• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer

    2018-03-29 07:36:08DingYongfeiYangLiuqingHouJianyongJinGutingZhenZiyang

    Ding Yongfei ,Yang Liuqing,Hou Jianyong,Jin Guting,Zhen Ziyang

    1.Science and Technology on Avionics Integration Laboratory,Shanghai 200233,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    3.China National Aeronautical Radio Electronics Research Institute,Shanghai 200233,P.R.China

    0 Introduction

    Modern fighters have the ability to attack multiple targets and carry long range air-to-air missiles.Beyond visual range(BVR)air combat has been the mainstream with the development of modern fighters,where fighters are required to exchange information and attack multiple targets cooperatively[1-2].To complete cooperative multiple target attack (CMTA),decision-making(DM)is necessary for fighters to allot targets and missiles according to the shared information[3-4].Thus,the missile-target assignment (MTA)problem is the main part of DM when it comes to CMTA.

    There are many algorithms applied to DM problem in CMTA,such as particle swarm optimization(PSO),genetic algorithm (GA)and ant colony optimization (ACO)[5-7].A heuristic algorithm is introduced to adaptive genetic algorithm in Ref.[8]and improves local search capability.Adaptive pseudo-parallel genetic algorithm is also considered to deal with air combat DM problem beyond visual range[9].However,GA is not a real-time algorithm and may not work sometimes.Some intelligent algorithms are also used to solve DM problems[10-12].In Ref.[13],fuzzy neural network is applied to assign missiles according to the threat of enemy fighters and the bomb load of our fighters.However,it is hard to obtain practical and complex air situation data for neural network training.Considering the uncertain information in the MTA problem,grey system theory is introduced in DM problem[14].

    In this paper,an improved particle swarm optimizer(IPSO)is deduced to handle with the DM problem for CMTA in the air combat.The IPSO algorithm has stronger global searching capability by designing a new velocity learning strategy.

    1 DM Problem in CMTA

    1.1 Air combat situation

    Air combat decision-making is based on the air combat situation.To establish the model of air combat situation,it is assumed that there areMour fighters which are marked in blue andNenemy fighters which are marked in red.Denote our fighter setB=Bi,i=1,2,…,M{

    }and enemy fighter setR= {Rj,j=1,2,3,…,N}.In an air combat,the situation between our fighters and enemy fighters can be illustrated in Fig.1,where LOS is the line of sight andDijthe distance betweenBiandRj.xBiandVBiare the position and velocity ofBi,respectively.εijis the bore of sight(BOS)angle ofRjtoBi.xRjandVRjare the position and velocity ofRj,respectively.εjiis the BOS angle ofBitoRj.

    Fig.1 The situation between Biand Rj

    Distance,BOS angle and velocity are taken into consideration as threat factors when constructing the threat function[15].The threat function is described as a composite of all its threat factors,namely

    whereis the distance threat factor,the BOS angle threat factor,the velocity threat factor,andω1,ω2are non-negative weight coefficients and satisfy

    Moreover,the value range of all the threat factor functions is [0,1].Thus,there isthij∈

    The distance threat factor can be constructed as

    whereRaBis the maximum effective striking distance of missiles carried by our fighters andTrBthe maximum radar tracking distance of our fight-

    whereλ1,λ2are the positive constants.Better attack angle results in better attack effect.

    The velocity threat function can be constructed as

    1.2 MTA model

    Multi-fighter cooperative attack problem is aimed at optimizing target assignment for missiles carried by our fighters.According to the threat function known,multiple target assignment develops a proposal where there are more attack success and less fighter casualties.

    Assume that our fighterBicarriesLimissiles to attack enemy fighter targets.Thus,there areZ

    1.3 Analysis on coordinated attack tactics

    When our fighters attack enemy fighter targets,assignment rules need to be determined for our fighters.The assignment rules work so that our fighters get more benefit when attacking.

    It is supposed that each missile of our fighters can attack only one enemy fighter target.One enemy fighter is attacked by two missiles at most.It is essential to declare constraints onXrj

    There is optimal attack effect when one of the assigned value is much larger than the other.

    Then,the MTA problem is to find a solution πto minimize the equation above and accord with coordinated attack tactics.

    2 Improved Particle Swarm Optimization

    In the PSO algorithm,each particle is treated as a potential solution inD-dimensional space.The position of theith particle is represented by aD-dimensional vector Xi= (xi1,xi2,…,xiD),and the velocity of theith particle can also be represented by aD-dimensional vector Vi=(vi1,vi2,…,viD).

    In the PSO algorithm,the updating formulae of the velocity and the position of each particle are given by

    wherekis a pseudo-time increment and represents iterations;Pi=(pi1,pi2,…,piD)is the local optimal position of theith particle;Pg=(pg1,pg2,…,pgD)represents the global optimal position in the swarm,heregis the index of the best particle among all the particles in the population;c1andc2are called the cognitive and the social coefficients,respectively;rand1and rand2are two random numbers in range[0,1].

    Based on the PSO algorithm above,an improved PSO (IPSO)is presented,in which a new learning strategy is introduced in the particle velocity update equation,described as

    where rand1and rand2are the random numbers in range[0,1].χis the constriction coefficient;Pb=[pb1,…,pbD]the particle position with better performance which is selected randomly;jthe arrangement number according to the performance,here the smallerjcorresponds to the better performance of thejth particle;nthe whole number of the particles in the population.

    IPSO algorithm with fewer parameters not only keeps the diversity of the velocities but also does not alleviate the certainty of directing to the destination.The particles with better performance will increase their inertia movements,which expands the searching space and improves the searching speed.The particles with worse performance will increase their learning steps,which reduces the differences among the population and improves the whole performance of the population.

    Thus,the IPSO algorithm flow can be described in Fig.2.

    Fig.2 IPSO algorithm flow

    3 Realization of IPSO for Multi-target Collaborative Combat Decision-Making

    Every possible optimal solution is seen as a particle in PSO.The adaptive value of particle needs to be calculated in every position.It is reasonable for the adaptive value to be defined as objective optimization function to get the updating velocity and direction for every particle.Based on the MTA model established above,a set of missile-target assignment is dealt with as partial swarm after updating.moptimal MTA proposals correspond tomparticles in the particle swarm.Every particle is in the searching space ofZdimension.The position vector of thekth particle in the current iteration is defined as

    wherek=1,2,…,m,Zthe sum of missiles,andckrthe position of thekth particle in therth dimension.ckrbelongs to 1N_red[

    ]andN_red is the sum of enemy fighter target.

    The velocity of thekth particle is given by

    wherevkrsatisfiesvkr∈ [-1+NN-1].

    If thekth particle has the best fitness in the current iteration,it is defined as the local optimal solution and noted as

    If all of the particle have the best fitness in the current iteration,it is defined as the global optimal solution and noted as

    The updating formulae of the velocity and the position of each particle based on IPSO are given by

    If the position valueckr(t+1)isbiggerthan thetargetnumber,it is restricted in the last target.If the position valueckr(t+1)is less than 1,it is restricted in the first target.Otherwise,all the position values are rounded down to make sure the whole positions are integer within the range.

    It is essential to restrict velocity vector in a certain range to make sure that position vector is not updated too fast

    According to the coordinated attack tactics above,more constraint conditions are taken into consideration.Each missile can only attack one enemy fighter target.Each target is attacked twice at most.The Boolean value of the missile is constrained as

    This series of constraints are used to check the solution of MTA problem and make some adjustments if necessary.The steps are as follows:

    Step 1Denote a setAwhich includes all the values need to be changed.If the same position value exists in the position vectorπkmore than twice,two of them are chosen randomly and others are saved in setA.

    Step 2Denote two setsS0andS1.S0includes targets in set [1N_red]whichhavenot appearedinthesolutionbefore.S1includes targets in set [1N_red]that have appeared in the solution only once.

    Step 3Make some adjustments to setA.Assume that the value of the positionckrneeds to be changed and the updated position value iscsc.sshould belongs to {S0S1}.The principle of choosing targets is given by

    whered(csckr)is the distance betweenckrandcs.Then,the elementckris removed from setA.

    Step 4Update the two setsS0andS1.If there iscs∈S0,cswould be saved inS1and re-moved fromS0.If there iscs∈S1,the elements inS0andS1would not be changed.

    Step 5Repeat Steps 3,4until setAbecomes a null set.

    4 Simulation Experiment of IPSO for CMTA

    Assume that our fightersBand enemy fightersRare in a BVR air combat.Our fightersBadopt CMTA strategy.In this simulation,there are four our fighters and each fighter has four missiles.Thus,the number of the missiles to attack the enemy fighter targets is 16.The velocity of our fighters is 300m/s.The effective striking distance of missiles carried by our fighters is 70km.The maximum tracking range of our fighters is 120km.There are fourteen enemy fighter targets.The velocity of enemy fighters is 300 m/s.The effective striking distance of missiles carried by our fighters is the same as that carried by the enemy fighters.The maximum tracking range of our fighters is the same as that of the enemy fighters.In a random scenario,our fighters and enemy fighters aviate face to face.The air combat situation is shown in Fig.3.

    Fig.3 The air combat situation

    Then,the IPSO algorithm designed above is used to present a DM proposal of MTA problem in CMTA.The traditional PSO algorithm is also simulated here to compare with the IPSO algorithm.The constriction coefficientχis set to be 1.The assignment of all the missiles is

    Fig.4illustrates the DM proposal of MTA problem.Based on the IPSO algorithm,the missiles carried by our fighter 1attack enemy fighters 2,8,7and 3.The missiles carried by our fighter 2attack enemy fighters 5,6,1and 5.The missiles carried by our fighter 3attack enemy fighters 13,10,12and 10.The missiles carried by our fighter 4attack enemy fighters 1,13,14 and 13.The repeated numbers imply that these enemy fighters threaten our fighters too much and are attacked twice as a result.Some enemy fighters are not attacked because their threat values do not reach the threat threshold value.With the traditional PSO algorithm employed,the missiles carried by our fighter 1attack enemy fighters 2,3,3and 7.The missiles carried by our fighter 2attack enemy fighters 1,1,14and 5.The missiles carried by our fighter 3attack enemy fighters 13,13,8and 8.The missiles carried by our fighter 4attack enemy fighters 10,10,5and 6.The IPSO algorithm based DM proposal of MTA problem makes full use of the missiles and destroys more threats.

    Fig.4 Results of DM for MTA

    Fig.5shows the fitness of iteration process.The fitness can decreased to 4.391 5when using the IPSO algorithm,while the fitness is 4.568 8 with the traditional PSO algorithm. What′s more,the DM proposal with the IPSO algorithm is faster than that with the PSO algorithm due to the less iterations when using the IPSO algorithm.

    Fig.5 Fitness of iteration process

    5 Conclusions

    DM problem for MTA in an air combat is solved by a new improved PSO algorithm which is parametric simple but effective and efficient.The IPSO algorithm is used to minimize fitness function constructed by threat value.Coordinated attack tactics is considered to adjust DM proposal to reach better strike effect.It exhibits better performance to CMTA in an air combat with the IPSO algorithm compared with the traditional PSO algorithm.

    Acknowledgement

    This work was jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No.2016ZC15008).

    [1] AKBARI S,MENHAJM B.A new framework support system for air to air tasks[C]∥IEEE Proceedings of the International Conference on SMC.Nashville,TN,USA:[s.n.],2000,3:2019-2022.

    [2] SECAREA V V,KRIKORIAN H F.Adaptive multiple target attack planning in dynamically changing hostile environments[C]∥IEEE Proceedings of the National Aerospace and Electronics Conference.Dayton,OH,USA:[s.n.],1990,3:29-34.

    [3] LUO D L,WU W H,SHEN C L.A survey on deci-sion-making for multi-target attacking in air combat[J].Electronic Optics and Control,2005,12(4):4-8.

    [4] ZHOU S Y,WU W H,ZHANG N,et al.Overview of autonomous air combat maneuver decision [J].Aeronautical Computing Technique,2012,42(1):27-31.

    [5] HUANG H Q,WANG Y,ZHOU H,et al.Multi-UCAV cooperative autonomous attack path planning method under uncertain environment [C]∥ Advanced Information Management,Communicates,E-lectronic and Automation Control Conference (IMCEC).Xi′an:IEEE,2016:573-579.

    [6] ZHANG Y,LI C.Coordinated attack strategy of network sub-munitions based on particle swarm optimization[J].Journal of Detection and Control,2015,37(1):99-103.

    [7] LI Z W,CHANG Y Z,SUN Y Y,et al.A decisionmaking for multiple target attack based on characteristic of future long-range cooperative air combat[J].Fire Control and Command Control,2016,47(2):36-40.

    [8] LUO D L,SHEN C L,WANG B,et al.Air combat decision-making for cooperative multiple target attack using heuristic adaptive genetic algorithm[C]∥Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE,2005:473-478.

    [9] ZHANG T,YU L,WEI X Z,et al.Decision-making for cooperative multiple target attack based on adaptive pseudo-parallel genetic algorithm [J].Fire Control and Command Control,2013,38(5):137-140.

    [10]LI Linsen,TONG Mingan.Air combat decision of cooperative multi-target attack and its neural net realization[J].Acta Aeronautic et Astronautic Sinica,1999,20(4):309-312.(in Chinese)

    [11]LI L S,YU H X,HAN Z G,et al.Application of a type of associated neural network in cooperative air to air combat analysis[J].Flight Dynamics,2000,18(1):81-84.

    [12]GENG Y L,JING C S,LI W H.Multi-fighter coordinated multi-target attack system [J].Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23.

    [13]ROGER W S,ALAN E B.Neural network models of air combat maneuvering [D].New Mexico:New Mexico State University,1992.

    [14]SONG X G,JIANG J,XU H Y.Application of improved simulated annealing genetic algorithm in cooperative ari combat[J].Journal of Harbin Engineering University,2017,38(11):1762-1768.

    [15]AUSTIN F.Game theory for automated maneuvering during air to air combat[J].Guidance,1990,13(6):1143-1147.

    男女边摸边吃奶| 久久久精品免费免费高清| 日韩伦理黄色片| av天堂中文字幕网| 人体艺术视频欧美日本| 久久久久久久久久久久大奶| 亚洲精品乱码久久久久久按摩| av在线观看视频网站免费| 亚洲熟女精品中文字幕| 午夜av观看不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 熟女人妻精品中文字幕| 99热这里只有精品一区| 成年女人在线观看亚洲视频| av视频免费观看在线观看| 人妻制服诱惑在线中文字幕| www.av在线官网国产| 性高湖久久久久久久久免费观看| 三上悠亚av全集在线观看 | 国产 一区精品| 人人妻人人澡人人看| 91aial.com中文字幕在线观看| 日韩制服骚丝袜av| 成人特级av手机在线观看| 日韩成人av中文字幕在线观看| 亚洲精品国产av成人精品| 午夜老司机福利剧场| 久久国内精品自在自线图片| 久久久久网色| 99九九在线精品视频 | 久热久热在线精品观看| 国产精品久久久久久精品古装| 少妇精品久久久久久久| 亚洲第一av免费看| 又黄又爽又刺激的免费视频.| 丝瓜视频免费看黄片| 亚洲av不卡在线观看| 国产爽快片一区二区三区| 免费黄频网站在线观看国产| 国产淫语在线视频| 国产成人一区二区在线| av网站免费在线观看视频| 国产亚洲91精品色在线| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 国产极品天堂在线| 在线观看美女被高潮喷水网站| 少妇 在线观看| 久久久精品免费免费高清| 国产永久视频网站| 伦理电影免费视频| 超碰97精品在线观看| 人妻一区二区av| 久久99精品国语久久久| 久久99热这里只频精品6学生| 性色av一级| 国产成人一区二区在线| 日本av免费视频播放| 这个男人来自地球电影免费观看 | 亚洲性久久影院| 日日摸夜夜添夜夜添av毛片| 国产熟女欧美一区二区| 一区在线观看完整版| 精品久久久久久电影网| 国产熟女午夜一区二区三区 | 国产成人午夜福利电影在线观看| 成年av动漫网址| 九九爱精品视频在线观看| 女人精品久久久久毛片| 黄色日韩在线| 最近中文字幕2019免费版| 性高湖久久久久久久久免费观看| 在线精品无人区一区二区三| 午夜福利,免费看| 国产一区二区三区综合在线观看 | 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 中文字幕制服av| 十八禁网站网址无遮挡 | 老女人水多毛片| 大陆偷拍与自拍| av播播在线观看一区| 各种免费的搞黄视频| av一本久久久久| 99九九在线精品视频 | 人妻制服诱惑在线中文字幕| 亚洲人成网站在线观看播放| 国产在线视频一区二区| 在线看a的网站| 亚洲精品日韩在线中文字幕| 国产精品成人在线| 中文精品一卡2卡3卡4更新| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 亚洲国产日韩一区二区| 日日啪夜夜撸| 街头女战士在线观看网站| 中文在线观看免费www的网站| 高清在线视频一区二区三区| 国产亚洲av片在线观看秒播厂| 97超碰精品成人国产| 人体艺术视频欧美日本| 国产真实伦视频高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产伦理片在线播放av一区| 久久精品国产自在天天线| 在线观看免费高清a一片| 精品亚洲乱码少妇综合久久| 伊人亚洲综合成人网| a级毛片免费高清观看在线播放| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 国产精品成人在线| 免费av中文字幕在线| 久久精品国产自在天天线| 亚洲自偷自拍三级| 久久影院123| 久久久久久伊人网av| 久久av网站| 欧美老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 国产成人精品福利久久| 午夜福利网站1000一区二区三区| 日本午夜av视频| 成人特级av手机在线观看| 日韩免费高清中文字幕av| 国产精品一二三区在线看| 视频中文字幕在线观看| 精品亚洲成a人片在线观看| 日本黄大片高清| 黑人高潮一二区| 国产美女午夜福利| 五月开心婷婷网| 国产成人免费观看mmmm| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 欧美日韩精品成人综合77777| 99九九在线精品视频 | 视频区图区小说| 婷婷色综合www| 久久这里有精品视频免费| av播播在线观看一区| 大片免费播放器 马上看| 男人添女人高潮全过程视频| 日本色播在线视频| 久久午夜福利片| 日韩精品免费视频一区二区三区 | 日韩,欧美,国产一区二区三区| 美女国产视频在线观看| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 有码 亚洲区| 国产乱来视频区| 国产黄片美女视频| 精品久久久久久久久av| 久久精品久久久久久久性| 免费大片黄手机在线观看| 黑人高潮一二区| 国产精品国产三级国产专区5o| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美中文字幕日韩二区| 成人午夜精彩视频在线观看| 人妻一区二区av| 国产精品嫩草影院av在线观看| 亚洲成人一二三区av| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 男女免费视频国产| 日本午夜av视频| 观看美女的网站| 免费观看在线日韩| 国产伦理片在线播放av一区| av网站免费在线观看视频| 少妇人妻 视频| 97在线视频观看| av女优亚洲男人天堂| 久久精品国产亚洲av天美| 岛国毛片在线播放| 男人舔奶头视频| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 青春草亚洲视频在线观看| 国产精品99久久99久久久不卡 | 91久久精品电影网| 国产极品粉嫩免费观看在线 | 一级片'在线观看视频| 成人影院久久| 亚洲婷婷狠狠爱综合网| 三级国产精品片| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 久久久久久久久久久免费av| 亚洲综合色惰| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 欧美精品人与动牲交sv欧美| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| a 毛片基地| 国产色婷婷99| 黄色日韩在线| 成人国产av品久久久| 3wmmmm亚洲av在线观看| 高清av免费在线| 六月丁香七月| 91精品国产九色| 亚洲精品一二三| 日韩人妻高清精品专区| 亚洲怡红院男人天堂| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 欧美老熟妇乱子伦牲交| 亚洲av中文av极速乱| 青青草视频在线视频观看| 99九九线精品视频在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 美女福利国产在线| 一级av片app| 午夜福利,免费看| 只有这里有精品99| 亚洲欧洲日产国产| 色婷婷久久久亚洲欧美| 欧美成人精品欧美一级黄| 国产午夜精品一二区理论片| 欧美xxⅹ黑人| 国产男人的电影天堂91| 免费播放大片免费观看视频在线观看| 中文字幕人妻丝袜制服| 精品亚洲成a人片在线观看| 国产精品国产av在线观看| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 成年女人在线观看亚洲视频| 制服丝袜香蕉在线| 在线观看三级黄色| 国产中年淑女户外野战色| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 曰老女人黄片| 免费av不卡在线播放| 亚洲av电影在线观看一区二区三区| 少妇精品久久久久久久| 久久久久久伊人网av| 少妇熟女欧美另类| 精品人妻熟女毛片av久久网站| 欧美日韩在线观看h| 国产视频首页在线观看| 热99国产精品久久久久久7| 日韩一区二区视频免费看| 欧美日韩在线观看h| 亚洲精品日本国产第一区| 国产毛片在线视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲综合精品二区| 在线播放无遮挡| 精品一区二区免费观看| 18禁在线无遮挡免费观看视频| 亚洲av综合色区一区| 尾随美女入室| 自拍偷自拍亚洲精品老妇| 久久午夜福利片| 国产日韩欧美在线精品| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 麻豆成人午夜福利视频| kizo精华| 日韩不卡一区二区三区视频在线| 少妇 在线观看| 欧美三级亚洲精品| 一级毛片我不卡| 亚洲国产日韩一区二区| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 爱豆传媒免费全集在线观看| 日本91视频免费播放| 精华霜和精华液先用哪个| 亚洲精品第二区| 高清黄色对白视频在线免费看 | 赤兔流量卡办理| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 深夜a级毛片| av女优亚洲男人天堂| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看 | 黄色怎么调成土黄色| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 婷婷色综合大香蕉| 超碰97精品在线观看| 国产av码专区亚洲av| 国产黄片视频在线免费观看| 国产一区二区三区综合在线观看 | 亚洲综合色惰| av线在线观看网站| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看| 天天操日日干夜夜撸| 性色avwww在线观看| 三级经典国产精品| 在线观看免费高清a一片| 久久精品国产亚洲av涩爱| 在线观看国产h片| 大又大粗又爽又黄少妇毛片口| 一本—道久久a久久精品蜜桃钙片| 在线免费观看不下载黄p国产| 两个人的视频大全免费| 99久国产av精品国产电影| 国产男女超爽视频在线观看| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 久久影院123| 午夜免费男女啪啪视频观看| 高清av免费在线| 国产成人精品一,二区| 人人妻人人澡人人看| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠久久av| 热99国产精品久久久久久7| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 国产在线视频一区二区| 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 偷拍熟女少妇极品色| 在线播放无遮挡| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 国产精品三级大全| 另类亚洲欧美激情| 国产视频首页在线观看| 亚洲无线观看免费| 亚洲精品久久午夜乱码| 亚洲中文av在线| 国精品久久久久久国模美| 内射极品少妇av片p| 18禁在线播放成人免费| 麻豆成人av视频| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 亚洲国产日韩一区二区| 午夜福利视频精品| 欧美区成人在线视频| 一级毛片我不卡| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 草草在线视频免费看| 国产深夜福利视频在线观看| 亚洲综合色惰| 日本欧美视频一区| 多毛熟女@视频| 两个人免费观看高清视频 | 国产伦在线观看视频一区| 亚洲av电影在线观看一区二区三区| 97超碰精品成人国产| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频 | 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产精品免费大片| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 国产黄片美女视频| 美女cb高潮喷水在线观看| 97超碰精品成人国产| 久久久久久久久大av| 午夜免费鲁丝| 晚上一个人看的免费电影| 成人免费观看视频高清| 亚洲天堂av无毛| 欧美日韩精品成人综合77777| 国产免费一区二区三区四区乱码| 国产成人freesex在线| 精品一区在线观看国产| 丝瓜视频免费看黄片| 91aial.com中文字幕在线观看| 99热全是精品| 美女主播在线视频| 高清在线视频一区二区三区| 中文精品一卡2卡3卡4更新| 免费人成在线观看视频色| 国产精品欧美亚洲77777| 国产精品国产av在线观看| 欧美性感艳星| 九草在线视频观看| 人妻人人澡人人爽人人| 交换朋友夫妻互换小说| 99热这里只有是精品在线观看| 国产真实伦视频高清在线观看| 18禁动态无遮挡网站| 精品国产一区二区久久| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 日本欧美视频一区| 桃花免费在线播放| 国模一区二区三区四区视频| 国产日韩一区二区三区精品不卡 | 午夜免费鲁丝| 97超碰精品成人国产| 97在线视频观看| 欧美精品高潮呻吟av久久| 中国三级夫妇交换| av黄色大香蕉| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 乱码一卡2卡4卡精品| 亚洲精品自拍成人| 大片免费播放器 马上看| 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区 | 亚洲精品第二区| 久久久久久久久久久久大奶| 久久精品夜色国产| 69精品国产乱码久久久| 久久久久久久国产电影| av又黄又爽大尺度在线免费看| 久久久精品免费免费高清| 亚洲情色 制服丝袜| 国产一区二区三区综合在线观看 | 国产高清有码在线观看视频| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 中文在线观看免费www的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 热re99久久国产66热| 黄色一级大片看看| 午夜91福利影院| 成人毛片60女人毛片免费| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 少妇人妻精品综合一区二区| 最黄视频免费看| 日韩一区二区三区影片| 成人国产麻豆网| 一级爰片在线观看| 丰满迷人的少妇在线观看| 欧美激情极品国产一区二区三区 | 高清不卡的av网站| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 黄片无遮挡物在线观看| 高清在线视频一区二区三区| 国国产精品蜜臀av免费| 国产一区二区三区综合在线观看 | 久久国产亚洲av麻豆专区| 日本免费在线观看一区| 国产精品99久久99久久久不卡 | 91精品国产国语对白视频| 精品熟女少妇av免费看| 三级国产精品片| 欧美日韩精品成人综合77777| 中文在线观看免费www的网站| 多毛熟女@视频| 精品人妻熟女毛片av久久网站| 能在线免费看毛片的网站| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 精品午夜福利在线看| 97超碰精品成人国产| 午夜福利视频精品| 成人毛片a级毛片在线播放| 免费黄色在线免费观看| av福利片在线| 久久久久久久亚洲中文字幕| 亚洲av电影在线观看一区二区三区| 国产黄片美女视频| 自拍欧美九色日韩亚洲蝌蚪91 | 18禁在线无遮挡免费观看视频| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 日韩精品有码人妻一区| 男人添女人高潮全过程视频| 国产黄片视频在线免费观看| 制服丝袜香蕉在线| 亚洲av综合色区一区| 我的女老师完整版在线观看| 久久毛片免费看一区二区三区| 国产黄片视频在线免费观看| 制服丝袜香蕉在线| 国产精品伦人一区二区| 色吧在线观看| 亚洲国产精品999| 亚洲高清免费不卡视频| 久久久久久久久久久久大奶| 性色av一级| 极品人妻少妇av视频| 久久婷婷青草| 久久国产亚洲av麻豆专区| 成人毛片60女人毛片免费| 国产精品伦人一区二区| av又黄又爽大尺度在线免费看| 人妻一区二区av| 一本久久精品| 国产亚洲5aaaaa淫片| 久久久久久久久久久丰满| 日本猛色少妇xxxxx猛交久久| 日韩,欧美,国产一区二区三区| 国产精品熟女久久久久浪| 国产精品无大码| tube8黄色片| 国产精品一区二区在线不卡| 精品国产一区二区三区久久久樱花| 国产中年淑女户外野战色| 99久久精品热视频| 80岁老熟妇乱子伦牲交| 好男人视频免费观看在线| 伊人亚洲综合成人网| 亚洲国产成人一精品久久久| 大片电影免费在线观看免费| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 日韩伦理黄色片| 久久这里有精品视频免费| 少妇猛男粗大的猛烈进出视频| 国内少妇人妻偷人精品xxx网站| 久久久久久久国产电影| √禁漫天堂资源中文www| 性高湖久久久久久久久免费观看| 简卡轻食公司| 草草在线视频免费看| 国产精品国产av在线观看| videossex国产| 国产亚洲5aaaaa淫片| 一个人免费看片子| 亚洲精品久久午夜乱码| 亚洲精品aⅴ在线观看| 中文字幕制服av| 亚洲欧洲日产国产| .国产精品久久| 国产乱来视频区| 国产淫语在线视频| 男男h啪啪无遮挡| 婷婷色麻豆天堂久久| 国产深夜福利视频在线观看| 成人影院久久| 久久人妻熟女aⅴ| 欧美成人精品欧美一级黄| 亚洲内射少妇av| 性高湖久久久久久久久免费观看| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 亚洲精品一区蜜桃| 啦啦啦在线观看免费高清www| h视频一区二区三区| 色吧在线观看| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 全区人妻精品视频| 人妻少妇偷人精品九色| 男女啪啪激烈高潮av片| 五月天丁香电影| 边亲边吃奶的免费视频| 久久国内精品自在自线图片| 永久免费av网站大全| 国产精品一区www在线观看| 2022亚洲国产成人精品| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 午夜视频国产福利| 欧美性感艳星| 五月开心婷婷网| 亚洲欧美清纯卡通| av网站免费在线观看视频| 国产中年淑女户外野战色| 国产真实伦视频高清在线观看| 三上悠亚av全集在线观看 | 国产乱人偷精品视频| 久久人人爽av亚洲精品天堂| 久久99一区二区三区| 免费黄网站久久成人精品| 亚洲av电影在线观看一区二区三区| 日本黄大片高清| 国产深夜福利视频在线观看| 青青草视频在线视频观看| 久久久久久久久久久久大奶| 国产日韩欧美亚洲二区| av国产精品久久久久影院| 日韩av在线免费看完整版不卡| 一个人免费看片子| 黄色毛片三级朝国网站 | 精品亚洲乱码少妇综合久久| 欧美日韩视频高清一区二区三区二| 久久久久久久久久久久大奶| 日本91视频免费播放| 日日摸夜夜添夜夜爱|