• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    All-Electric Aircraft Nose Wheel Steering System with Two Worm Gears

    2018-03-29 07:36:07,,,
    關(guān)鍵詞:出力遺傳算法風(fēng)機

    ,,,

    1.Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,P.R.China;

    2.Shanghai Aircraft Design and Research Institute,Shanghai 201210,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing 211106,P.R.China

    0 Introduction

    More and more electric aircraft takes electric power system as its second power by using it to replace the original hydraulic,pneumatic and mechanical system[1,2].As a result,it has the characteristics of simple structure,light weight,high reliability and high ratio of performance to price[3-5].For the insurmountable and inherent defects of the hybrid system in current aircraft,the aircraft maintenance caused by such relevant systems accounts for more than 50%of the total aircraft maintenance[3].Since all-electric system has high reliability,high maintainability,low security and operating cost,and many other inherent advantages,the nose wheel steering system would be developed in the all-electric direction[6].The realization of all-electric aircraft depends on whether the aircraft function subsystem can be developed using the electric power as its power.The realization of the all-electric nose wheel steering system would perfect the overall aircraft performance,and speed up the all-electrification process of aircraft.

    To date,the electric power systems used for flight control,environmental control,brake,fuel and engine starting system have been verified[6].European scholars began to investigate the allelectric nose wheel steering system[7,8],they predict that the all-electrification would increase the levels of reliability and availability significantly.Besides,the coordination and cooperation between the all-electric nose wheel steering system and automatic ground navigation system would increase the efficiency of air transport system.Refs.[9,10]describe the design and testing of a dual-lane electric drive for the operation of a prototype,electromechanically actuated,nose wheel steering system for a commercial aircraft.The drive features two fully independent motor controllers,each operating one half of a three-phase motor to produce an actuator capable of full operation in the event of an electrical fault.

    Ref.[11]introduces the system architecture and redundance function principle and the design of peripheral interface circuit and the software of the digital skidpoof brake integrated controller.To prevent the similar redundant system occurring common fault avalanche damage,the dissimilar dual redundancy digital steering control box is designed in Ref.[12].A nose wheel steering servo system composed of electromechanism actuator,controller and displacement sensor is introduced in Ref.[13].The electromechanical actuator adopts the crew-slider-fork design to realize the requirement of miniaturization and high load.

    For both civil aircraft and military aircraft,the realization of all-electric nose wheel steering system is significant to the improvement of ground operating performance.

    An all-electric aircraft nose wheel steering system composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire having both steering and antishimmy function is designed here first.Then the simulation model of the system is established to simulate the dynamics for the verification of its steering function.Moreover,the prototypes of the steering mechanism and control system are built and tested to validate the design,and the steering test bench is prepared to test the work perform of the proposed system.The test results,such as steer angle,steer torque are analyzed in details and compared with the theoretical results.

    1 Design of Nose Wheel Steering System

    1.1 The overall scheme design

    The nose wheel steering system belongs to the electromechanical actuator system,which is the general name for the position servo control system in aviation and aerospace,military,transportation,agricultural and industrial machinery and equipment,and controls the movement of its load directly or indirectly through controlling the operation of motor[14].As shown in Fig.1,it is composed of two main parts:The actuator module and the electric control unit.

    Fig.1 Structure block of nose wheel steering system

    The actuator module is responsible for converting electrical energy into mechanical energy and feeding back the mechanical transmission to control system.The diagram of the steering system is shown in Fig.2,encompassing a motor,a torque limiter,a clutch,a reducer,a damper,a worm gear and sensors.In the process of aircraft steering on ground,the controller would firstly control the motor rotation according to the input signal.Then the motor would transmit its torque to the torque limiter,reducer and clutch successively.Consequently,the worm gear begins to rotate to realize the aircraft nose wheel steering.Its main components are described as follows:

    Fig.2 Single redundant channel in steering system

    Motor—According to the design require-ments of the aircraft nose wheel steering operating system,the friction torque loading in the nose wheel steering system is large,so the rare earth permanent magnet Direct Current(DC)motor with high power density and operating efficiency is selected by the system.

    Clutch—The friction type clutch is selected by the system to control its status by control current.Once a fault occurs,the system would isolate the fault channel by controlling its clutch to disconnect.

    Damper—To prevent the oscillation phenomenon,the damper is required to provide a damping for the nose wheel steering system.The damper does not work in system steering mode,however,it is activated by the main controller in system anti-shimmy mode.

    Worm gear—The rated output torque provided by current motor is too small relative to the steering torque of the nose wheel steering system.As a result,larger transmission ratio should be provided by the machine transmission system.So the worm gear with inherent large transmission ratio is selected to be the system actuator.

    The electronic control unit is responsible for position servo control and completing the closed loop of the nose wheel steering system,consisting of the main controller and the motor controller.

    The main controller can realize the following three functions mainly:

    (1)Be able to receive and process the sensor signals accurately,so as to achieve the servo control of the nose wheel steering system and load limiting of the torque limiter.

    (2)Controlling the auxiliary equipment(such as clutch,damper and so on).

    (3)Recording the fault information and detection data in fault points synchronously to support the next maintenance work.

    The motor controller is mainly used for the amplification of control signal and control the steering direction and speed of the motor.The system uses DC pulse width modulation(PWM)converter to control the motor input voltage.

    The assumption diagram of the controller is available,as shown in Fig.4.As shown in Fig.4,the main controller adopts similar dual redundancy design,and two channels communicate with each other through the dual port of random-access memory(RAM)and detect faults through cross supervision and self-supervision.In the process of nose wheel steering,the main controller would firstly judge whether the system is in a hand wheel operating mode or a pedal rudder operating mode based on digital signals.Then the main controller would acquire such analog signals as command signal,feedback signal and the aircraft ground speed,and thus conduct data processing by a certain control algorithm with reference to the control rate.Finally,the nose wheel steering servo control would be released.

    To prevent the phenomenon of the non-coordination motion between the two worm gear of the system happening in the process of actual aircraft ground maneuver,the nose wheel steering system would feed back the worm gear steering angle in addition to the output torque of the two worm gear to the main controller.Then the difference between the system angle input and the worm gear wheel angle feedback,and the difference between the output torque of the two worm gear would be carried on a certain processing to be the output of the main controller to control the motor through adjusting the relationship between the two differences to ensure the steering process accurate and fluent.Fig.3shows the cross-supervision and self-supervision functions.

    1.2 Main design parameters of the transmission component

    Based on the aircraft nose wheel steering system design index,under 24VDC,the maximum steering torque,the maximum steering angle,and the maximum steering speed provided by the nose wheel steering system are set as 1 000N·m,80°and 20°/s,respectively.

    Fig.3 Design diagram of the controller

    Considering the commonly used motor speed,reducer transmission ratio range and worm gear transmission ratio range,refer to the relevant design handbook,the motor model,the transmission ratio of the reducer and worm gear can be obtained,respectively.Then the main transmission components of the nose wheel steering system are designed concretely according to the handbook of mechanical and electric design.Finally,the main parameters of these transmission components are obtained,as shown in Table 1.

    Table 1 Main parameters of transmission component

    1.3 Preliminary design of damper

    Fig.4 Schematic of damper

    The relationship between the damping torque T and the rotor rotational speed n in the damper is as follows[15]

    where B represents the magnetic induction intensity,δthe gap length,l the length of stator,εthe rotor cup thickness,D the rotor diameter,k the ratio ofπ/τ,τthe electrode gap,p the number of pole-pairs,ρthe rotor resistance,L the length of the rotor cup,ωthe angular frequency,andα=μ0ε/ρδ,β=k2+iωα.

    The functional relationship between the damping torque and the rotor rotational speed is nonlinear,so the damper with large value of p/D is selected in this system for simplifying the relationship into linear function.The ratio between the torque and speed is the damping coefficient K.

    where r is the correction factor.

    Considering the ground impact load and tire aligning stiffness in the process of aircraft taxiing,landing gear′s moment of inertia and the design requirements of nose wheel steering system,the damping coefficient can be obtained by establishing simulation model to simulate the antishimmy process of the nose wheel under the ground impact load.Finally,parameters of the damper can be obtained accordingly.

    1.4 Layout and installation design of the system

    Based on the main parameters of the system and the related design handbook,the layout and installation design of the system can be completed.As shown in Figs.5,6,being the diagram of the nose wheel steering system installed on landing gear and the transverse sectional view of the nose wheel steering system.In the nose landing gear of aircraft,the first housing of the nose wheel steering system is fixed in the strut cylinder sleeve through screws.On the left side of the nose wheel steering system,the first motor and the first reducer located within the second housing,the first clutch is fixed in the second housing by screws and connected with the first reducer through the general flat key.Besides,the first motor and the first reducer fixed axially through the second housing.The first housing and second housing are fixed by bolt connection.One end of the first worm gear in first housing is connected with the first clutch through general flat key,and the other end is axially fixed through the first tapered roller bearing and the first end cap.The first cylindrical roller bearing and the first tapered roller bearing are installed on both ends of the first worm gear,respectively.The first cylindrical roller bearing is axially fixed through the shaft shoulder on the first worm and the first circlip for hole.The first tapered roller bearing is axially fixed through the first nut and the shaft shoulder on the first worm.The first end cap is fixedly connected with the first housing through bolts and contacts with the outer ring of the first tapered roller bearing.The installation of the right side nose wheel steering system is the same with the left side′s.

    目前,含風(fēng)電機組的配電網(wǎng)無功優(yōu)化已引起廣大學(xué)者的重視。文獻(xiàn)[5]建立了以有功能耗為目標(biāo)的單目標(biāo)優(yōu)化模型,在不同風(fēng)機出力下應(yīng)用遺傳算法確定各狀態(tài)下SVC補償容量。文獻(xiàn)[6]考慮了有功網(wǎng)損和電壓穩(wěn)定裕度指標(biāo),提出了一種基于場景發(fā)生概率的無功優(yōu)化指標(biāo)。文獻(xiàn)[7]建立了成本效益比、靜態(tài)電壓穩(wěn)定指標(biāo)模型,采用多場景分析風(fēng)機出力,并應(yīng)用粒子群算法求解。文獻(xiàn)[8]采用多目標(biāo)的遺傳算法求解在電力系統(tǒng)最大負(fù)荷運行方式下多目標(biāo)無功優(yōu)化問題。

    Fig.5 Nose wheel steering system installed on landing gear

    Fig.6 Transverse sectional view of the nose wheel steering system

    2 Simulation of All-electric Nose Wheel Steering System

    2.1 Construction of all-electric nose wheel simulation model

    Based on the afore-mentioned nose wheel steering system and the speed governing system of DC motor,the simulation model of all-electric nose wheel steering system has been established by using the AMESim software,as shown in Fig.7.

    The motor module of this model is created according to the speed governing system of DC motor,and is encapsulated.The clutch model consists of a piecewise linear function module and a free-rotation Coulomb friction module,which functions as a clutch and a torque limiter.Meanwhile,the clutch also sets a maximum Coulomb friction torque for the motor.

    Fig.7 Simulation model of nose wheel steering system

    The damper module in this model is comprised of an angular velocity sensor,a coulomb friction module with one end fixed,a coupling module,and a function module.So the damper can become operational.The reducer module of AMESim is suitable for the reducer in this model.The reduction ratio should be chosen as 74.

    The turbine worm mechanism module is made up of a running clearance module,a moment of inertia module,a moment sensor module,a turbine worm module,a Coulomb friction module with one end fixed,a coupling module,and one function module.Thus,the entire module is operational.Running clearance module is added to the model and grants better accuracy because clearance exists in practical situations inevitably.

    2.2 Optimization on the model and relevant analysis

    In practical engineering applications,PID parameters are adjusted manually so as to guarantee the dynamic performance of the control system.However,it is usually not the ideal state for the dynamic performance.Currently the performance index,integrated time and absolute error(ITAE),has been widely used to assess the dynamic performance of a system,which equals to time multiplied by absolute value of error and integrated over time.The index ITAE poses both practical and selective in engineering applications.The ITAE module adopted in the simulation system is shown in Fig.8.

    Fig.8 ITAE module of the nose wheel steering system

    Considering nose wheel steering system in the steering state,where electromagnetic damper is disabled and landing impact load is ignored.Ground load is 1 000N·m fixed damping torque.In the beginning,nose wheel is situated in the middle.After one second,signal the nose wheel to ensure that the wheel rotates at 20°/s in the direction of one side until it reaches its extreme position.Afterwards,the wheel keeps working for a while.Finally,the wheel rotates back to its initial position at the same rate.

    For achieving optimized PID parameters,proportionality coefficient,integral coefficient,and differential coefficient are selected as optimizing variables.The ITAE is used as the target function of optimization.By means of non-linear programming by quadratic Lagrangian(NLPQL)algorithm module integrated in the AMESim software,the minimum value of target function becomes accessible.Finally,optimal PID parameters are available:207as the proportionality coefficient,0.002as the integral coefficient and 29.5 as the differential coefficient.Two curves of nose wheel yaw angle over time are concluded by batching and comparing with the manually adjusted results.

    As shown in Fig.9, manually-adjusted curve′s yaw angle overshoot is 2.7%with a small amount of settling time.Thus it meets the requirements of practical engineering.Yet after performing the optimization on PID parameters,overshoot of yaw angle output reaches almost ze-ro,settling time is also reduced by 0.5s.The dynamic performance of the entire system is considerably improved.

    Fig.9 Manually adjusted curve and optimized curve of yaw angle over time

    Fig.10demonstrates curves of optimized nose wheel steering input and output over time.It is evident that output curve lags behind the input curve all along the process.The reason for this situation is that during practical application,rotor′s moment of inertia along with the clearance and friction in the motor lead to a small period of time when the motor reaches its rated speed from state of rest.Afterwards the system input maintains the maximum rotation speed until reaching extreme position,so input signal is not able to keep up with output signal,which is fairly normal.The output curve has the same trend as the input curve,where the lag is no more than 0.5s.This symbolizes a remarkable follow performance that fulfills actual engineering practice.

    Fig.10 Input and output curves over time of nose wheel steering system

    During the steering process,load simulation system applies consistent load.Load is applied by the mechanism installed on the end of the steering system which generates friction against steering.Therefore,friction maintains an invariant value just as shown in Fig.11.

    Fig.11 Simulated load torque

    The DC motor′s torque and rotating speed curves over time are shown in Fig.12.It is obvious that it takes 0.5for the motor to accelerate to rated speed 5 990r/min from zero during the steering process,which is why input curve lags behind output curve.Since then motor maintains its speed until nose wheel reaches the yaw angle of 80°,where the steering system,as well as the motor,cease to function.In the process of the nose wheel returning to its initial position,the rotating speed of motor remains the same value as previous but in opposite direction.The working torque of the motor during steering is 0.395N·m,which is similar to rated torque.This guarantees long time of work and exploiting performance better.

    Fig.12 DC motor′s torque and rotating speed curves over time

    Since the simulation process is relatively ideal,two servo motors share the same status of motion when their parameters are configured identically.Therefore,one parameter is modified manually in order to test the speed configuring module.

    Fig.13 Motor rotate speed before configuration

    Fig.14 Motor rotate speed after configuration

    By comparing Fig.13and Fig.14,the following conclusion is drawn:Before speed configuring module works,two motors differ in speed.While the module is operational,two motors remain almost the same rotate speed.

    3 Test Verification

    The main objective of nose gear steering mechanism test verification is to analyze the feasibility of entire steering mechanism design and the accuracy of control system.The experiment requires the entire system to simulate the actual steering process,which calls for the whole nose gear entity and its control system.Moreover,the steering test verification system must provide steering angle,rotate speed of motor and commands from control system during steering process for further analysis on the feasibility.

    3.1 Basic theory and control system of the experiment

    Landing gear steering experiment system consists of two systems:control system and measure system.The control system exerts control over the steering system while the measure system gauges rotate speed of nose gear and motor,as well as feeds all the data back to the control system.Thus it is guaranteed that steering mechanism stays the same working condition in practice.To make it convenient to install and configure the entire landing gear,one end of the mechanism is fixed,while the other end is free for further load simulation as shown in Fig.15.

    Fig.15 Image of the steering mechanism

    (1)Controller

    The control system has been integrated to a control box whose user interface can be easily modified and designed.DSP control unit is applied for the experiment,which grants swift process and accurate control.

    Fig.16 DSP control unit

    DSP control unit integrates assorted sensors for switching anti-shimmy modes,measuring displacements of steering system and load applied on the landing gear,along with modules connecting servo motors.As a result,clutching device,servo motor and sensors have to be connected to the control unit accordingly.

    Fig.17shows the wire map of control unit,components of the steering system are linked to the DSP control unit respectively.Corresponding components can be manipulated by internal commands from the control system,thus the steering mechanism is able to function properly.

    Fig.17 Wire map of DSP control unit loop

    (2)Control method of servo motor

    There are three methods for servo motor control strategies:Torque control,position control and speed control.Speed control strategy is adopted due to the experiment requirement that speed has to be maintained during test.Analogue parameters can be harnessed to control the rotate speed.Furthermore,speed control strategy is capable of accurate positioning with the outer loop PID control along with upper control device,which reduces error during transmission and adds to the accuracy of positioning for the whole system.

    Control strategy for servo motor is displayed as Fig.18.By means of outputting correspondent analogue signals to manipulate rotate speed of motor.Meanwhile,analogue offset and auxiliary input signals to ensure the precision of any command.

    Fig.18 Control theory of motor

    3.2 Results and analysis of the experiment

    Real-time monitoring of rotate speed of servo motor has been performed by sensors during rotation.The rotate speed has been recorded and manipulated by presetting DSP control signals.

    Recording of working status of servo motor is conducted by Motion Monitor software as Fig.19presents.Both actual rotate speed and preset speed are accumulated,along with current fluctuation and actual displacement of motor.

    Fig.19 Recorded data

    Fig.20represents the command of speed and control signal.It is apparent that DSP voltage keeps up with the operation of motor consistently.In the beginning servo motor holds still,when DSP voltage rises,Servo motor′s rotate speed increases proportionally.Motor′s rotate speed follows voltage very well,therefore DSP control unit plays an outstanding role for the experiment.

    Fig.20 Command speed and control signal

    Fig.21shows a good consistency between command speed and actual speed,which indicates aproper set of parameters.

    Fig.21 Command speed and actual rotate speed

    In the process of steering,respective measurements are applied to the servo motors as shown in Fig.22.Two motors remain basically the same rotate speed.As a result,it is evident that excess energy dissipation of the system caused by nonsynchronous movement of two worms.

    Fig.23shows the displacement curve of steering mechanism.When given proper input signals,the mechanism starts working until reaches the designated angle,where the system ceases to function.Afterwards,steering mechanism returns to its initial position on corresponding command.

    Fig.22 Rotate speed of two motors

    Fig.23 Rotation displacement of servo motor

    4 Conclusions

    The design method of all-electric nose wheel steering system is addressed,including the machanical design and control strategy design.Then the simulation method is used to determine the design parameters and the prototype test is used to verify the design reasonableness.

    (1)Two DC motors,two worms and one worm wheel are designed to improve the steering torque.Nose wheel steering system under 24V DC can provide 1 000N·m steering torque,80°steer angle and 20°/s steering angular velocity.

    (2)The main controller feeds back the worm gear steering angle in addition to the output torque of the two worm gear to make them rotate synchronously.The simulation annlysis is conducted to verify the property.PID parameters are adjusted to improve the steering performance.

    (3)The prototypes of the steering mechanism and control system are researched to validate the design and the steering test bench is prepared to test the system working.The test results,such as steer angle,rotation speed of motor are analyzed in details and compared with the theoretical results.The test results indicate that all-electric nose wheel steering system with two worm gears is qualified for an intact steering mechanism.

    Acknowledgement

    This work was supported partly by the Aeronautical Science Foundation of China(No.20142852025).

    [1] LIU Ming,HUANG Chunzhou,Li Qin.Subsystems development on more-electric aircraft[J].Astronautical Science and Technology,2005(6):10-13.(in Chinese)

    [2] ZHU Xinyu,PENG Weidong.The application of more-electric aircraft and its technology[J].Journal of Civil Aviation Flight University of China,2007,18(6):8-11.(in Chinese)

    [3] JONES R I.The more electric aircraft-assessing the benefits[J].Journal of Aerospace Engineering,2002,216(5):259-269.

    [4] LESTER F.Beyond the more electric aircraft[J].Aerospace America,2005,9:35-40.

    [5] WEIMER J.Past,present &future of aircraft electrical power systems:AIAA 2001-1147[R].USA:AIAA,2001:1-9.

    [6] YU Liming.The improvement and development in the technical analysis of all-electric aircraft[J].Aircraft Design,1999,9(3):1-2.(in Chinese)

    [7] DRESS.Distributed and redundant electro-mechanical nose wheel steering system[R].Paris Air Show:DRESS Early Achievements Presentation,2009.

    [8] LISCOUET J,MARE C,BUDINGER M.An integrated methodology for the preliminary design of highly reliable electromechanical actuators:Search for architecture solutions[J].Aerospace Science and Technology,2012,22(1):9-18.

    [9] BENNETT J W.Fault tolerant electromechanical actuators for aircraft[D].England:Newcastle University,2010.

    [10]BENNETT J W,MECROW B C,ATKINSON D J,et al.A fault tolerant electric drive for an aircraft nose wheel steering actuator[J].IET Electrical Systems in Transportation,2011,1(3):117-125.

    [11]HUI Xiaoqiang,ZHOU Bo,ZHANG Lei,et al.Design of digital skidproof brake integrated controller in airplane[J].Aeronautical Computing Technique,2010,40(5):126-130.(in Chinese)

    [12]ZHAN Xiang.A design of dissimilar dual redundancy digital steering control box based on FPGA and DSP[J].Journal of Xihua University:Natural Science,2015,34(4):32-36.(in Chinese)

    [13]WANG Aping,WU Hao,CAO Sijia,et al.Research on a miniaturized and high load nose wheel steering servo system for aircraft[J].Aviation Precision Manufacturing Technology,2017,53(2):38-41.(in Chinese)

    [14]GUO Hong,XING Wei.Development of electromechanical Actuators[J].Acta Aeronoutica et Astronautica Sinica,2007,28(3):620-627.(in Chinese)

    [15]WANG Youlin,LIU Jinglin.Designing electromagnetic damper used in space rendezvous[J].Journal of Northwestern Polytechnical University,2006,24(3):358-362.(in Chinese)

    猜你喜歡
    出力遺傳算法風(fēng)機
    風(fēng)機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    基于自適應(yīng)遺傳算法的CSAMT一維反演
    風(fēng)機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
    基于遺傳算法和LS-SVM的財務(wù)危機預(yù)測
    節(jié)能技術(shù)EPU在AV71風(fēng)機上的應(yīng)用
    風(fēng)電場有功出力的EEMD特性分析
    要爭做出力出彩的黨員干部
    河南電力(2016年5期)2016-02-06 02:11:35
    基于改進(jìn)的遺傳算法的模糊聚類算法
    TS3000系統(tǒng)防喘振控制在 AV80-14風(fēng)機中的應(yīng)用
    性插视频无遮挡在线免费观看| 水蜜桃什么品种好| 国产乱人视频| 亚洲伊人久久精品综合 | 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 成人三级黄色视频| 久久99热这里只频精品6学生 | 精品熟女少妇av免费看| 最近最新中文字幕免费大全7| 18禁在线播放成人免费| 久久久久性生活片| 国产伦理片在线播放av一区| 久久99蜜桃精品久久| 免费电影在线观看免费观看| 春色校园在线视频观看| 亚洲av不卡在线观看| 赤兔流量卡办理| 永久网站在线| 国产成年人精品一区二区| 国产精品久久视频播放| 欧美成人精品欧美一级黄| 亚洲成av人片在线播放无| 日韩欧美 国产精品| 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 久热久热在线精品观看| 国产毛片a区久久久久| 欧美日本亚洲视频在线播放| 久久99热这里只频精品6学生 | 中文字幕av成人在线电影| 国产精品一区二区三区四区久久| 乱系列少妇在线播放| 欧美一级a爱片免费观看看| 最近中文字幕2019免费版| 成人国产麻豆网| 校园人妻丝袜中文字幕| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 日韩欧美精品v在线| 免费看日本二区| 级片在线观看| 久久久久久久久中文| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 成人三级黄色视频| 亚洲国产欧洲综合997久久,| 我要搜黄色片| 国产精华一区二区三区| 亚洲图色成人| 亚洲美女搞黄在线观看| 亚洲av中文字字幕乱码综合| 黄色一级大片看看| 国产乱人视频| 99久久精品热视频| 爱豆传媒免费全集在线观看| 欧美性猛交╳xxx乱大交人| 日本猛色少妇xxxxx猛交久久| 久久久久久国产a免费观看| 99国产精品一区二区蜜桃av| 少妇熟女欧美另类| 在线播放国产精品三级| 联通29元200g的流量卡| 日韩,欧美,国产一区二区三区 | 亚洲精品自拍成人| www.色视频.com| 日本av手机在线免费观看| 最近手机中文字幕大全| 国产视频内射| 日韩一区二区三区影片| 免费看av在线观看网站| 国产69精品久久久久777片| 免费看av在线观看网站| 青春草视频在线免费观看| 亚洲最大成人中文| 日韩,欧美,国产一区二区三区 | 日韩欧美精品免费久久| 乱系列少妇在线播放| av黄色大香蕉| 国产免费男女视频| 精品人妻偷拍中文字幕| 黄片wwwwww| 长腿黑丝高跟| 亚洲欧美清纯卡通| 成年av动漫网址| 中文字幕av在线有码专区| 人体艺术视频欧美日本| 汤姆久久久久久久影院中文字幕 | 国产精品1区2区在线观看.| 久久久久国产网址| 亚洲欧美日韩东京热| 国产精品一区二区性色av| 婷婷色综合大香蕉| 偷拍熟女少妇极品色| 午夜精品在线福利| 久久精品国产亚洲av天美| 国产精品麻豆人妻色哟哟久久 | 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 精品久久久久久久久亚洲| 国产精品国产三级专区第一集| 91久久精品电影网| 久久亚洲精品不卡| 一边亲一边摸免费视频| 在线免费观看的www视频| 深爱激情五月婷婷| 性插视频无遮挡在线免费观看| 三级国产精品片| 久久这里有精品视频免费| 久久久久久久久久久免费av| 在线天堂最新版资源| 中文欧美无线码| 国产精品久久久久久精品电影| av又黄又爽大尺度在线免费看 | 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 日韩欧美在线乱码| 在线播放无遮挡| 欧美最新免费一区二区三区| 成人综合一区亚洲| 老司机福利观看| 亚洲国产成人一精品久久久| 国产精品一区www在线观看| 18禁动态无遮挡网站| 国产精品永久免费网站| 亚洲不卡免费看| 高清在线视频一区二区三区 | 欧美另类亚洲清纯唯美| 久热久热在线精品观看| 国产一级毛片在线| 91精品一卡2卡3卡4卡| 小说图片视频综合网站| 少妇人妻一区二区三区视频| 亚洲精品乱久久久久久| 国产一区二区在线av高清观看| 美女cb高潮喷水在线观看| 国产精品久久电影中文字幕| 亚洲av中文字字幕乱码综合| 大话2 男鬼变身卡| 天堂av国产一区二区熟女人妻| a级一级毛片免费在线观看| 久久人妻av系列| 久久久久久久久中文| 边亲边吃奶的免费视频| 亚洲欧美成人精品一区二区| 久久精品国产99精品国产亚洲性色| 一级毛片aaaaaa免费看小| 欧美激情国产日韩精品一区| 国产午夜精品久久久久久一区二区三区| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看 | av又黄又爽大尺度在线免费看 | 天堂网av新在线| 久久鲁丝午夜福利片| 久久热精品热| 亚洲国产欧美在线一区| 国产高清有码在线观看视频| 国产精品国产三级国产专区5o | 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 少妇丰满av| 偷拍熟女少妇极品色| 69人妻影院| 深爱激情五月婷婷| 两个人视频免费观看高清| 99久国产av精品国产电影| 亚洲国产精品久久男人天堂| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 国产精品一区www在线观看| 搞女人的毛片| 欧美精品国产亚洲| 内地一区二区视频在线| 22中文网久久字幕| 舔av片在线| 中文字幕制服av| 国产av码专区亚洲av| 久久精品影院6| 热99re8久久精品国产| 麻豆成人av视频| www.色视频.com| 国产精品久久久久久精品电影小说 | 日本三级黄在线观看| 国产成人精品久久久久久| av在线天堂中文字幕| 九九爱精品视频在线观看| 国产免费福利视频在线观看| 嫩草影院新地址| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 亚洲av一区综合| 女人被狂操c到高潮| 伦理电影大哥的女人| 高清日韩中文字幕在线| 国产精品蜜桃在线观看| 国产一级毛片七仙女欲春2| 中国国产av一级| 欧美成人免费av一区二区三区| 看十八女毛片水多多多| 床上黄色一级片| 久久精品国产99精品国产亚洲性色| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 内地一区二区视频在线| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 观看免费一级毛片| 2022亚洲国产成人精品| 午夜福利在线观看吧| 亚洲丝袜综合中文字幕| 亚洲av日韩在线播放| 免费不卡的大黄色大毛片视频在线观看 | 高清av免费在线| 久久精品影院6| videossex国产| 国产综合懂色| 欧美+日韩+精品| 午夜福利在线在线| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 国产免费又黄又爽又色| 国产探花极品一区二区| 男女下面进入的视频免费午夜| 久久精品久久精品一区二区三区| 欧美xxxx性猛交bbbb| 亚洲精华国产精华液的使用体验| 男的添女的下面高潮视频| 97在线视频观看| 最近2019中文字幕mv第一页| 日韩视频在线欧美| 22中文网久久字幕| 最近最新中文字幕免费大全7| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 别揉我奶头 嗯啊视频| 特级一级黄色大片| 午夜日本视频在线| 国产一区亚洲一区在线观看| 亚洲av熟女| 国产久久久一区二区三区| 天堂av国产一区二区熟女人妻| 你懂的网址亚洲精品在线观看 | 欧美潮喷喷水| 国产精品国产高清国产av| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 国产麻豆成人av免费视频| 日韩一区二区视频免费看| av在线蜜桃| 国产男人的电影天堂91| 亚洲欧美一区二区三区国产| av黄色大香蕉| 亚洲av日韩在线播放| 亚洲av电影在线观看一区二区三区 | 97热精品久久久久久| 中文字幕精品亚洲无线码一区| 久久久a久久爽久久v久久| 国产激情偷乱视频一区二区| 国产亚洲精品av在线| 精品一区二区三区人妻视频| 日韩人妻高清精品专区| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 国产精品久久久久久av不卡| 午夜激情欧美在线| 亚洲人成网站高清观看| 在线观看66精品国产| 国产精品一区二区性色av| 精品久久久久久久久亚洲| 高清日韩中文字幕在线| 爱豆传媒免费全集在线观看| 一个人免费在线观看电影| 我的女老师完整版在线观看| 日韩强制内射视频| 日韩一区二区三区影片| 少妇的逼水好多| 国产极品精品免费视频能看的| 少妇被粗大猛烈的视频| 听说在线观看完整版免费高清| 三级毛片av免费| 亚洲在线观看片| 黄色日韩在线| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 免费观看人在逋| 日本一本二区三区精品| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 久久欧美精品欧美久久欧美| 欧美xxxx性猛交bbbb| 日本免费在线观看一区| 69av精品久久久久久| 人人妻人人看人人澡| 亚州av有码| 国产在线一区二区三区精 | 色综合站精品国产| 毛片女人毛片| 国产成人一区二区在线| 少妇人妻一区二区三区视频| 日韩成人av中文字幕在线观看| 非洲黑人性xxxx精品又粗又长| 夜夜爽夜夜爽视频| 日韩欧美国产在线观看| 国产成人freesex在线| 亚洲真实伦在线观看| 色哟哟·www| 国产精品熟女久久久久浪| 国产精品一区www在线观看| 成人亚洲精品av一区二区| 免费av观看视频| 老司机影院毛片| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 国产视频首页在线观看| 男人和女人高潮做爰伦理| 亚洲成av人片在线播放无| 亚洲av.av天堂| 国产真实乱freesex| 日韩欧美在线乱码| 亚洲av中文av极速乱| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 天堂网av新在线| 亚洲色图av天堂| 少妇熟女aⅴ在线视频| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 亚洲第一区二区三区不卡| 日本三级黄在线观看| 看十八女毛片水多多多| 99久久精品热视频| 2021少妇久久久久久久久久久| 国产欧美日韩精品一区二区| 91av网一区二区| 美女cb高潮喷水在线观看| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 丰满乱子伦码专区| 久久久久久久久中文| 国产一区二区亚洲精品在线观看| av专区在线播放| 国产一区亚洲一区在线观看| av黄色大香蕉| 国产真实伦视频高清在线观看| 亚洲精品色激情综合| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 亚洲国产精品久久男人天堂| 大话2 男鬼变身卡| 一区二区三区免费毛片| 搞女人的毛片| 日本欧美国产在线视频| 午夜精品国产一区二区电影 | 高清日韩中文字幕在线| 三级国产精品片| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 国产在视频线精品| 亚洲av中文字字幕乱码综合| 永久免费av网站大全| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 最近中文字幕2019免费版| av在线播放精品| 中文资源天堂在线| 精品一区二区免费观看| 超碰97精品在线观看| ponron亚洲| 亚洲欧美日韩卡通动漫| 人人妻人人看人人澡| 在线免费观看的www视频| 超碰97精品在线观看| 午夜福利网站1000一区二区三区| 嫩草影院精品99| 精品久久久久久成人av| 国产精品国产三级专区第一集| 国产精品久久久久久av不卡| 亚洲国产日韩欧美精品在线观看| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 国产精品福利在线免费观看| 男人和女人高潮做爰伦理| 夫妻性生交免费视频一级片| 日韩av在线大香蕉| 国产成人一区二区在线| 成年女人永久免费观看视频| 亚洲在线观看片| 亚洲av.av天堂| 中文字幕制服av| 深夜a级毛片| 久久人人爽人人片av| 中文天堂在线官网| 久久久久九九精品影院| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 亚洲国产色片| av福利片在线观看| 久久人人爽人人爽人人片va| 国产精品永久免费网站| 日韩av在线免费看完整版不卡| 精品久久久久久久末码| 99热精品在线国产| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| 日韩人妻高清精品专区| 国产极品天堂在线| 国产精华一区二区三区| 亚洲av日韩在线播放| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 99热全是精品| 村上凉子中文字幕在线| 免费黄网站久久成人精品| 热99在线观看视频| 午夜福利成人在线免费观看| 蜜臀久久99精品久久宅男| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 国产免费福利视频在线观看| 舔av片在线| 可以在线观看毛片的网站| 日韩三级伦理在线观看| 午夜久久久久精精品| 精品一区二区免费观看| 中文字幕制服av| 久久久久精品久久久久真实原创| 一级av片app| 久久国产乱子免费精品| 少妇人妻精品综合一区二区| 成年版毛片免费区| 欧美成人a在线观看| 人人妻人人澡人人爽人人夜夜 | 成年av动漫网址| 国产色爽女视频免费观看| 国产白丝娇喘喷水9色精品| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 国内少妇人妻偷人精品xxx网站| 国产真实乱freesex| 亚洲av日韩在线播放| 老司机影院成人| 美女脱内裤让男人舔精品视频| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 一区二区三区四区激情视频| 亚洲,欧美,日韩| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 国产一区二区亚洲精品在线观看| 国产淫语在线视频| 国产精品,欧美在线| 久久草成人影院| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 亚洲av日韩在线播放| 国产亚洲av嫩草精品影院| 黄色日韩在线| 男女视频在线观看网站免费| 特级一级黄色大片| 亚洲av电影在线观看一区二区三区 | 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 啦啦啦观看免费观看视频高清| 黑人高潮一二区| 国产精品永久免费网站| 久久这里只有精品中国| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看| 韩国高清视频一区二区三区| 亚洲精品日韩在线中文字幕| 日韩 亚洲 欧美在线| 一区二区三区高清视频在线| 大香蕉97超碰在线| 国产精品一区二区性色av| 午夜福利在线观看吧| 精品国产露脸久久av麻豆 | 男女国产视频网站| 午夜免费男女啪啪视频观看| 少妇的逼好多水| 在线播放无遮挡| 亚洲国产欧美在线一区| 日本一本二区三区精品| 日本wwww免费看| 国产v大片淫在线免费观看| 美女大奶头视频| a级毛色黄片| 日韩av在线免费看完整版不卡| 热99re8久久精品国产| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 久久久久网色| 边亲边吃奶的免费视频| 日本一二三区视频观看| 国产老妇女一区| av国产久精品久网站免费入址| 老司机影院毛片| 18禁裸乳无遮挡免费网站照片| 国产精品.久久久| 日日摸夜夜添夜夜爱| 国产毛片a区久久久久| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 亚洲av不卡在线观看| 亚洲国产精品sss在线观看| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 三级毛片av免费| 午夜日本视频在线| 久久久久网色| 成人毛片60女人毛片免费| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 免费无遮挡裸体视频| 丝袜美腿在线中文| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 亚洲中文字幕日韩| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 亚洲国产色片| 2022亚洲国产成人精品| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 女人被狂操c到高潮| av国产免费在线观看| 蜜桃久久精品国产亚洲av| 久久久久久伊人网av| 男女那种视频在线观看| 天堂√8在线中文| 99热这里只有是精品50| 国产一区二区在线av高清观看| 亚洲国产日韩欧美精品在线观看| 青青草视频在线视频观看| 看免费成人av毛片| 91精品伊人久久大香线蕉| 波野结衣二区三区在线| 一本久久精品| 午夜福利网站1000一区二区三区| 简卡轻食公司| 欧美日本亚洲视频在线播放| 极品教师在线视频| 菩萨蛮人人尽说江南好唐韦庄 | av天堂中文字幕网| 丰满少妇做爰视频| 亚洲av日韩在线播放| 在线免费十八禁| 汤姆久久久久久久影院中文字幕 | 久久久色成人| 久久久亚洲精品成人影院| 三级国产精品片| 日本五十路高清| 女的被弄到高潮叫床怎么办| 美女黄网站色视频| 国产在线男女| 国产黄色小视频在线观看| 大香蕉久久网| 国产在视频线精品| 午夜福利高清视频| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 国产精品日韩av在线免费观看| 97超碰精品成人国产| 亚洲av熟女| 国产av码专区亚洲av| 在线免费十八禁| 国产精品国产三级专区第一集| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 国国产精品蜜臀av免费| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| h日本视频在线播放| 男人的好看免费观看在线视频| 精品国产一区二区三区久久久樱花 | 在线观看66精品国产| videossex国产| 三级国产精品欧美在线观看| 久久精品国产亚洲网站| 国产不卡一卡二| 亚洲在线自拍视频| 久久久久久久午夜电影| 高清视频免费观看一区二区 | 综合色丁香网| 欧美激情久久久久久爽电影| 国语对白做爰xxxⅹ性视频网站| 亚洲精品aⅴ在线观看| 国产亚洲一区二区精品| 草草在线视频免费看| 精品国内亚洲2022精品成人| 久久久精品94久久精品|