• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer

    2018-03-29 07:36:08DingYongfeiYangLiuqingHouJianyongJinGutingZhenZiyang

    Ding Yongfei ,Yang Liuqing,Hou Jianyong,Jin Guting,Zhen Ziyang

    1.Science and Technology on Avionics Integration Laboratory,Shanghai 200233,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    3.China National Aeronautical Radio Electronics Research Institute,Shanghai 200233,P.R.China

    0 Introduction

    Modern fighters have the ability to attack multiple targets and carry long range air-to-air missiles.Beyond visual range(BVR)air combat has been the mainstream with the development of modern fighters,where fighters are required to exchange information and attack multiple targets cooperatively[1-2].To complete cooperative multiple target attack (CMTA),decision-making(DM)is necessary for fighters to allot targets and missiles according to the shared information[3-4].Thus,the missile-target assignment (MTA)problem is the main part of DM when it comes to CMTA.

    There are many algorithms applied to DM problem in CMTA,such as particle swarm optimization(PSO),genetic algorithm (GA)and ant colony optimization (ACO)[5-7].A heuristic algorithm is introduced to adaptive genetic algorithm in Ref.[8]and improves local search capability.Adaptive pseudo-parallel genetic algorithm is also considered to deal with air combat DM problem beyond visual range[9].However,GA is not a real-time algorithm and may not work sometimes.Some intelligent algorithms are also used to solve DM problems[10-12].In Ref.[13],fuzzy neural network is applied to assign missiles according to the threat of enemy fighters and the bomb load of our fighters.However,it is hard to obtain practical and complex air situation data for neural network training.Considering the uncertain information in the MTA problem,grey system theory is introduced in DM problem[14].

    In this paper,an improved particle swarm optimizer(IPSO)is deduced to handle with the DM problem for CMTA in the air combat.The IPSO algorithm has stronger global searching capability by designing a new velocity learning strategy.

    1 DM Problem in CMTA

    1.1 Air combat situation

    Air combat decision-making is based on the air combat situation.To establish the model of air combat situation,it is assumed that there areMour fighters which are marked in blue andNenemy fighters which are marked in red.Denote our fighter setB=Bi,i=1,2,…,M{

    }and enemy fighter setR= {Rj,j=1,2,3,…,N}.In an air combat,the situation between our fighters and enemy fighters can be illustrated in Fig.1,where LOS is the line of sight andDijthe distance betweenBiandRj.xBiandVBiare the position and velocity ofBi,respectively.εijis the bore of sight(BOS)angle ofRjtoBi.xRjandVRjare the position and velocity ofRj,respectively.εjiis the BOS angle ofBitoRj.

    Fig.1 The situation between Biand Rj

    Distance,BOS angle and velocity are taken into consideration as threat factors when constructing the threat function[15].The threat function is described as a composite of all its threat factors,namely

    whereis the distance threat factor,the BOS angle threat factor,the velocity threat factor,andω1,ω2are non-negative weight coefficients and satisfy

    Moreover,the value range of all the threat factor functions is [0,1].Thus,there isthij∈

    The distance threat factor can be constructed as

    whereRaBis the maximum effective striking distance of missiles carried by our fighters andTrBthe maximum radar tracking distance of our fight-

    whereλ1,λ2are the positive constants.Better attack angle results in better attack effect.

    The velocity threat function can be constructed as

    1.2 MTA model

    Multi-fighter cooperative attack problem is aimed at optimizing target assignment for missiles carried by our fighters.According to the threat function known,multiple target assignment develops a proposal where there are more attack success and less fighter casualties.

    Assume that our fighterBicarriesLimissiles to attack enemy fighter targets.Thus,there areZ

    1.3 Analysis on coordinated attack tactics

    When our fighters attack enemy fighter targets,assignment rules need to be determined for our fighters.The assignment rules work so that our fighters get more benefit when attacking.

    It is supposed that each missile of our fighters can attack only one enemy fighter target.One enemy fighter is attacked by two missiles at most.It is essential to declare constraints onXrj

    There is optimal attack effect when one of the assigned value is much larger than the other.

    Then,the MTA problem is to find a solution πto minimize the equation above and accord with coordinated attack tactics.

    2 Improved Particle Swarm Optimization

    In the PSO algorithm,each particle is treated as a potential solution inD-dimensional space.The position of theith particle is represented by aD-dimensional vector Xi= (xi1,xi2,…,xiD),and the velocity of theith particle can also be represented by aD-dimensional vector Vi=(vi1,vi2,…,viD).

    In the PSO algorithm,the updating formulae of the velocity and the position of each particle are given by

    wherekis a pseudo-time increment and represents iterations;Pi=(pi1,pi2,…,piD)is the local optimal position of theith particle;Pg=(pg1,pg2,…,pgD)represents the global optimal position in the swarm,heregis the index of the best particle among all the particles in the population;c1andc2are called the cognitive and the social coefficients,respectively;rand1and rand2are two random numbers in range[0,1].

    Based on the PSO algorithm above,an improved PSO (IPSO)is presented,in which a new learning strategy is introduced in the particle velocity update equation,described as

    where rand1and rand2are the random numbers in range[0,1].χis the constriction coefficient;Pb=[pb1,…,pbD]the particle position with better performance which is selected randomly;jthe arrangement number according to the performance,here the smallerjcorresponds to the better performance of thejth particle;nthe whole number of the particles in the population.

    IPSO algorithm with fewer parameters not only keeps the diversity of the velocities but also does not alleviate the certainty of directing to the destination.The particles with better performance will increase their inertia movements,which expands the searching space and improves the searching speed.The particles with worse performance will increase their learning steps,which reduces the differences among the population and improves the whole performance of the population.

    Thus,the IPSO algorithm flow can be described in Fig.2.

    Fig.2 IPSO algorithm flow

    3 Realization of IPSO for Multi-target Collaborative Combat Decision-Making

    Every possible optimal solution is seen as a particle in PSO.The adaptive value of particle needs to be calculated in every position.It is reasonable for the adaptive value to be defined as objective optimization function to get the updating velocity and direction for every particle.Based on the MTA model established above,a set of missile-target assignment is dealt with as partial swarm after updating.moptimal MTA proposals correspond tomparticles in the particle swarm.Every particle is in the searching space ofZdimension.The position vector of thekth particle in the current iteration is defined as

    wherek=1,2,…,m,Zthe sum of missiles,andckrthe position of thekth particle in therth dimension.ckrbelongs to 1N_red[

    ]andN_red is the sum of enemy fighter target.

    The velocity of thekth particle is given by

    wherevkrsatisfiesvkr∈ [-1+NN-1].

    If thekth particle has the best fitness in the current iteration,it is defined as the local optimal solution and noted as

    If all of the particle have the best fitness in the current iteration,it is defined as the global optimal solution and noted as

    The updating formulae of the velocity and the position of each particle based on IPSO are given by

    If the position valueckr(t+1)isbiggerthan thetargetnumber,it is restricted in the last target.If the position valueckr(t+1)is less than 1,it is restricted in the first target.Otherwise,all the position values are rounded down to make sure the whole positions are integer within the range.

    It is essential to restrict velocity vector in a certain range to make sure that position vector is not updated too fast

    According to the coordinated attack tactics above,more constraint conditions are taken into consideration.Each missile can only attack one enemy fighter target.Each target is attacked twice at most.The Boolean value of the missile is constrained as

    This series of constraints are used to check the solution of MTA problem and make some adjustments if necessary.The steps are as follows:

    Step 1Denote a setAwhich includes all the values need to be changed.If the same position value exists in the position vectorπkmore than twice,two of them are chosen randomly and others are saved in setA.

    Step 2Denote two setsS0andS1.S0includes targets in set [1N_red]whichhavenot appearedinthesolutionbefore.S1includes targets in set [1N_red]that have appeared in the solution only once.

    Step 3Make some adjustments to setA.Assume that the value of the positionckrneeds to be changed and the updated position value iscsc.sshould belongs to {S0S1}.The principle of choosing targets is given by

    whered(csckr)is the distance betweenckrandcs.Then,the elementckris removed from setA.

    Step 4Update the two setsS0andS1.If there iscs∈S0,cswould be saved inS1and re-moved fromS0.If there iscs∈S1,the elements inS0andS1would not be changed.

    Step 5Repeat Steps 3,4until setAbecomes a null set.

    4 Simulation Experiment of IPSO for CMTA

    Assume that our fightersBand enemy fightersRare in a BVR air combat.Our fightersBadopt CMTA strategy.In this simulation,there are four our fighters and each fighter has four missiles.Thus,the number of the missiles to attack the enemy fighter targets is 16.The velocity of our fighters is 300m/s.The effective striking distance of missiles carried by our fighters is 70km.The maximum tracking range of our fighters is 120km.There are fourteen enemy fighter targets.The velocity of enemy fighters is 300 m/s.The effective striking distance of missiles carried by our fighters is the same as that carried by the enemy fighters.The maximum tracking range of our fighters is the same as that of the enemy fighters.In a random scenario,our fighters and enemy fighters aviate face to face.The air combat situation is shown in Fig.3.

    Fig.3 The air combat situation

    Then,the IPSO algorithm designed above is used to present a DM proposal of MTA problem in CMTA.The traditional PSO algorithm is also simulated here to compare with the IPSO algorithm.The constriction coefficientχis set to be 1.The assignment of all the missiles is

    Fig.4illustrates the DM proposal of MTA problem.Based on the IPSO algorithm,the missiles carried by our fighter 1attack enemy fighters 2,8,7and 3.The missiles carried by our fighter 2attack enemy fighters 5,6,1and 5.The missiles carried by our fighter 3attack enemy fighters 13,10,12and 10.The missiles carried by our fighter 4attack enemy fighters 1,13,14 and 13.The repeated numbers imply that these enemy fighters threaten our fighters too much and are attacked twice as a result.Some enemy fighters are not attacked because their threat values do not reach the threat threshold value.With the traditional PSO algorithm employed,the missiles carried by our fighter 1attack enemy fighters 2,3,3and 7.The missiles carried by our fighter 2attack enemy fighters 1,1,14and 5.The missiles carried by our fighter 3attack enemy fighters 13,13,8and 8.The missiles carried by our fighter 4attack enemy fighters 10,10,5and 6.The IPSO algorithm based DM proposal of MTA problem makes full use of the missiles and destroys more threats.

    Fig.4 Results of DM for MTA

    Fig.5shows the fitness of iteration process.The fitness can decreased to 4.391 5when using the IPSO algorithm,while the fitness is 4.568 8 with the traditional PSO algorithm. What′s more,the DM proposal with the IPSO algorithm is faster than that with the PSO algorithm due to the less iterations when using the IPSO algorithm.

    Fig.5 Fitness of iteration process

    5 Conclusions

    DM problem for MTA in an air combat is solved by a new improved PSO algorithm which is parametric simple but effective and efficient.The IPSO algorithm is used to minimize fitness function constructed by threat value.Coordinated attack tactics is considered to adjust DM proposal to reach better strike effect.It exhibits better performance to CMTA in an air combat with the IPSO algorithm compared with the traditional PSO algorithm.

    Acknowledgement

    This work was jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No.2016ZC15008).

    [1] AKBARI S,MENHAJM B.A new framework support system for air to air tasks[C]∥IEEE Proceedings of the International Conference on SMC.Nashville,TN,USA:[s.n.],2000,3:2019-2022.

    [2] SECAREA V V,KRIKORIAN H F.Adaptive multiple target attack planning in dynamically changing hostile environments[C]∥IEEE Proceedings of the National Aerospace and Electronics Conference.Dayton,OH,USA:[s.n.],1990,3:29-34.

    [3] LUO D L,WU W H,SHEN C L.A survey on deci-sion-making for multi-target attacking in air combat[J].Electronic Optics and Control,2005,12(4):4-8.

    [4] ZHOU S Y,WU W H,ZHANG N,et al.Overview of autonomous air combat maneuver decision [J].Aeronautical Computing Technique,2012,42(1):27-31.

    [5] HUANG H Q,WANG Y,ZHOU H,et al.Multi-UCAV cooperative autonomous attack path planning method under uncertain environment [C]∥ Advanced Information Management,Communicates,E-lectronic and Automation Control Conference (IMCEC).Xi′an:IEEE,2016:573-579.

    [6] ZHANG Y,LI C.Coordinated attack strategy of network sub-munitions based on particle swarm optimization[J].Journal of Detection and Control,2015,37(1):99-103.

    [7] LI Z W,CHANG Y Z,SUN Y Y,et al.A decisionmaking for multiple target attack based on characteristic of future long-range cooperative air combat[J].Fire Control and Command Control,2016,47(2):36-40.

    [8] LUO D L,SHEN C L,WANG B,et al.Air combat decision-making for cooperative multiple target attack using heuristic adaptive genetic algorithm[C]∥Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE,2005:473-478.

    [9] ZHANG T,YU L,WEI X Z,et al.Decision-making for cooperative multiple target attack based on adaptive pseudo-parallel genetic algorithm [J].Fire Control and Command Control,2013,38(5):137-140.

    [10]LI Linsen,TONG Mingan.Air combat decision of cooperative multi-target attack and its neural net realization[J].Acta Aeronautic et Astronautic Sinica,1999,20(4):309-312.(in Chinese)

    [11]LI L S,YU H X,HAN Z G,et al.Application of a type of associated neural network in cooperative air to air combat analysis[J].Flight Dynamics,2000,18(1):81-84.

    [12]GENG Y L,JING C S,LI W H.Multi-fighter coordinated multi-target attack system [J].Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23.

    [13]ROGER W S,ALAN E B.Neural network models of air combat maneuvering [D].New Mexico:New Mexico State University,1992.

    [14]SONG X G,JIANG J,XU H Y.Application of improved simulated annealing genetic algorithm in cooperative ari combat[J].Journal of Harbin Engineering University,2017,38(11):1762-1768.

    [15]AUSTIN F.Game theory for automated maneuvering during air to air combat[J].Guidance,1990,13(6):1143-1147.

    欧美成狂野欧美在线观看| a 毛片基地| 别揉我奶头~嗯~啊~动态视频 | 日韩,欧美,国产一区二区三区| 悠悠久久av| 精品国产国语对白av| 伦理电影免费视频| 国产一区二区三区av在线| 天堂中文最新版在线下载| 亚洲男人天堂网一区| av在线app专区| 国产精品久久久久久精品电影小说| 啦啦啦在线免费观看视频4| 中文字幕色久视频| 中文欧美无线码| 成人亚洲欧美一区二区av| kizo精华| 亚洲国产精品国产精品| 国产精品久久久久久精品电影小说| 国产免费视频播放在线视频| 国产成人啪精品午夜网站| 99热国产这里只有精品6| 欧美在线一区亚洲| 国产在线免费精品| 久久天堂一区二区三区四区| 老熟女久久久| 99热全是精品| 最近手机中文字幕大全| 丰满人妻熟妇乱又伦精品不卡| 一区二区av电影网| 免费看十八禁软件| 欧美日韩综合久久久久久| 亚洲精品一二三| 无遮挡黄片免费观看| 国产一级毛片在线| 曰老女人黄片| 亚洲国产欧美网| svipshipincom国产片| 菩萨蛮人人尽说江南好唐韦庄| 香蕉国产在线看| 国产精品久久久久久人妻精品电影 | 亚洲激情五月婷婷啪啪| 成人亚洲欧美一区二区av| 精品少妇黑人巨大在线播放| 日韩欧美一区视频在线观看| 亚洲精品一区蜜桃| 国产亚洲一区二区精品| 老司机影院成人| 国产成人精品久久二区二区免费| 久久久久精品国产欧美久久久 | 欧美日韩亚洲综合一区二区三区_| 人妻一区二区av| 亚洲国产看品久久| 日韩制服丝袜自拍偷拍| 亚洲中文字幕日韩| 欧美日韩av久久| 欧美乱码精品一区二区三区| 天堂8中文在线网| 国产成人啪精品午夜网站| 成人国语在线视频| 欧美日韩福利视频一区二区| 久久精品成人免费网站| 免费女性裸体啪啪无遮挡网站| 岛国毛片在线播放| 尾随美女入室| 欧美变态另类bdsm刘玥| 在线观看一区二区三区激情| 亚洲精品一区蜜桃| 18禁观看日本| 久久精品久久久久久久性| 久久久久国产精品人妻一区二区| 亚洲精品国产av成人精品| 国产成人免费无遮挡视频| 国产成人欧美在线观看 | 少妇人妻久久综合中文| 成人黄色视频免费在线看| 丝袜人妻中文字幕| 亚洲av欧美aⅴ国产| 天堂中文最新版在线下载| 99国产综合亚洲精品| 亚洲成色77777| 大香蕉久久网| 一本一本久久a久久精品综合妖精| 亚洲人成网站在线观看播放| 久久国产精品男人的天堂亚洲| 亚洲av在线观看美女高潮| 久久久久久久国产电影| 亚洲精品在线美女| 一级黄片播放器| 日韩 亚洲 欧美在线| 国产精品熟女久久久久浪| 无限看片的www在线观看| 色播在线永久视频| 91精品国产国语对白视频| 高清不卡的av网站| 黑人欧美特级aaaaaa片| 国产片内射在线| 男女边吃奶边做爰视频| 欧美中文综合在线视频| xxx大片免费视频| 欧美黄色淫秽网站| 老司机午夜十八禁免费视频| 国产欧美日韩综合在线一区二区| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产av影院在线观看| 国产黄色免费在线视频| 欧美日韩综合久久久久久| www.999成人在线观看| av视频免费观看在线观看| 日本91视频免费播放| 一区二区日韩欧美中文字幕| 老司机靠b影院| 水蜜桃什么品种好| 亚洲国产欧美网| 久久热在线av| 各种免费的搞黄视频| 十分钟在线观看高清视频www| 欧美日韩一级在线毛片| 久久久亚洲精品成人影院| 成人亚洲欧美一区二区av| 考比视频在线观看| 乱人伦中国视频| 午夜激情av网站| 9191精品国产免费久久| 男女边吃奶边做爰视频| 日本一区二区免费在线视频| 中国美女看黄片| 欧美日韩综合久久久久久| 欧美黑人欧美精品刺激| 国产日韩欧美在线精品| 亚洲国产精品国产精品| 久久久国产欧美日韩av| 搡老岳熟女国产| 巨乳人妻的诱惑在线观看| 国产免费又黄又爽又色| 国产日韩欧美在线精品| 美女午夜性视频免费| 国产xxxxx性猛交| 亚洲精品久久成人aⅴ小说| 亚洲国产看品久久| 欧美变态另类bdsm刘玥| 亚洲,欧美精品.| 一二三四社区在线视频社区8| 黄色一级大片看看| 波野结衣二区三区在线| 色网站视频免费| 日本a在线网址| 日韩av不卡免费在线播放| 欧美日韩成人在线一区二区| 亚洲美女黄色视频免费看| 又大又黄又爽视频免费| 老司机午夜十八禁免费视频| 国产成人欧美在线观看 | 欧美日韩视频高清一区二区三区二| 国精品久久久久久国模美| 中文字幕高清在线视频| 91九色精品人成在线观看| 一本久久精品| 亚洲一区中文字幕在线| 久久人人爽人人片av| 飞空精品影院首页| 亚洲精品一区蜜桃| 欧美97在线视频| 热99久久久久精品小说推荐| 亚洲av美国av| 国产免费现黄频在线看| 国产有黄有色有爽视频| 999精品在线视频| 三上悠亚av全集在线观看| 久久精品国产a三级三级三级| 少妇精品久久久久久久| 美女午夜性视频免费| kizo精华| av有码第一页| 成年美女黄网站色视频大全免费| 国产福利在线免费观看视频| 免费人妻精品一区二区三区视频| 成人黄色视频免费在线看| 极品人妻少妇av视频| 久久久久国产一级毛片高清牌| 多毛熟女@视频| 国产一区二区 视频在线| 91精品伊人久久大香线蕉| 欧美国产精品va在线观看不卡| 国产精品一区二区精品视频观看| 天堂俺去俺来也www色官网| 亚洲 国产 在线| 国产xxxxx性猛交| 久久av网站| 天天添夜夜摸| 天天躁夜夜躁狠狠久久av| 亚洲天堂av无毛| 国产成人91sexporn| 久久久国产一区二区| 欧美日韩视频高清一区二区三区二| 亚洲中文日韩欧美视频| 欧美人与性动交α欧美软件| 一二三四在线观看免费中文在| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 国产一卡二卡三卡精品| 岛国毛片在线播放| 亚洲av日韩在线播放| 大香蕉久久成人网| 亚洲伊人久久精品综合| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦在线免费观看视频4| 免费日韩欧美在线观看| 热re99久久精品国产66热6| 精品亚洲成国产av| 久久亚洲国产成人精品v| 国产男女超爽视频在线观看| cao死你这个sao货| 99精品久久久久人妻精品| 成年女人毛片免费观看观看9 | 久久久精品国产亚洲av高清涩受| 国产精品免费大片| 久久 成人 亚洲| 老司机在亚洲福利影院| 午夜视频精品福利| 成年动漫av网址| 99国产精品免费福利视频| 男女之事视频高清在线观看 | 精品一区在线观看国产| 午夜福利视频精品| 国产精品一区二区精品视频观看| 国产爽快片一区二区三区| 久久亚洲精品不卡| 九草在线视频观看| 大型av网站在线播放| av福利片在线| 大片电影免费在线观看免费| 国精品久久久久久国模美| 欧美日韩精品网址| 黑人巨大精品欧美一区二区蜜桃| 日韩精品免费视频一区二区三区| 成年人免费黄色播放视频| 满18在线观看网站| 99热国产这里只有精品6| 精品一区在线观看国产| av国产久精品久网站免费入址| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网 | 另类亚洲欧美激情| 最近中文字幕2019免费版| 大香蕉久久成人网| 国产成人91sexporn| 伦理电影免费视频| 一本久久精品| 黄色 视频免费看| 国产真人三级小视频在线观看| 啦啦啦 在线观看视频| 宅男免费午夜| 99精国产麻豆久久婷婷| 亚洲国产日韩一区二区| 国产成人精品久久二区二区91| 国产国语露脸激情在线看| 欧美少妇被猛烈插入视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产区一区二| 一区福利在线观看| 亚洲人成77777在线视频| 欧美精品一区二区免费开放| 熟女少妇亚洲综合色aaa.| 国产成人a∨麻豆精品| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲av美国av| 亚洲七黄色美女视频| 亚洲av成人精品一二三区| av一本久久久久| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| √禁漫天堂资源中文www| 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| 十八禁高潮呻吟视频| 一本一本久久a久久精品综合妖精| 亚洲av日韩在线播放| av福利片在线| √禁漫天堂资源中文www| 亚洲av片天天在线观看| 亚洲中文字幕日韩| 少妇精品久久久久久久| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| cao死你这个sao货| 别揉我奶头~嗯~啊~动态视频 | 日韩制服骚丝袜av| 欧美久久黑人一区二区| 美国免费a级毛片| 午夜视频精品福利| av在线app专区| 午夜免费男女啪啪视频观看| 性高湖久久久久久久久免费观看| 免费观看av网站的网址| 丝袜人妻中文字幕| 欧美黄色淫秽网站| 亚洲国产精品一区三区| 一级毛片我不卡| 一边摸一边做爽爽视频免费| 亚洲av成人不卡在线观看播放网 | 国产爽快片一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品国产精品| 久久久欧美国产精品| 男女床上黄色一级片免费看| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 人妻人人澡人人爽人人| 国产深夜福利视频在线观看| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 亚洲欧洲日产国产| 国产片特级美女逼逼视频| videos熟女内射| 亚洲中文av在线| 日韩伦理黄色片| 黄色怎么调成土黄色| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 麻豆av在线久日| 久久久精品94久久精品| 99国产精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲九九香蕉| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 精品亚洲成国产av| 精品国产乱码久久久久久男人| 一级毛片 在线播放| 一本久久精品| 国产精品麻豆人妻色哟哟久久| 国产亚洲精品久久久久5区| 成人国语在线视频| 国产精品久久久久成人av| 欧美精品高潮呻吟av久久| 久久人妻福利社区极品人妻图片 | 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 美女福利国产在线| av天堂在线播放| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 亚洲成人手机| 久久人人97超碰香蕉20202| 五月开心婷婷网| 国产麻豆69| 日韩免费高清中文字幕av| 国产在线观看jvid| 纵有疾风起免费观看全集完整版| 午夜久久久在线观看| 久久久久国产精品人妻一区二区| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 久久热在线av| 丝袜在线中文字幕| 性高湖久久久久久久久免费观看| 久久这里只有精品19| av电影中文网址| 国产又爽黄色视频| 永久免费av网站大全| 国产精品三级大全| 久久人人爽人人片av| 男女床上黄色一级片免费看| 观看av在线不卡| 亚洲国产欧美网| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 午夜91福利影院| 在线观看一区二区三区激情| 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 赤兔流量卡办理| 亚洲熟女精品中文字幕| 午夜日韩欧美国产| 国产在线观看jvid| 天天躁夜夜躁狠狠久久av| 精品第一国产精品| 18禁观看日本| 中文字幕人妻丝袜制服| 亚洲国产中文字幕在线视频| 日韩 亚洲 欧美在线| 18禁国产床啪视频网站| 免费高清在线观看视频在线观看| 久久青草综合色| 亚洲伊人色综图| 国产福利在线免费观看视频| 搡老乐熟女国产| 午夜精品国产一区二区电影| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 性色av一级| 国产亚洲欧美在线一区二区| 爱豆传媒免费全集在线观看| 少妇 在线观看| 啦啦啦 在线观看视频| 最新在线观看一区二区三区 | 久久狼人影院| 两性夫妻黄色片| 9191精品国产免费久久| av欧美777| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 久久性视频一级片| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 男男h啪啪无遮挡| 久久精品熟女亚洲av麻豆精品| 香蕉国产在线看| 一区二区三区乱码不卡18| 考比视频在线观看| 女警被强在线播放| a级毛片黄视频| 捣出白浆h1v1| 各种免费的搞黄视频| 国产精品一二三区在线看| 看十八女毛片水多多多| 亚洲精品国产一区二区精华液| 蜜桃国产av成人99| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 亚洲 国产 在线| 久久久久久久久久久久大奶| 丁香六月欧美| 国产淫语在线视频| 欧美日韩一级在线毛片| 久久久久网色| 看免费成人av毛片| 一级片'在线观看视频| 欧美 日韩 精品 国产| 亚洲国产精品一区二区三区在线| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 久久亚洲国产成人精品v| 两人在一起打扑克的视频| 99热全是精品| 久久中文字幕一级| 黄片播放在线免费| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 在线 av 中文字幕| 岛国毛片在线播放| 免费av中文字幕在线| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 97在线人人人人妻| 丝袜人妻中文字幕| 无限看片的www在线观看| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 欧美精品一区二区大全| 91精品国产国语对白视频| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 啦啦啦啦在线视频资源| 久久精品国产亚洲av高清一级| 亚洲 欧美一区二区三区| 人妻 亚洲 视频| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 久久99一区二区三区| 高清不卡的av网站| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 丝袜在线中文字幕| 日韩一本色道免费dvd| 午夜福利影视在线免费观看| 久久久久精品人妻al黑| 欧美另类一区| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 国产精品久久久人人做人人爽| 女人精品久久久久毛片| 国产高清视频在线播放一区 | 满18在线观看网站| 男男h啪啪无遮挡| 免费在线观看完整版高清| 成人国语在线视频| 美女视频免费永久观看网站| 男女之事视频高清在线观看 | 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影 | 中文欧美无线码| netflix在线观看网站| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 久久精品亚洲熟妇少妇任你| 看十八女毛片水多多多| 青青草视频在线视频观看| 久热这里只有精品99| 国产成人欧美在线观看 | 精品一品国产午夜福利视频| 成人国语在线视频| 亚洲av在线观看美女高潮| 麻豆国产av国片精品| 亚洲成人免费电影在线观看 | 999精品在线视频| 美女大奶头黄色视频| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| av在线播放精品| 人人妻人人爽人人添夜夜欢视频| 国产精品 欧美亚洲| 欧美97在线视频| 亚洲成国产人片在线观看| 丝瓜视频免费看黄片| 99精品久久久久人妻精品| 亚洲精品在线美女| 丝袜人妻中文字幕| 欧美精品亚洲一区二区| 大话2 男鬼变身卡| 我要看黄色一级片免费的| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频 | 中国美女看黄片| 9热在线视频观看99| 51午夜福利影视在线观看| 一区二区三区乱码不卡18| 亚洲成色77777| 午夜福利视频精品| 大香蕉久久网| 久久 成人 亚洲| 大香蕉久久网| 日日爽夜夜爽网站| 成年人免费黄色播放视频| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 国产一区二区 视频在线| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 热99久久久久精品小说推荐| 校园人妻丝袜中文字幕| 国产精品.久久久| 咕卡用的链子| 国产伦人伦偷精品视频| 咕卡用的链子| 99国产综合亚洲精品| 欧美日韩国产mv在线观看视频| 亚洲九九香蕉| a 毛片基地| 免费人妻精品一区二区三区视频| 亚洲中文字幕日韩| 婷婷色综合大香蕉| 成年av动漫网址| 视频区图区小说| 亚洲av成人不卡在线观看播放网 | 欧美日韩亚洲综合一区二区三区_| 高潮久久久久久久久久久不卡| 欧美变态另类bdsm刘玥| 国产精品人妻久久久影院| 欧美精品高潮呻吟av久久| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 欧美大码av| 80岁老熟妇乱子伦牲交| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 亚洲欧美成人综合另类久久久| 黄色 视频免费看| 国产精品成人在线| 亚洲成人免费电影在线观看 | 99九九在线精品视频| 久久精品人人爽人人爽视色| 日日夜夜操网爽| 久久久久精品人妻al黑| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 色94色欧美一区二区| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| 欧美日韩av久久| 日韩大码丰满熟妇| 亚洲av综合色区一区| 亚洲欧洲国产日韩| 免费黄频网站在线观看国产| 大片电影免费在线观看免费| 另类亚洲欧美激情| 黄色a级毛片大全视频| 日韩熟女老妇一区二区性免费视频| 好男人视频免费观看在线| 黄频高清免费视频| 一二三四在线观看免费中文在| 亚洲五月婷婷丁香| 午夜精品国产一区二区电影| 操美女的视频在线观看|