV. PROPOSED RC METHOD

    Fig. 3. Schematic diagram of the beam change caused by the roll angle variation.

    The existence of the roll angle will diverge the antenna’s direction from the satellite, which tends to cause loss of satellite. Also, it is hard to search for the satellite since the searching trace will be tilted when the roll angle exists. However, since the TATSA system does not have roll axis, the angle generated in the roll direction cannot be compensated for by roll axis. Therefore, to maintain azimuth and elevation angles (in geographic coordinate system) of the antenna in the TATSA system,three-axis compensation must be conducted to project the change of roll axis to azimuth elevation and polarization axes by means of adjusting corresponding motors. Such compensation is the key to locking the satellite accurately.

    Generally, three-dimensional derivation is adopted to achieve compensation [22]-[27]owing to the high accuracy of three-dimensional space sensor. However, these sensors are dif ficult to apply due to high costs. Therefore, wide scanning is the common searching method in engineering applications. In this section, the proposed RC method, which can ensure the accuracy in the elevation and polarization without azimuth sensor, is presented.Meanwhile, it enables antennas to search for the satellite quickly under the circumstance of one-dimension vague.

    As discussed before, cheap tilt sensors commonly base on gravity acceleration principle. The performance of these sensors will be worse when the pitch angle becomes wider.Based on this reason, there should be a fixed angle α(∠BOC) between elevation axis and the beam axis in sensor coordinate system. In figure 3, OB represents the beam axis. Assuming the elevation angle of the tilt sensor to be β(∠C′ OC) and the roll angle γ(∠FGB′) to be 0°, the elevation axis of the sensors and the roll axis are parallel to OC and CD, respectively. Thus, the tilt sensor can be shifted to be placed in C on plane OCD. When all the outputs of three dimensions are zero, sensor coordinate system coincides with geographic coordinate system.

    When the roll angle exists, CB rotates to CB′ by γ′(∠B′ GD). Let B′ D be parallel to BC and plane CFD is actually the projection of plane CB′ D on the horizontal plane. Also,plane OC′ D′ is the projection of plane OCD on the horizontal plane through point O. Ifthen we can get

    Here we establish the antenna coordinate system as OXaYaZa. Assuming that the geographic azimuth of the tilt sensor is ?, if ?= α=β =γ=0, then OXaYaZacoincides with

    Since OXaYaZacan be actually generated by rotating OXgYgZgfor several times, the rotation matrix is given as:

    From the rotating relationship in the last section, (17) can be given as (19) shown in the bottom at this page.

    Assuming the antenna’s elevation azimuth and polarization angle are σe′l, σa′zand σ′pol,respectively, the angles can be given as:

    Finally, according to the result from Eq.(20) to (22), we can conduct roll compensation in the TATSA system.

    The theoretical alignment angle σel, σazand σpolof two-axis transportable satellite antenna (TATSA) on satellite communication earth station, according to the latitude and longitude of current earth station and satellite parameters, can be derived using proposed formulas (1)~(16). The beam angle σe′l, σa′zand σ′polof satellite antenna, according to the two-dimensional angle output by the tilt sensor on satellite communication earth station and position of the tilt sensor relative to the antenna surface, can be derived using proposed formulas (17)~(22). Above calculation can be realized by DSP. The DSP can drive the motors to reduce the difference between σe′l,σa′z, σ′poland σel, σaz, σpol. This is the socalled correction process.

    V. SIMULATION RESULTS AND DISCUSSIONS

    5.1 Pointing angle deviation

    Fig. 4. Azimuth deviation.

    Fig. 5. Pitch deviation.

    When antennas have roll angle, the real three-dimensional attitude angle will be deviated from the original one without the roll angle. These deviations can be denoted by δel,δazand δpol, respectively, which are further represented as

    Figure 4~figure 6 show simulated results of the azimuth elevation and polarization deviation of the TATSA system. Here antenna’s beam angle is assumed to be 2°, α=63.48°,0°≤α+β<90°, ?45°≤γ≤45°.

    From Fig. 4 we can see that when the roll angle γ=0°, the azimuth deviation is zero.When γ is nonzero, the azimuth deviation is highly related to the pitch angle β and the roll angle γ. For instance, the azimuth deviation increases with the increased roll angle. When the roll angle is less than 10°, the azimuth deviation is nearly linear to the roll angle.

    From Fig. 5, under the circumstance of the fixed pitch angle, larger absolute value of roll angle will lead to higher pitch deviation.Results indicate that when 0°≤α+β<80°,and ? 7°≤γ≤7°, the pitch deviation is less than 1.914°, which is also less than the beam angle. Thus, adopting dynamic approaching scanning method will find the largest angle. When ?15°≤γ≤15°, the pitch deviation reaches 7.202°, which will impose a severe influence on the locating satellite.When ?30°≤γ≤30°, the pitch deviation is 20.072°

    From figure 6, larger roll angle will lead to higher polarization deviation. When the roll angle is relatively small, the polarization deviation is proportional to the roll angle approximately. The deviation of the space direction sensor is resulted from several reasons such as the direction error caused by the antennas’roll angle and the disturbance on antennas. In following part, the performance evaluation of the proposed error compensation method will be separated into two parts: the error compensation in initial searching step and the error compensation after losing the satellite.

    5.2 Error compensation in initial searching step

    The general method of initial searching for the target satellite has three steps: (a) add a fixed deviation angle on the output of the pitch angle sensor; (b) raise the pitch and polarization angle to the theoretical value; and (c)change the fixed pitch angle and then repeat the azimuth one-dimensional searching if the searching fails in the last round of operation,respectively.

    As discussed before, assuming the beam angle of antennas to be 2° and the roll angle γ>7°, if no deviating compensation has been taken, the azimuth searching trace will be a slant with a certain angle to horizontal plane,which makes the deviation larger than 1.9°.As a result, the azimuth searching cannot lock satellite in only one time and the initial searching time will be very long. However, after adopting the proposed RC method, if the tilt sensor is accurate, then the TATSA system can ensure locking the target satellite within only one azimuth searching.

    Since the tilt sensor with high accuracy is usually expensive, then the accuracy level must be considered in practical engineering application.

    Assuming that the two axes’ outputs of an tilt sensor, whose accuracies are 1°, are β0and γ0, α=63.48°, α+β=52.5°,?30°≤γ≤30°.Thus,

    Thus the pitch deviation ?′el, brought by accuracy after inclined angle compensation can be given as (28) shown in the bottom at this page.

    Assuming γ0to be 0°, 10°, 20° and 30°, respectively, the simulated results of ?′elare shown in figure 7.

    From figure 7 we can see that wider roll angle will lead to lower inclined angle accuracy level as well as higher ?′el. If the required precision of initial searching pitch angle is 1°,with the roll angle of ?30°≤γ≤30°, in order to ensure the accuracy of initial searching, the accuracy of tilt sensor must be superior to 1°.Thus, in this paper, the accuracy is chosen as 0.5°.

    5.3 Error compensation after losing the satellite

    Fig. 7. Pitch deviation brought by accuracy after inclined angle compensation.

    After the antenna locking the satellite, some disturbance will cause losing the target. At the beginning of losing target, satellite must be near the beam direction of the antenna. Commonly, two kinds of searching methods can be adopted: (a) operating the azimuth and el-evation motor in different time with the space trace to be a rectangular; and (b) operating the azimuth and elevation motor at the same time with the space trace to be an ellipse. In the presence of the roll angle, both the rectangular and ellipse trace will be inclined. By adopting the RC method, the long side of rectangular trace and the major axis of ellipse trace will be parallel to X-axis, respectively.

    Assuming that the accuracy of antenna tilt sensor is 0.5°. The theoretical two-dimension direction coordinates are set at (168.4°,52.1°) and the actual coordinates after losing satellite are set at (159.2°, 49.6°), which has a (?9.2°, ?2.5°) deviation. The roll angle of antenna is assumed to be 10° Both the azimuth and elevation searching speed are 0.04° /ms. When the antenna’s beam enters the circle with the center at (168.4°, 52.1°)and the radius equal to 2°, the target satellite is deemed to be locked. We simulate four different searching traces including inclined rectangular, rectangular, inclined ellipse and ellipse trace searching. Results are provided in figure 8 with t to be the searching time.

    From figure 8, both searching along the rectangular and ellipse trace need less searching time than their inclined version.

    To avoid contingency, simulations have been done under different deviating conditions. The value of original deviation and the comparison of the searching time are shown in Table I, respectively.

    Fig. 8. The simulated searching trace with the original deviation of (?9.2°,?2.5°).

    We can see from Table.1 that when the azimuth is less than 4°, the difference of the searching time is small. When azimuth is more than 4° and less than 10°, searching in the rectangular trace can save searching time. However, when the azimuth is more than 10°, the searching time will be much longer.Besides, comparing with other three methods,the ellipse trace searching method needs much less searching time in most conditions. Especially, under the circumstance of large deviations, adopting the ellipse trace will reduce the searching time remarkably. Therefore, with the proposed RC method, searching in the ellipse trace can improve the tracking efficiency effectively.

    VI. ENGINEERING TEST

    In order to verify the effectiveness of the proposed method, we experimentally searched ChinaSat 6A, which has the theoretical coordinates of (168.4°, 52.1°), with a TATSA.The accuracy of the antenna tilt sensor is 0.5°. Both the azimuth and elevation searching speed are 0.04°/ms. The received signals of the TATSA are ampli fied by LNA and then demonstrated in spectrum analyzer as well as satellite beacon receiver (SBR), respectively.SBR output voltage is collected by the controller. The test environment is shown in figure 9.

    First step is to test initial searching of antenna. Assuming the actual coordinates are set at (159.2°, 49.6°). figure 10 and 11 show the output signals of SBR without and with the proposed RC method, respectively.

    Moreover, by substantive testing with variable initial direction of TATSA and no roll compensation, results show that with the roll angle less than 5° and the pitch angle at its theoretical value, the system can track the satellite only by azimuth rotation. However, the pitch angle should be adjusted for much more times to track the satellite hardly with a larger roll angle. After the proposed method is adopted, the azimuth need to be rotated only one time with the roll angle of ?30°≤γ≤30°.This veri fies the correctness of the RC method,which also increases the tracking efficiency.

    Finally, the condition for satellite searching of the TATSA with the disturbance is tested.Assuming the initial direction of the TATSA to be (180.4°, 56.1°), figure 12 shows theoutput voltages of SBR by adopting the inclined rectangular, rectangular, inclined ellipse and ellipse trace searching, respectively. The results are consistent with those in Table 1,which proves the correctness of the simulated analysis. Moreover, it can be concluded that the ellipse trace searching method with the proposed RC method has the highest efficiency.

    Table I. Comparison among four different searching methods

    Fig. 9. Test environment.

    Fig. 10. Output of SBR without RC.

    Fig. 11. Output of SBR with RC.

    VII. SUMMARY

    The TSA system based on the simplified TA structure features it slow costs on machinery and sensors. However, the in fluence of antenna roll angle is non-ignorable. In order to avoid wide-range searching, shorten the searching time and even lock satellites in extreme scenarios, we propose a novel three-axis RC method. The method can effectively ensure the accuracy of the pitching and polarization even though in the absence of azimuth sensor. Simulation and measurement results have proved that the proposed RC method can effectively reduce the initial searching time for the sat-ellite. By searching in the ellipse trace, the TATSA system will have the highest searching efficiency in most conditions.

    Fig. 12. Output of SBR after losing the satellite with the original deviation of (12°,4°).

    ACKNOWLEDGEMENTS

    This work was jointly sponsored by scientif

    ic research foundation NUPTSF (Grant No.NY-214144 and Grant No. NY-215073), and NSFC (Grant No. 61701260).

    [1] M. D. Baldé, S. Avrillon, C. Brousseau, D. Lemur,and B. Uguen, “Spatial scanner channel sounder for space diversity studies,” Proc. 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1-3.

    [2] T. Matsuzaki, M. Takemoto, S. Ogasawara, S.Ota, K. Oi, and D. Matsuhashi, “Novel Structure of Three-Axis Active-Control-Type Magnetic Bearing for Reducing Rotor Iron Loss,” Ieee Transactions on Magnetics, vol. 52, Jul. 2016, pp.1-4.

    [3] S. Leghmizi, S. Liu, R. Fraga, and A. Boughelala,“Dynamics Modeling for Satellite Antenna Dish Stabilized Platform,” Machine Design and Manufacturing Engineering, vol. 566, 2012, pp. 187-196.

    [4] P. C. P. Chao and C.-W. Chiu, “Design and experimental validation of a sliding-mode stabilizer for a ship-carried satellite antenna,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol.18, Sep. 2012, pp. 1651-1660.

    [5] B. Bishop, R. Gargano, A. Sears, and M. Karpenko, “Rapid maneuvering of multi-body dynamic systems with optimal motion compensation,”Acta Astronautica, vol. 117, Dec. 2015, pp. 209-221.

    [6] X. Zhou, H. Zhang, and R. Yu, “Decoupling control for two-axis inertially stabilized platform based on an inverse system and internal model control,” Mechatronics, vol. 24, Dec 2014, pp.1203-1213.

    [7] M.-J. Jeon and D.-S. Kwon, “An optimal antenna motion generation using shortest path planning,” Advances in Space Research, vol. 59, Mar.15 2017, pp. 1435-1449.

    [8] Z. F. Bai, Y. Q. Liu, and Y. Sun, “Investigation on dynamic responses of dual-axis positioning mechanism for satellite antenna considering joint clearance,” Journal of Mechanical Science and Technology, vol. 29, Feb. 2015, pp. 453-460.

    [9] J. Wan, S. Lu, X. Wang, and Y. Ai, “A Steerable Spot Beam Re flector Antenna for Geostationary Satellites,” IEEE Antennas and Wireless Propagation Letters, vol. 15, 2016, pp. 89-92.

    [10] Y. Chen, S. Zhao, and J. A. Farrell, “Computationally Eきcient Carrier Integer Ambiguity Resolution in Multiepoch GPS/INS: A Common-Position-Shift Approach,” IEEE Transactions on Control Systems Technology, vol. 24, Sep. 2016,pp. 1541-1556.

    [11] B. Hou, X. Zhang, “A Dual-Satellite GNSS Positioning Algorithm of High Accuracy in Incomplete Condition,” China Communications, vol.13,no. 10, Oct. 2016, pp.58-68.

    [12] Z. Wu, M. Yao, H. Ma, W. Jia, and F. Tian, “Low-Cost Antenna Attitude Estimation by Fusing Inertial Sensing and Two-Antenna GPS for Vehicle-Mounted Satcom-on-the-Move,” IEEE Transactions on Vehicular Technology, vol. 62,Mar. 2013, pp. 1084-1096.

    [13] P. C. Farese, G. Dall’Oglio, J. O. Gundersen, B. G.Keating, S. Klawikowski, L. Knox, et al., “COMPASS: An upper limit on cosmic microwave background polarization at an angular scale of 20 ‘,” Astrophysical Journal, vol. 610, Aug. 2004,pp. 625-634.

    [14] C. Chen, H. Qiushi, J. Shiyu, Z. Wei, and Z. Fuxue, “Research and design of micro-machined gas-pendulum dual-axis tilt sensors commonmode restraining acceleration interference,”Proc. 2008 International Conference on Information and Automation, 2008, pp. 1485-1489.

    [15] P. Gui, L. Tang, and S. Mukhopadhyay, “MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion,” Proc. 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA),2015, pp. 2004-2009.

    [16] T. H. Tsai, W. C. Chou, W. Y. Lin, and M. Y. Lee,“The design of a tilt sensing companion chip for accelerometers,” Proc.2016 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW), 2016, pp. 1-2.

    [17] M. Tavan, A. Khaki-Sedigh, M. R. Arvan, and A.R. Vali, “X-Y pedestal: partial quasi-linearization and cascade-based global output feedback tracking control,” Nonlinear Dynamics, vol. 81,Aug. 2015, pp. 1459-1473.

    [18] A. Taheri, M. A. Shoorehdeli, H. Bahrami, and M.H. Fatehi, “Implementation and Control of X-Y Pedestal Using Dual-Drive Technique and Feedback Error Learning for LEO Satellite Tracking,”IEEE Transactions on Control Systems Technology, vol. 22, Jul. 2014, pp. 1646-1657.

    [19] N. M. Tehrani, E. Javanfar, A. Vali, H. M. Tehrani,and IEEE, “Full Extracting Kinematic and Dynamic Equations of X/Y Pedestal with Velocity Analysis,” 2014 Cacs International Automatic Control Conference (Cacs 2014), 2014, pp. 215-221.

    [20] B. K. Chung, H. T. Chuah, and J. W. Bredow, “A microwave anechoic chamber for radar-cross section measurement,” IEEE Antennas and Propagation Magazine, vol. 39, Jun. 1997, pp. 21-26.

    [21] G. Cortes-Medellin and T. Herter, “Optical de-sign of CCAT - art. no. 62672F,” Proc. Conference on Ground-Based and Airborne Telescopes, Orlando, FL, 2006, pp. F2672-F2672.

    [22] Q. Fan and Y. Wang, “Design of Vehicle Antenna Servo Tracking System Controller,” Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, vol. 15, 2015, pp. 887-892.

    [23] M. N. Soltani, R. Izadi-Zamanabadi, and R.Wisniewski, “Reliable Control of Ship-Mounted Satellite Tracking Antenna,” IEEE Transactions on Control Systems Technology, vol. 19, Jan. 2011,pp. 221-228.

    [24] T. Shiozumi, A. Ming, T. Kida, C. Kanamon, Y. Kobayashi, M. Satoh, et al., “Vibration suppression of ship-mounted antennas using a nonlinear passive vibration isolator,” Proc. 2007 IEEE International Conference on Integration Technology,Proceedings, 2007, pp. 568.

    [25] H. C. Tseng and D. W. Teo, “Ship-mounted satellite tracking antenna with fuzzy logic control,”IEEE Transactions on Aerospace and Electronic Systems, vol. 34, Apr. 1998, pp. 639-645.

    [26] A. Ming, T. Yamaoka, T. Kida, C. Kanamori,and M. Satoh, “Accuracy improvement of ship mounted tracking antenna for satellite communications,” Proc. 2005 IEEE International Conference on Mechatronics and Automations, Vols 1-4, Conference Proceedings, 2005, pp. 1369-1374.

    [27] S. Leghmizi and L. Sheng, “Kinematics Modeling for Satellite Antenna Dish Stabilized Platform,”Proc. 2010 International Conference on Measuring Technology and Mechatronics Automation,2010, pp. 558-563.

    久久国产乱子免费精品| 欧美日韩亚洲高清精品| 亚洲人成网站在线播| 老熟女久久久| 国产白丝娇喘喷水9色精品| 国产极品天堂在线| 在线观看三级黄色| 97热精品久久久久久| 国产精品久久久久久精品古装| 小蜜桃在线观看免费完整版高清| 22中文网久久字幕| 欧美另类一区| 免费在线观看成人毛片| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 亚洲欧洲日产国产| 久久久久精品性色| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人 | 爱豆传媒免费全集在线观看| 日本欧美国产在线视频| 中文字幕久久专区| 1000部很黄的大片| 777米奇影视久久| 日韩免费高清中文字幕av| 高清毛片免费看| www.av在线官网国产| 少妇人妻一区二区三区视频| 国产av国产精品国产| 亚洲成人一二三区av| 欧美老熟妇乱子伦牲交| 观看av在线不卡| 人人妻人人添人人爽欧美一区卜 | 国产 一区精品| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 一个人免费看片子| 人妻夜夜爽99麻豆av| 亚洲自偷自拍三级| 国产老妇伦熟女老妇高清| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 七月丁香在线播放| 国产片特级美女逼逼视频| 一级爰片在线观看| 22中文网久久字幕| 免费大片18禁| 干丝袜人妻中文字幕| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 国产高清国产精品国产三级 | 少妇丰满av| 日本爱情动作片www.在线观看| 干丝袜人妻中文字幕| 在线精品无人区一区二区三 | 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 亚洲av福利一区| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 成人亚洲欧美一区二区av| 国产精品秋霞免费鲁丝片| 在线观看免费高清a一片| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 免费av中文字幕在线| 国产综合精华液| 亚洲精品成人av观看孕妇| 成年av动漫网址| a级一级毛片免费在线观看| 国产有黄有色有爽视频| 亚洲美女黄色视频免费看| 男女下面进入的视频免费午夜| 欧美亚洲 丝袜 人妻 在线| 乱系列少妇在线播放| 久久国产精品男人的天堂亚洲 | 在线观看人妻少妇| 精品酒店卫生间| 久久99精品国语久久久| 一边亲一边摸免费视频| 黑人猛操日本美女一级片| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av.av天堂| www.色视频.com| 亚洲怡红院男人天堂| 亚洲天堂av无毛| 国产午夜精品久久久久久一区二区三区| 婷婷色麻豆天堂久久| www.色视频.com| 国产精品爽爽va在线观看网站| av卡一久久| 王馨瑶露胸无遮挡在线观看| 一二三四中文在线观看免费高清| 综合色丁香网| 色视频在线一区二区三区| 一级二级三级毛片免费看| 男女边吃奶边做爰视频| 国产男女内射视频| 国产精品人妻久久久影院| 国产成人免费观看mmmm| 草草在线视频免费看| 婷婷色综合大香蕉| 久久国产乱子免费精品| 亚洲欧美精品专区久久| 免费播放大片免费观看视频在线观看| 成人影院久久| 中文字幕精品免费在线观看视频 | 精品一区二区三卡| 内射极品少妇av片p| 久久人妻熟女aⅴ| 日本色播在线视频| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜爱| 天天躁日日操中文字幕| 最近的中文字幕免费完整| 亚洲国产成人一精品久久久| 国产淫语在线视频| 久久女婷五月综合色啪小说| 男女免费视频国产| 少妇丰满av| 国产精品爽爽va在线观看网站| 性色avwww在线观看| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 女性生殖器流出的白浆| 免费高清在线观看视频在线观看| 亚洲精品色激情综合| 国产免费视频播放在线视频| 青春草视频在线免费观看| 久久久午夜欧美精品| 日本av手机在线免费观看| 九九爱精品视频在线观看| 插逼视频在线观看| 久久人人爽av亚洲精品天堂 | 亚洲精品色激情综合| 狂野欧美激情性bbbbbb| 国产精品.久久久| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 国产精品一区二区三区四区免费观看| 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 日本黄大片高清| 欧美精品人与动牲交sv欧美| 亚洲,一卡二卡三卡| 尤物成人国产欧美一区二区三区| 边亲边吃奶的免费视频| 免费大片18禁| 夜夜爽夜夜爽视频| 精品国产乱码久久久久久小说| 嫩草影院入口| 午夜视频国产福利| 99久久精品热视频| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区| 精品一区二区免费观看| 麻豆成人午夜福利视频| 成人免费观看视频高清| 男女国产视频网站| av黄色大香蕉| av播播在线观看一区| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 亚洲国产精品专区欧美| 99热这里只有是精品在线观看| 国产在线免费精品| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 久久久久久久精品精品| 成年女人在线观看亚洲视频| 一区二区av电影网| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 国产91av在线免费观看| 午夜日本视频在线| 日本一二三区视频观看| 亚洲欧美日韩东京热| 黑人高潮一二区| 三级国产精品片| 三级经典国产精品| 丰满迷人的少妇在线观看| 熟妇人妻不卡中文字幕| 亚洲精品乱码久久久久久按摩| 欧美zozozo另类| 夜夜爽夜夜爽视频| 美女主播在线视频| 97精品久久久久久久久久精品| 国产在线免费精品| 搡老乐熟女国产| av线在线观看网站| 国产精品国产三级专区第一集| 精品久久久久久久末码| 午夜精品国产一区二区电影| 国产午夜精品一二区理论片| 欧美丝袜亚洲另类| 国产伦精品一区二区三区四那| 国产精品久久久久久久电影| 精品久久久久久电影网| 在线观看国产h片| 高清欧美精品videossex| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 日韩av不卡免费在线播放| 九色成人免费人妻av| 日韩欧美精品免费久久| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区 | 日韩精品有码人妻一区| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 国产伦理片在线播放av一区| 久久热精品热| 欧美日韩视频高清一区二区三区二| 久久久a久久爽久久v久久| 欧美亚洲 丝袜 人妻 在线| 欧美日韩国产mv在线观看视频 | 天天躁日日操中文字幕| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 国产高潮美女av| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久 | 国产无遮挡羞羞视频在线观看| 在线天堂最新版资源| 综合色丁香网| 国产精品人妻久久久久久| 国产精品一及| 亚洲人成网站在线播| 久久久亚洲精品成人影院| 18禁在线无遮挡免费观看视频| 蜜桃在线观看..| 99久久中文字幕三级久久日本| 国产视频内射| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 久久av网站| 大码成人一级视频| 国产乱人偷精品视频| 久久99精品国语久久久| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 国产精品精品国产色婷婷| 老师上课跳d突然被开到最大视频| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 91久久精品国产一区二区三区| 精品亚洲成国产av| 国产伦精品一区二区三区视频9| 免费在线观看成人毛片| 久久久亚洲精品成人影院| 一级毛片我不卡| 99re6热这里在线精品视频| 成人国产麻豆网| 日韩免费高清中文字幕av| 国产av一区二区精品久久 | 日韩强制内射视频| 一级黄片播放器| 18+在线观看网站| 国产亚洲5aaaaa淫片| 久久青草综合色| 中文字幕制服av| 伊人久久精品亚洲午夜| 亚洲精品,欧美精品| av国产精品久久久久影院| 高清毛片免费看| 国产av码专区亚洲av| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频 | 中文天堂在线官网| 国产亚洲欧美精品永久| av不卡在线播放| 成人美女网站在线观看视频| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| av在线老鸭窝| 亚洲av欧美aⅴ国产| 成人18禁高潮啪啪吃奶动态图 | 久久精品人妻少妇| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 在线天堂最新版资源| 麻豆国产97在线/欧美| 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 久久久久网色| 亚洲欧美一区二区三区黑人 | 精品亚洲成国产av| www.色视频.com| 国产精品蜜桃在线观看| 亚洲美女黄色视频免费看| 亚洲人与动物交配视频| av网站免费在线观看视频| 能在线免费看毛片的网站| 黄色配什么色好看| av在线播放精品| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 精品视频人人做人人爽| 国产亚洲91精品色在线| 99热这里只有是精品50| 黑人高潮一二区| 又爽又黄a免费视频| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美 | 中文字幕av成人在线电影| 国内精品宾馆在线| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 夫妻性生交免费视频一级片| 美女福利国产在线 | 欧美少妇被猛烈插入视频| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 欧美高清性xxxxhd video| 日本午夜av视频| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久久电影| 国模一区二区三区四区视频| 大陆偷拍与自拍| 美女福利国产在线 | 丰满迷人的少妇在线观看| 国产av一区二区精品久久 | 乱码一卡2卡4卡精品| 搡女人真爽免费视频火全软件| 一级av片app| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站 | 午夜福利影视在线免费观看| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 亚洲av二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 亚洲在久久综合| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 在线观看国产h片| 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 国产男女内射视频| 午夜视频国产福利| 久久影院123| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 视频中文字幕在线观看| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 一个人免费看片子| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品色激情综合| 少妇精品久久久久久久| 亚洲自偷自拍三级| 精品一品国产午夜福利视频| 免费av中文字幕在线| 久热这里只有精品99| 精品久久国产蜜桃| 秋霞伦理黄片| 久久久久人妻精品一区果冻| 99re6热这里在线精品视频| 综合色丁香网| 五月开心婷婷网| 日日摸夜夜添夜夜爱| 欧美激情极品国产一区二区三区 | 人妻夜夜爽99麻豆av| 国产老妇伦熟女老妇高清| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 我的老师免费观看完整版| 五月天丁香电影| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 黄片无遮挡物在线观看| 中文字幕免费在线视频6| 少妇被粗大猛烈的视频| 高清在线视频一区二区三区| 国产精品人妻久久久影院| 成人综合一区亚洲| 国产亚洲午夜精品一区二区久久| 欧美日本视频| 啦啦啦中文免费视频观看日本| 黄色配什么色好看| av国产久精品久网站免费入址| 99精国产麻豆久久婷婷| 日韩亚洲欧美综合| 亚洲av国产av综合av卡| 人妻系列 视频| 免费人妻精品一区二区三区视频| 香蕉精品网在线| 久久精品国产自在天天线| 成年av动漫网址| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 久久久精品94久久精品| 亚洲性久久影院| 啦啦啦中文免费视频观看日本| 国产精品.久久久| 一区二区三区免费毛片| 三级国产精品欧美在线观看| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 国产精品一二三区在线看| 亚洲天堂av无毛| 午夜精品国产一区二区电影| 色吧在线观看| av专区在线播放| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| 久久6这里有精品| 亚洲经典国产精华液单| 国产精品久久久久成人av| 永久免费av网站大全| 少妇 在线观看| 亚洲欧美精品专区久久| 国产深夜福利视频在线观看| 在线观看三级黄色| 国产又色又爽无遮挡免| 91在线精品国自产拍蜜月| 国产精品一区二区在线观看99| 亚洲va在线va天堂va国产| 寂寞人妻少妇视频99o| 最近2019中文字幕mv第一页| 亚洲精品日韩av片在线观看| av在线app专区| 国产亚洲91精品色在线| 尾随美女入室| 亚洲欧洲日产国产| 国产成人精品一,二区| 婷婷色综合大香蕉| 在线免费十八禁| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 日本色播在线视频| 在线免费观看不下载黄p国产| 久久久久久久久久人人人人人人| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 久久久成人免费电影| 欧美日韩亚洲高清精品| 亚洲av中文av极速乱| 欧美日韩国产mv在线观看视频 | 日韩成人av中文字幕在线观看| 小蜜桃在线观看免费完整版高清| 欧美成人a在线观看| 三级经典国产精品| 在线 av 中文字幕| 亚洲欧美精品专区久久| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 少妇的逼水好多| 少妇裸体淫交视频免费看高清| 亚洲成色77777| 在现免费观看毛片| av播播在线观看一区| 亚洲图色成人| 麻豆国产97在线/欧美| 国产成人一区二区在线| 久久午夜福利片| 国产免费一级a男人的天堂| a级毛色黄片| 亚洲欧洲国产日韩| 欧美97在线视频| 在线观看国产h片| 女性生殖器流出的白浆| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| 99久久人妻综合| 一边亲一边摸免费视频| 高清视频免费观看一区二区| 欧美成人一区二区免费高清观看| 国内少妇人妻偷人精品xxx网站| 亚洲成人一二三区av| 国产成人91sexporn| 联通29元200g的流量卡| 少妇裸体淫交视频免费看高清| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 国产一区二区在线观看日韩| 日韩视频在线欧美| 午夜免费鲁丝| 免费观看av网站的网址| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 日韩电影二区| 啦啦啦中文免费视频观看日本| 夜夜看夜夜爽夜夜摸| 国产中年淑女户外野战色| 成人国产麻豆网| 日韩电影二区| 久久97久久精品| 国产熟女欧美一区二区| 午夜激情福利司机影院| 亚洲国产av新网站| 亚洲人成网站在线观看播放| 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版| 一级av片app| 各种免费的搞黄视频| 尾随美女入室| 日韩免费高清中文字幕av| 免费高清在线观看视频在线观看| 国产乱人偷精品视频| 欧美国产精品一级二级三级 | 国产精品秋霞免费鲁丝片| 日韩一区二区视频免费看| av在线播放精品| 亚洲av日韩在线播放| 一级av片app| 亚州av有码| 尾随美女入室| 女人十人毛片免费观看3o分钟| 成人免费观看视频高清| 午夜老司机福利剧场| 在线天堂最新版资源| 国产中年淑女户外野战色| 99久久精品热视频| 国产午夜精品一二区理论片| 精品久久久久久久末码| 亚洲精品日韩在线中文字幕| 精品亚洲乱码少妇综合久久| 噜噜噜噜噜久久久久久91| 免费看光身美女| 在线 av 中文字幕| 黄片wwwwww| 联通29元200g的流量卡| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 中文字幕免费在线视频6| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 国产美女午夜福利| 亚洲怡红院男人天堂| 人人妻人人看人人澡| av卡一久久| 婷婷色麻豆天堂久久| av在线app专区| 国产精品精品国产色婷婷| 一级毛片黄色毛片免费观看视频| 青春草国产在线视频| 国产成人91sexporn| 欧美老熟妇乱子伦牲交| 美女cb高潮喷水在线观看| 欧美精品一区二区免费开放| 久久国产精品男人的天堂亚洲 | 三级国产精品欧美在线观看| 在线亚洲精品国产二区图片欧美 | 97超视频在线观看视频| 在线精品无人区一区二区三 | 成人黄色视频免费在线看| 久久久久久久亚洲中文字幕| av国产精品久久久久影院| 男的添女的下面高潮视频| 国产91av在线免费观看| 91久久精品国产一区二区三区| 欧美区成人在线视频| 啦啦啦啦在线视频资源| 又粗又硬又长又爽又黄的视频| 国产精品一区二区三区四区免费观看| 最近2019中文字幕mv第一页| 久久久久久伊人网av| 伦精品一区二区三区| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 日韩在线高清观看一区二区三区| 我要看黄色一级片免费的| 一区在线观看完整版| 国产欧美日韩精品一区二区| 国产黄片视频在线免费观看| 九九在线视频观看精品| 国产精品嫩草影院av在线观看| 日韩av在线免费看完整版不卡| 男人狂女人下面高潮的视频| 日韩不卡一区二区三区视频在线| 老师上课跳d突然被开到最大视频| 啦啦啦在线观看免费高清www| 久久毛片免费看一区二区三区| 少妇裸体淫交视频免费看高清| 看十八女毛片水多多多| 最近手机中文字幕大全| 国内少妇人妻偷人精品xxx网站| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看| 老女人水多毛片| 多毛熟女@视频| 久久精品国产亚洲av涩爱| 97热精品久久久久久| 男的添女的下面高潮视频| 免费看日本二区| av免费在线看不卡| 人妻 亚洲 视频| 高清不卡的av网站| 一级毛片黄色毛片免费观看视频| 51国产日韩欧美| 久久精品久久久久久噜噜老黄| 国产成人a区在线观看| 美女xxoo啪啪120秒动态图| 国产精品一区二区三区四区免费观看| 美女cb高潮喷水在线观看| freevideosex欧美| 亚洲不卡免费看| 国产精品免费大片| 国产在线视频一区二区|