
FQ([a,b])=μb+(1-μ)a,
其中,μ為BUM函數(shù)Q的態(tài)度參數(shù).
定義3[16]若函數(shù)G: Ω→R+滿足
則稱G為COWG算子,其中[a,b]∈Ω,G與Q有關(guān),Q為BUM函數(shù).

定義4[23]若函數(shù)H: Ω→R+滿足
則稱H為COWH算子,其中[a,b]∈Ω,H與Q有關(guān),Q為BUM函數(shù).

定義5[24]若函數(shù)g: Ω→R+滿足
則稱函數(shù)g為連續(xù)區(qū)間廣義OWA算子,簡稱CGOWA算子,其中[a,b]∈Ω,g與Q有關(guān),Q為BUM函數(shù),參數(shù)λ∈R-{0}.

定義6[25]若函數(shù)φ: Ω→R+滿足
則稱函數(shù)φ為連續(xù)區(qū)間擬OWA算子,簡稱CQOWA算子,其中[a,b]∈Ω,φ與Q有關(guān),Q為與函數(shù)φ相關(guān)聯(lián)的BUM函數(shù),f為[a,b]上嚴(yán)格單調(diào)的連續(xù)函數(shù),稱為φQ,f([a,b])的導(dǎo)出函數(shù).

φQ,f([a,b])=f-1[f(a)-μ(f(b)-f(a))],
其中μ為BUM函數(shù)Q的態(tài)度參數(shù).
2 連續(xù)擬有序加權(quán)幾何算子
定義7設(shè)[a,b]∈Ω,若函數(shù)φ: Ω→R+滿足
則稱函數(shù)φ為連續(xù)區(qū)間擬OWG算子,簡稱CQOWG算子,其中,Q為與函數(shù)φ相關(guān)聯(lián)的BUM函數(shù),f為[a,b]上嚴(yán)格單調(diào)的連續(xù)函數(shù),稱為φQ,f([a,b])的導(dǎo)出函數(shù).
下面從定積分角度說明定義7中公式的由來.
設(shè)[a,b]∈Ω,f為[a,b]上的嚴(yán)格單調(diào)連續(xù)函數(shù),Q(y)為BUM函數(shù),則由BUM函數(shù)可得到QOWG算子的一組加權(quán)向量

下面構(gòu)造一組離散的數(shù)據(jù)集合逼近連續(xù)區(qū)間數(shù)[a,b].

即qj≥qj+1,于是得到q0≥q1≥q2≥…≥qn.當(dāng)f(x)嚴(yán)格單調(diào)連續(xù)遞減時,同理也可得到q0≥q1≥q2≥…≥qn.
根據(jù)QOWG算子,可以得到
φQ,f([a,b])≈QOWG(q1,q2,…,qn)=
令Δy=1/n,有
φQ,f([a,b])≈
令y=jΔy,則當(dāng)j從0取到n時,有y∈[0,1],對上式兩端取極限,令n→+,得到

證明

f-1{f(a)1-μf(b)μ}.
下面討論CQOWG算子的特殊情況.
(1) 當(dāng)f(x)=kx,k≠0時,φQ,f([a,b])=bμa1-μ,即CQOWG算子退化為COWG算子.
(2) 當(dāng)f(x)=ekx,k≠0時,
φQ,f([a,b])=μb+(1-μ)a,
即CQOWG算子退化為COWA算子.

φQ,f([a,b])=1/[(1-μ)/b+μ/b],
即CQOWG算子退化為COWH算子.
(4) 當(dāng)Q(y)=yr,r>0時,
此時,若r=1,則有
φQ,f([a,b])=f-1[f(a)1/2f(b)1/2].
若r→0,則有φQ,f([a,b])=b.
若r→+,則有φQ,f([a,b])=a.
若r=k/K,則有
下面討論CQOWG算子的性質(zhì).
定理7(單調(diào)性)設(shè)φ是CQOWG算子,若a1≤a2,b1≤b2,則對于任意BUM函數(shù)Q和導(dǎo)出函數(shù)f,有φQ,f([a1,b1])≤φQ,f([a2,b2]).
證明分2種情況證明.
(1) 當(dāng)函數(shù)f(x)嚴(yán)格單調(diào)遞增時,函數(shù)f-1(x)也嚴(yán)格單調(diào)遞增,則由a1≤a2,b1≤b2得f(a1)≤f(a2),f(b1)≤f(b2),也即有f(a1)1-μ≤f(a2)1-μ,
f(b1)μ≤f(b2)μ,于是
f(a1)1-μf(b1)μ≤f(a2)1-μf(b2)μ,
即有
f-1[f(a1)1-μf(b1)μ]≤f-1[f(a2)1-μf(b2)μ],
所以有
(2) 當(dāng)函數(shù)f(x)嚴(yán)格單調(diào)遞減時,同理可證


定理9(關(guān)于Q的單調(diào)性)設(shè)φ是CQOWG算子,若Q1(x),Q2(x)為BUM函數(shù),且?x∈[0,1],Q1(x)≤Q2(x),則有

下面分2種情況證明.

即有
于是

定理10設(shè)f(x)是任意的嚴(yán)格單調(diào)連續(xù)函數(shù),若對任意k>0,有g(shù)(x)=f(xk),則有
證明令y=g(x)=f(xk),則有
x=g-1(y)=(f-1(y))1/k,
于是有

定理11設(shè)f(x)是任意的嚴(yán)格單調(diào)連續(xù)函數(shù),g(x)是嚴(yán)格單調(diào)連續(xù)遞增函數(shù),令h(x)=

證明令y=h(x)=f(g(x)),則有x=h-1(y)=g-1(f-1(y)),于是

h-1[(f(g(a)))1-μ(f(g(b)))μ]=
g-1{f-1[(f(g(a)))1-μ(f(g(b)))μ]}=
3 CQOWG算子的orness測度
受文獻[25-27]啟發(fā),本文將給出CQOWG算子的orness測度.
定義8CQOWG算子的orness測度定義為

顯然,當(dāng)μ=0時,ornessQ,f([a,b])=0;當(dāng)μ=1時,ornessQ,f([a,b])=1.
定理12設(shè)φQ,f為任意的CQOWG算子,則φQ,f([a,b])=a+(b-a)ornessQ,f([a,b]).


定理15設(shè)f(x)是任意的嚴(yán)格單調(diào)連續(xù)函數(shù),Q(x)為BUM函數(shù),若g(x)=k(f(x))c,k≠0,c≠0,則φQ,g([a,b])=φQ,f([a,b]),ornessQ,g([a,b])=ornessQ,f([a,b]).
證明令y=g(x)=k(f(x))c,則有

g-1[(k(f(a))c)1-μ(k(f(b))c)μ]=
g-1[k(f(a))c(1-μ)(f(b))cμ]=
f-1[(f(a))1-μ(f(b))μ]=φQ,f([a,b]).
由CQOWG算子的orness測度定義可知,
4 CQOWG算子的推廣
CQOWG算子可以對單個連續(xù)區(qū)間數(shù)進行集成,但不能集成多個連續(xù)區(qū)間數(shù),為此對其進行推廣,使之可以集合成2個或2個以上的連續(xù)區(qū)間數(shù).

則稱γ為加權(quán)連續(xù)QOWG算子,簡稱WCQOWG算子,其中φ為CQOWG算子.
不難證明, WCQOWG算子具有下列性質(zhì):

(1) 冪等性
若ai=a,bi=b(i=1,2,…,n),則
(2) 有界性
(3) 單調(diào)性
設(shè)[ci,di](i=1,2,…,n)為另一組連續(xù)區(qū)間數(shù),若ai≤ci,bi≤di(i=1,2,…,n),則
γw([a1,b1],[a2,b2],…,[an,bn])≤
γw([c1,d1],[c2,d2],…,[cn,dn]).

η: Ωn→R+,
ηw([a1,b1],[a2,b2],…,[an,bn])=

不難證明, OWCQOWG算子具有下列性質(zhì):

(1) 冪等性
若ai=a,bi=b(i=1,2,…,n),則
(2) 有界性
(3) 單調(diào)性
設(shè)[ci,di](i=1,2,…,n)為另一組連續(xù)區(qū)間數(shù),若ai≤ci,bi≤di(i=1,2,…,n),則

(4) 置換不變性
設(shè)[ci,di](i=1,2,…,n)為[ai,bi](i=1,2,…,n)的任意一個置換,則

定義11設(shè)[ai,bi](i=1,2,…,n)為一組連續(xù)區(qū)間數(shù),若函數(shù)
ρ: Ωn→R+,
ρw([a1,b1],[a2,b2],…,[an,bn])=
則稱ρ為組合連續(xù)QOWG算子,簡稱CCQOWG算子,其中,(σ(1),σ(2),…,σ(n))是(1,2,…,n)的一個置換,滿足



5 決策應(yīng)用
在使用COWG算子進行區(qū)間數(shù)信息集成的過程中,決策者既可以通過選擇不同的生成函數(shù)實現(xiàn)對決策結(jié)果的調(diào)整,也可通過選擇態(tài)度參數(shù)體現(xiàn)決策的主動性,因此COWG算子在區(qū)間數(shù)信息集成中具有獨特的理論和應(yīng)用優(yōu)勢.下面提出基于CQOWG算子的區(qū)間數(shù)多屬性群決策方法.



j∈I1,i=1,2,…,m;
j∈I2,i=1,2,…,m.
步驟3利用CCQOWG算子,將t個連續(xù)區(qū)間數(shù)決策矩陣集成為綜合決策矩陣Z=(zij)mn,其中,
zij=
i=1,2,…,m,j=1,2,…,n.

步驟5根據(jù)方案的綜合屬性值zi(ω)(i=1,2,…,m)實現(xiàn)方案{x1,x2,…,xm}的擇優(yōu)排序.

步驟1建立區(qū)間數(shù)決策矩陣,見表1~表3.

表1 決策者d1給出的決策矩陣M(1)

表2 決策者d2給出的決策矩陣M(2)

表3 決策者d3給出的決策矩陣M(3)
步驟2將區(qū)間數(shù)決策矩陣M(k)規(guī)范化,得到規(guī)范化決策矩陣R(k)(k=1,2,3).



步驟3利用CCQOWG算子,求出綜合決策矩陣:


步驟4方案綜合屬性值分別為
z1(ω)=0.518 2,z2(ω)=0.581 9,
z3(ω)=0.557 4,z4(ω)=0.570 9,
其中,屬性權(quán)重向量ω=(0.30,0.35,0.15,0.20).
步驟5根據(jù)方案綜合屬性值得到方案的排序為x2>x4>x3>x1,即方案x2最優(yōu).
使用文獻[25]中的CCQOWA算子,計算得各方案綜合屬性值為z1(ω)=0.572 7,z2(ω)=0.654 9,z3(ω)=0.607 6,z4(ω)=0.622 0,因此方案排序為x2>x4>x3>x1.
盡管各方案的綜合屬性值與使用本文中的CCQOWG算子得到的綜合屬性值不同,但是方案的排序完全相同.這在一定程度上說明了使用本文的CCQOWG算子進行決策是有效的.
6 結(jié) 語
首先,通過拓展QOWG算子,提出了連續(xù)區(qū)間QOWG算子,拓展了QOWG算子的應(yīng)用范圍,研究了CQOWG算子的特殊情況和性質(zhì).其次,定義了CQOWG算子的orness測度,研究了orness測度的性質(zhì).然后,定義了WCQOWG算子、OWCQOWG算子以及CCQOWG算子,使得CQOWG算子可以處理多個連續(xù)區(qū)間數(shù)的集成問題,討論了這些算子的性質(zhì).最后,提出了基于連續(xù)QOWG算子的多屬性群決策方法,并通過決策實例說明了其可行性和有效性.
參考文獻(References):
[1]HARASNYI J C. Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility[J].JournalofPoliticalEconomy,1955,63:309-321.
[2]ACZEL J, ALSINA C. Synthesizing judgement: A functional equation approach[J].MathematicalModelling, 1987(9):311-320.
[3]YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J].IEEETransactionsonSystems,Man,andCybernetics,1988,18:183-190.
[4]HERRERA F, HERRERA V E, CHICLANA F. Multiperson decision-making based on multiplicative preference relations[J].EuropeanJournalofOperationalResearch,2001,129: 372-385.
[5]陳華友,劉春林,盛昭翰. IOWHA算子及其在組合預(yù)測中的應(yīng)用[J].中國管理科學(xué),2004,12(5): 35-40.
CHEN H Y, LIU C L, SHENG Z H. Induced ordered weighted harmonic averaging(IOWHA) operator and its application to combination forecasting method[J].ChineseJournalofManagementScience, 2004, 12(5): 35-40.
[6]YAGER R R.Generalized OWA aggregation operators [J].FuzzyOptimizationandDecisionMaking, 2004(3): 93-107.
[7]FODOR J, MARICHAL J L, ROUBENS M. Characterization of the ordered weighted averaging operators[J].IEEETransactionsonFuzzySystems, 1995, 3(2): 236-240.
[8]劉衛(wèi)鋒,常娟,何霞. 廣義畢達哥拉斯模糊集成算子及其決策應(yīng)用[J].控制與決策,2016,31(12): 2280-2286.
LIU W F, CHANG J, HE X. Generalized Pythagorean fuzzy aggregation operators and applications in decision making [J].ControlandDecision, 2016,31(12): 2280-2286.
[9]XU Z S, DA Q L. The certain OWA operator[J].InternationalJournalofIntelligentSystems, 2002,17: 469-483.
[10]XU Y J, DA Q L. Approach to obtaining weights of uncertain ordered weighted geometric averaging operator[J].JournalofSoutheastUniversity(EnglishEdition),2008,24(1): 110-113.
[11]XU Z S, CAI X Q. Uncertain power average operators for aggregating interval fuzzy preference relations[J].GroupDecisionandNegotiation, 2012,21: 381-397.
[14]RAN L G, WEI G W. Uncertain prioritized operators and their application to multiple attribute group decision making[J].TechnologicalandEconomicDevelopmentofEconomy, 2015, 21(1): 118-139.
[15]YAGER R R. OWA aggregation over a continuous interval argument with applications to decision making[J].IEEETransactionsonSystems,Man,andCybernetics,PartB, 2004,34: 1952-1963.
[16]YAGER R R,XU Z S. The continuous ordered weighted geometric operator and its application to decision making[J].FuzzySetsandSystems, 2006,157: 1393-1402.
[17]XU Z S. A C-OWA operator-Based approach to decision making with interval fuzzy preference relation[J].IntenationalJournalofIntelligentSystems, 2006,21: 1289-1298.
[18]徐澤水. 拓展的C-OWA 算子及其在不確定多屬性決策中的應(yīng)用[J].系統(tǒng)工程理論與實踐, 2005,25(11): 7-13.
XU Z S. Extended C-OWA operators and their use in uncertain multi-attribute decision making[J].SystemsEngineeringTheoryandPractice, 2005,25(11): 7-13.
[19]龔艷冰,梁雪春. 基于模糊C-OWA 算子的模糊多屬性決策方法[J].系統(tǒng)工程與電子技術(shù),2008,30(8): 1478-1480.
GONG Y B, LIANG X C. Fuzzy multi-attribute decision making method based on fuzzy C-OWA operator[J].SystemsEngineeringandElectronics, 2008,30(8): 1478-1480.
[20]汪新凡. 基于CC-OWG算子的區(qū)間數(shù)多屬性群決策方法[J].湖南工業(yè)大學(xué)學(xué)報, 2009,23(1): 28-33.
WANG X F. Group decision making method of interval multiple attribute based on CC-OWG operator[J].JournalofHunanUniversityofTechnology, 2009,23(1): 28-33.
[21]丁德臣,龔艷冰,何建敏. 基于模糊C-OWG算子的模糊DEA模型求解[J].模糊系統(tǒng)與數(shù)學(xué),2009,23(2): 131-135.
DING D C, GONG Y B, HE J M. Solution of fuzzy DEA model based on fuzzy C-OWG operator[J].FuzzySystemsandMathematics, 2009,23(2): 131-135.
[22]WU J, LI J C,DUAN W Q. The icontinuous ordered weighted geometric operator and their application in group decision making[J].ComputerandIndustrialEngineering,2009,56: 1545-1552.
[23]陳華友,劉金培,王慧. 一類連續(xù)區(qū)間數(shù)據(jù)的有序加權(quán)調(diào)和(C-OWH)平均算子及其應(yīng)用[J].系統(tǒng)工程理論與實踐, 2008,28(7): 86-92.
CHEN H Y, LIU J P,WANG H. A class of continuous ordered weighted harmonic(C-OWH) averaging operators for interval argument and its applications[J].SystemsEngineeringTheoryandPractice, 2008,28(7): 86-92.
[24]ZHOU L G, CHEN H Y. Continuous generalized OWA operator and its application to decision making[J].FuzzySetsandSystems, 2011,168: 18-34.
[25]LIU J P, LIN S, CHEN H Y, et al. The continuous Quasi-OWA operator and its application to group decision making[J].GroupDecisionandNegotiation, 2013,22: 715-738.
[26]LIU X W. An orness measure for quasi-arithmetic means[J].IEEETransactionsonFuzzySystems, 2006, 14(6): 837-848.
[27]LIU X W. The orness measures for two compound quasi-arithmetic mean aggregation operators[J].InternationalJournalofApproximateReasoning, 2010, 51: 305-334.
[28]徐澤水,孫在東. 一類不確定型多屬性決策問題的排序方法[J].管理科學(xué)學(xué)報, 2002,5(3): 35-39.
XU Z S, SUN Z D. Priority method for a kind of multi-attribute decision-making problems[J].JournalofManagementSciencesinChina, 2002, 5(3): 35-39.