• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New D-GCL for Unidirectional Motion with Large Displacement

    2018-03-29 07:36:04,,

    ,,

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    Flows around moving boundaries can be encountered in many practical situations,such as aeroelastic problems of aircrafts,stage separation of rockets,separation of projectile and the takeoff and landing of aircrafts,and so on.Generally,there are mainly four kinds of computational fluid dynamic(CFD)methods for moving boundary problems:(1)Grid velocity method[1],which is to simulate unsteady flows via grid movement;(2)overset grid method[2],where valid Chimera holes need to be cut in each grid in regions that overlap with solid bodies or any other non-flow regions which belong to the other grids of the overset grid system;(3)moving grid method[3],which uses arbitrary Lagrangian-Eulerian(ALE)scheme to solve unsteady Euler/Navier-Stokes(N-S)equations;(4)the immersed boundary method[4],which is becoming apopular approach due to its simplicity and easy implementation.

    To avoid the error induced by grid motion,the geometric conservation law (GCL)proposed by Thomas and Lombard[5],should be taken into consideration.It poses some restrictions on the update procedure for the positions of grid points and grid velocities.Lesoinne and Farhat[6]stated that the change in area(volume)of each control volume betweentnandtn+1must be equal to the area(volume)swept by the cell boundaries duringΔt=tn+1-tn,and they found that spurious and potentially unstable oscillations may occur if GCL was violated.Later,Koobus and Farhat[7]formulated the consequence of GCL on the second-order implicit temporal discretization of the semi-discrete equations,and used it as a guideline to construct a new family of second-order time-ac-curate and geometrically conservative implicit numerical schemes for flow computations on moving grids.They also stated that it had been shown that violating GCL in aeroelastic computations could introduce a parasitic weak instability in the lift response.Therefore,GCL should be satisfied without much increase of computational complexity.From another point of view,Guillard and Farhat[8]proved that satisfying an appropriate DGCL is a sufficient condition for a numerical scheme to guarantee at least first-order time accuracy on moving grids.Further,F(xiàn)arhat et al.[9]pointed out that for sample ALE schemes,satisfying the corresponding D-GCL is a necessary and sufficient condition for a numerical scheme to preserve the nonlinear stability of its fixed grid counterpart,and the impact of this theoretical result was numerically studied through some practical applications.

    In general,GCL can be solved explicitly at each control volume face for the boundary velocities[10],where geometric calculation would be complex and thus more computational efforts are needed.In practice,a more simple and efficient way is to directly evaluate the volume fluxes through all control volume faces,by which complex geometric calculation can be avoided.However,the accumulated error may be produced when using this method and sometimes they could not be ignored,e.g.,in the cases of unidirectional large mesh deformation.Moreover,due to the error,the non-physical negative cell volume may be encountered,causing the program blowing up,yet there is little research about this issue.Hence,a new D-GCL is proposed in this paper which uses the control volume analytically evaluated from the grid motion at the time leveln,instead of using the calculated value from the DGCL itself.By analyzing the truncation error,it is theoretically proven that the accumulated error could be effectively reduced,while without loss of the accuracy of numerical schemes.The capability of the proposed method is numerically demonstrated by adopting a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case.

    1 GCL and Original Discrete Procedure

    GCL originates from the basic requirement that any ALE schemes should be able to exactly predict the trivial solution of a uniform flow.The ALE equation of mass conservation is usually taken as the starting point to derive the geometric conservation law.For an arbitrary control volume Ωbounded by a closed surface S,the integral form of the law of mass conservation can be written as follows[11]

    whereρis the fluid density,Vthe fluid velocity,vtthe velocity of the boundary of the control volumeΩ ,and n = (nx,ny,nz)is the unit normal vector pointing outwards of the surface element ds,as shown in Fig.1.

    Fig.1 Discretization of the original GCL

    With the assumption of a uniform flow having a constant densityρa(bǔ)nd a constant velocity V ,Eq.(1)turns to in the integral form of the geometric conservation law

    Eq.(2)can be temporally discretized by using the same numerical method as used to solve the physical conservation laws.In the case of a first-order time discretization,the corresponding discrete GCL is written as[11]

    whereNfrepresents the number of control volume faces and the superscripts n and(n+1)denote the current and the next time levels,respectively.From Eq.(3),we have

    Note that Eq.(4)is an explicit scheme for obtainingΩn+1I,considering that vtand ncan be analytically evaluated in advance according to the grid motion.

    2 New D-GCL and Truncation Error Analysis

    2.1 Cumulative error

    Theoretically,the volume flux in Eq.(3)equals to zero for such moving control volumes,where the shapes of the grid cells do not change in time.However,the numerical error is inevitably introduced by a spatial discretization method,i.e.

    For a reciprocating motion,e.g.the pitching motion of an airfoil,the error can be counteracted by itself.But for a unidirectional motion with large displacements,such as the rotation of a wind turbine and the landing and take-off of an aircraft,the error will be gradually accumulated when Eq.(3)is marched over time.In this case,the continuous accumulation of a negativeεwill probably lead to a negative volume.In other words,the phenomenon of D-GCL′s cumulative error is found out just according to a negative volume.

    Fig.2 Schematic of a rotating circular cylinder

    Fig.3 Grid zones for the rotating circular cylinder case

    One typical example is a rotating circular cylinder as sketched in Fig.2.Fig.3shows the corresponding computational domain,which is divided into two zones:Zone 1rotates rigidly with the circular cylinder,and Zone 2remains stationary.O-type grids are applied to both zones and the grid nodes are equally distributed on the interface of the two zones.For achieving apoint matched sliding mesh,as indicated in Fig.4,the physical time step is carefully chosen so that the inner zone rotates across one grid cell per time step.In Fig.5,the cell volume shows an unphysical increase over time when the original D-GCL is used,which is exactly caused by the cumulative error in a unidirectional rotation case.

    Fig.4 Schematic of point matched sliding mesh

    Fig.5 Calculated volumes of cell(1,1)by using the original D-GCL and the proposed D-GCL

    2.2 New D-GCL and error analysis

    To avoid the cumulative error here,the control volume at the time levelnis analytically evaluated according to the grid motion,instead of using the calculated value from the D-GCL itself.In addition,the normal vector is computed at the midpoint configuration between two neighboring time levels,by which the numerical error of the volume flux computation can be effectively reduced.As a result,a new D-GCL is presented

    does not contain any accumulated error of time leveln,and the calculated cell volume is almost constant as shown in Fig.5,according with the real situation.

    Here we turn to the analysis of truncation error of numerical schemes with the new D-GCL.Extending Eq.(1)additionally to the laws of momentum and energy conservation by using a firstorder time-accurate scheme,we can have

    whereτis the time step,F(xiàn)the flux function evaluated by a traditional central difference scheme,gmthe gravity center of the facem,Sm=nmΔSmthe face vector,andθ=tfor explicit schemes and θ=t+τfor implicit ones.The corresponding local truncation error of control volumeΩIcan be written as

    Further,F(xiàn)(ρ(gm,t))is similarly expanded

    Eq.(22)indicates that with the developed D-GCL,the truncation error of the given scheme can be guaranteed to be at least first-order timeaccurate.Therefore,it is theoretically proven from the above that the accuracy of numerical scheme can be maintained while the accumulated error is reduced.

    3 Results and Discussions

    To validate the proposed D-GCL,the unsteady flows around a rotating circular cylinder and the descending GAW-(1)two-element airfoil are investigated.

    The unsteady 2-D N-S equations on structured moving grids are solved by a finite volume method and a dual time-stepping scheme.Non-reflecting boundary condition is used in the far field,and the no slip boundary condition is enforced at solid walls.Calculation of the rotating circular cylinder uses the laminar flow model.The Spalart-Allmaras one-equation turbulence model is employed for the simulation of turbulent flows around the GAW-(1)two-element airfoil,since it is suitable for the simulation of flow around a multi-element airfoil[12].

    3.1 Rotating circular cylinder

    There are two parameters governing the development of the flow around a rotating circular cylinder.One is the Reynolds number,defined byRe=ρDU/μ,where D is the diameter of the cylinder,Uthe fluid velocity,andμthe kinematic viscosity.The other is the ratio of rotation speed to rectilinear speeds,defined byα=ωR/U,where ωis the angular speed andRthe radius of the cylinder.In this case,Reis taken as 200andαas 0.5.The multi-block structured grid is used to discretize the computational domain as described in Section 2.1and a simple dynamic mesh method is adopted.For comparison,the original D-GCL and the proposed method are employed,respectively.

    Fig.6shows the time histories of the lift coefficient.The result calculated by the proposed DGCL is in excellent agreement with that in Ref.[13],where an explicit finite-difference/pseudospectral technique and a new implementation of the Biot-Savart law were used to integrate a velocity/vorticity formulation of the Navier-Stokes equations.On the contrary,the result calculated by the original D-GCL significantly deviates from the other two,which is directly caused by the cumulative error.Therefore,the cumulative error is eliminated and a reasonable result is obtained by using the proposed D-GCL.

    Fig.6 Comparison of calculated time histories of lift coefficient with reference data

    3.2 Descending GAW-(1)two-element airfoil

    The computation is performed at a freestream Mach number of 0.2,a Reynolds number of 2.2×106and an attack angle of 3.0°.The physical time-step is 1.0×10-3s and the number of the sub-iterations in pseudo time is set as 400.The initial height above ground is 50c.The GAW-(1)two-element airfoil descends at the speed of w0=3.563 7m/s,and the airfoil′s attack angle is 4.8°.

    For this descending airfoil,the strategy of moving grids with local mesh reconstruction as presented in Ref.[14]is adopted.Figs.7,8illustrate the C-H-O-type multi-block grid topology and the local mesh around the airfoil,respectively.The number of grid cells is about 9.3millions.To improve the dynamic mesh quality,during the descending process,Zones from 5to 9move with the airfoil in a purely translational motion,while Zones from 1to 4are deformed by a hybrid RBFs-TFI dynamic mesh method[15].When the grids become too skewed somewhere,the local mesh reconstruction is then used.

    Fig.7 Grid topology of GAW-(1)two-element airfoil

    Fig.8 Computational structured grids of GAW-(1)twoelement airfoil

    As listed in Table 1,a negative volume is firstly observed at cell(36,18)in Zone 2when any of the original D-GCL,the sophisticated third-order compound Simpson formula in Ref.[16]and the Runge-Kutta method in Ref.[17]is used.However,as demonstrated in Fig.9,the instantaneous dynamic mesh around cell(36,18)is physically very normal,so the calculated negative volume is actually caused by the cumulative error of D-GCL in this large deformation case.Instead,the proposed D-GCL has avoided the numerical problem and predicts a positive and reasonable cell volume.

    Table 1 Comparison of calculated cell volumes of Cell(36,18)at t=13.8s

    Fig.9 Schematic of the physical grid cell of cell(36,18)in Zone 2

    Further,the computed time history of lift coefficient and pressure contour is shown in Figs.10,11,respectively.It is seen that with the proposed D-GCL,the non-physical phenomenon of negative volume does not appear.As the airfoil approaches the ground,the unsteady ground effect has also been investigated.The computation indicates that the lift of the airfoil decreases as it gets close to the ground.Besides,the result is compared with that from the quasi-steady computation,which adds the equivalent attack angle to airfoil′s attack angle.It is found that with the height decreasing,the unsteady ground effect makes the lift first greater than the quasi-steady value and later becomes less after about 13s.

    Fig.10 Comparison of calculated time histories of lift coefficient

    Fig.11 Pressure contour at t=13s

    4 Conclusions

    To eliminate the cumulative error caused by the discrete procedure in the original D-GCL,a new D-GCL is proposed.Error analysis indicates that it can guarantee the truncation error of the numerical scheme at least first-order time-accurate while the accumulated error is reduced.The capability of the method is demonstrated by investigating a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case.The good agreements between the numerical results and the literature data show that the proposed D-GCL can be well applied to unidirectional motions with large displacements.More importantly,the cumulative error is minimized or eliminated and the numerical difficulty of negative cell volume is overcome.

    Acknowledgement

    This work supported by the National Basic Research Program of China(″973″Project)(No.2014CB046200).

    [1] PARAMESWARAN V,BAEDER J D.Indicial aerodynamics in compressible flow-direct computational fluid dynamics calculations[J].Journal of Aircraft,1997,34(1):131-133.

    [2] NAKAHASHI K,TOGASHI F,SHAROV D.Intergrid-boundary definition method for overset unstructured grid approach[J].AIAA Journal,2000,38(11):2077-2084.

    [3] JAHANGIRIAN A,HADIDOOLABI M.Unstructured moving grids for implicit calculation of unsteady compressible viscous flows[J].Int J Numer Meth Fluids,2005,47:1107-1113.

    [4] PESKIN C S.Flow patterns around heart valves:A numerical method[J].Journal Computer Physics,1972,2:2252-2271.

    [5] THOMAS P D,LOMBARD C K.Geometric conservation law and its applications to flow computations on moving grids[J].AIAA Journal,1979,17:1030-1037.

    [6] LESOINNE M,F(xiàn)ARHAT C.Geometric conservation laws for flow problems with moving boundaries and deformable meshes,and their impact on aeroelastic computations[J].Comput Methods Appl Mech Engrg,1996,134:71-90.

    [7] KOOBUS B,F(xiàn)ARHAT C.Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes[J].Comput Methods Appl Mech Engrg,1999,170:103-129.

    [8] GUILLARD H,F(xiàn)ARHAT C.On the significance of the geometric conservation law for flow computations on moving meshes[J].Comput Methods Appl Mech Engrg,2000,190:1467-1482.

    [9] FARHAT C,GEUZAINE P,Grandmon C.The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids[J].Journal of Computational Physics,2001,174:669-694.

    [10]DEMIRDZIC I.Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries[J].International Journal for Numerical Methods in Fluids,1990,10:771-790.

    [11]DONEA J,HUERTA A,PONTHOT J P,et al.Arbitrary Lagrangian-Eulerian methods[M]∥ Encyclopedia of Computational Mechanics.[S.l.]:John Wiley&Sons,Ltd,2004.

    [12]RUMSEY C L,YING S X.Prediction of high lift:Review of present CFD capability[J].Progress in Aerospace Sciences,2002(38):145-180.

    [13]CHEN Y M,OU Y R,PEARLSTEIN A J.Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion[J].Fluid Mech,1993,253:449-484.

    [14]ZHU Yixi,LU Zhiliang,GUO Tongqing.Numerical simulation of multi-element airfoil in unsteady ground effect[J].Acta Aerodynamic Sinica,2015,33(6):806-811.(in Chinese)

    [15]DING Li,LU Zhiliang,GUO Tongqing.An efficient dynamic mesh generation method for complex multiblock structured grid[J].Advances in Applied Mathematics and Mechanics,2014,6(1):120-134.

    [16]GERALD C F,WHEAT LEY P O.Applied numerical analysis[M].Reading Mass:Addison Wesley,1984.

    [17]GUO Zheng.Numerical simulation technique research for unsteady multi-body flowfield involving moving boundaries[D].Changsha:National University of Defense Technology,2002.(in Chinese)

    美女扒开内裤让男人捅视频| 免费少妇av软件| 欧美黑人欧美精品刺激| ponron亚洲| 国产精品国产高清国产av| 精品国内亚洲2022精品成人| 黄片播放在线免费| 国产高清videossex| 十分钟在线观看高清视频www| 亚洲七黄色美女视频| 婷婷六月久久综合丁香| 动漫黄色视频在线观看| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 国产亚洲精品久久久久5区| 欧美黑人欧美精品刺激| 一级a爱片免费观看的视频| 纯流量卡能插随身wifi吗| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美网| 国产成人av激情在线播放| 高清在线国产一区| 人妻久久中文字幕网| 免费看美女性在线毛片视频| 999精品在线视频| 久久精品亚洲熟妇少妇任你| 精品国内亚洲2022精品成人| 亚洲色图综合在线观看| 91精品国产国语对白视频| 最新美女视频免费是黄的| 亚洲欧美激情综合另类| 欧美日韩一级在线毛片| 精品国产乱码久久久久久男人| 嫩草影院精品99| 亚洲av熟女| 久久久国产成人免费| 精品第一国产精品| 国语自产精品视频在线第100页| 国产成人欧美| 91麻豆精品激情在线观看国产| 一级,二级,三级黄色视频| 国产麻豆成人av免费视频| 亚洲av电影不卡..在线观看| 国产激情欧美一区二区| 亚洲欧美日韩另类电影网站| 午夜精品国产一区二区电影| 美女高潮喷水抽搐中文字幕| 夜夜爽天天搞| 成人国语在线视频| 亚洲av片天天在线观看| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 国产91精品成人一区二区三区| 亚洲人成77777在线视频| a级毛片在线看网站| 18禁黄网站禁片午夜丰满| 欧美中文综合在线视频| 欧美大码av| 亚洲三区欧美一区| 巨乳人妻的诱惑在线观看| www.999成人在线观看| 男女之事视频高清在线观看| 亚洲成av人片免费观看| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 欧美在线黄色| 少妇裸体淫交视频免费看高清 | 午夜福利影视在线免费观看| 午夜两性在线视频| 亚洲精品久久成人aⅴ小说| 美女高潮到喷水免费观看| 69av精品久久久久久| 精品欧美国产一区二区三| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 自线自在国产av| 91麻豆精品激情在线观看国产| 久久人妻福利社区极品人妻图片| 日本一区二区免费在线视频| 一本综合久久免费| 亚洲美女黄片视频| 国产精品日韩av在线免费观看 | 亚洲av五月六月丁香网| av天堂在线播放| 国产免费av片在线观看野外av| АⅤ资源中文在线天堂| www.www免费av| 久久久久久亚洲精品国产蜜桃av| 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 亚洲av日韩精品久久久久久密| 18美女黄网站色大片免费观看| aaaaa片日本免费| 精品第一国产精品| 欧美 亚洲 国产 日韩一| 身体一侧抽搐| 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| 69精品国产乱码久久久| 国产1区2区3区精品| 精品少妇一区二区三区视频日本电影| 午夜福利欧美成人| 亚洲无线在线观看| 成人手机av| 黄片播放在线免费| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 99国产综合亚洲精品| 欧美激情高清一区二区三区| 午夜久久久在线观看| 好看av亚洲va欧美ⅴa在| 妹子高潮喷水视频| 一二三四社区在线视频社区8| 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9| 丁香六月欧美| 国产亚洲精品久久久久久毛片| 免费看a级黄色片| 黄频高清免费视频| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 在线观看66精品国产| 精品人妻1区二区| 日本免费a在线| 国产麻豆成人av免费视频| 91老司机精品| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 午夜精品国产一区二区电影| 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一小说| 久久九九热精品免费| 青草久久国产| 亚洲一卡2卡3卡4卡5卡精品中文| 人人澡人人妻人| 中出人妻视频一区二区| 两人在一起打扑克的视频| 久99久视频精品免费| tocl精华| 免费女性裸体啪啪无遮挡网站| 午夜福利在线观看吧| 69精品国产乱码久久久| 亚洲精华国产精华精| 国产精品av久久久久免费| 日本a在线网址| 在线观看午夜福利视频| 十分钟在线观看高清视频www| 97超级碰碰碰精品色视频在线观看| 久久久久久久精品吃奶| 日韩欧美免费精品| 日韩欧美免费精品| 母亲3免费完整高清在线观看| 久久久久久久久久久久大奶| 免费搜索国产男女视频| av超薄肉色丝袜交足视频| 高清毛片免费观看视频网站| 色精品久久人妻99蜜桃| 禁无遮挡网站| 久久久国产成人免费| 国产麻豆69| 可以免费在线观看a视频的电影网站| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看| 法律面前人人平等表现在哪些方面| 高清在线国产一区| 国产精品一区二区免费欧美| 午夜福利影视在线免费观看| 国产精品一区二区精品视频观看| 亚洲色图av天堂| 成人精品一区二区免费| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 麻豆久久精品国产亚洲av| 丝袜在线中文字幕| 国产精品影院久久| 最新在线观看一区二区三区| 国产亚洲欧美在线一区二区| 天堂√8在线中文| 久久中文看片网| 久久久精品欧美日韩精品| 久久精品aⅴ一区二区三区四区| 亚洲av美国av| 免费av毛片视频| 精品人妻在线不人妻| 亚洲少妇的诱惑av| 丁香欧美五月| 日韩欧美一区二区三区在线观看| 国产亚洲精品第一综合不卡| 麻豆一二三区av精品| 亚洲在线自拍视频| 国产高清videossex| 亚洲天堂国产精品一区在线| 亚洲精品av麻豆狂野| 国产精品99久久99久久久不卡| 亚洲伊人色综图| 十八禁网站免费在线| 国产私拍福利视频在线观看| 国产欧美日韩一区二区三区在线| 欧美绝顶高潮抽搐喷水| 国产精品国产高清国产av| 又紧又爽又黄一区二区| 在线国产一区二区在线| 久热爱精品视频在线9| 日韩免费av在线播放| 美女大奶头视频| 国产精品免费视频内射| 久久久久九九精品影院| 最新在线观看一区二区三区| 国产成人欧美在线观看| 18美女黄网站色大片免费观看| 久久久久久亚洲精品国产蜜桃av| 女人被狂操c到高潮| 91老司机精品| 免费在线观看视频国产中文字幕亚洲| 日本 欧美在线| 黄色女人牲交| 久久中文字幕人妻熟女| 欧美成人性av电影在线观看| 99在线人妻在线中文字幕| 巨乳人妻的诱惑在线观看| 精品久久久久久久人妻蜜臀av | 免费久久久久久久精品成人欧美视频| 亚洲精华国产精华精| 香蕉丝袜av| 99re在线观看精品视频| ponron亚洲| 久久久久国产精品人妻aⅴ院| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆 | 欧美日韩精品网址| 99re在线观看精品视频| 满18在线观看网站| 亚洲精品国产一区二区精华液| 手机成人av网站| 啦啦啦免费观看视频1| 中亚洲国语对白在线视频| 女人精品久久久久毛片| 亚洲成人免费电影在线观看| 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 国产av一区在线观看免费| 免费看a级黄色片| 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 中文字幕久久专区| 亚洲第一青青草原| 亚洲男人的天堂狠狠| 亚洲精品在线观看二区| 波多野结衣一区麻豆| 久久精品亚洲熟妇少妇任你| 国产在线观看jvid| 色精品久久人妻99蜜桃| 人人澡人人妻人| 日本免费一区二区三区高清不卡 | 热99re8久久精品国产| 波多野结衣巨乳人妻| 久久久国产欧美日韩av| 中国美女看黄片| 精品第一国产精品| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 91麻豆av在线| 色哟哟哟哟哟哟| 亚洲成人国产一区在线观看| 亚洲一码二码三码区别大吗| 91老司机精品| 无遮挡黄片免费观看| 亚洲九九香蕉| 精品久久久久久成人av| 国产一区二区三区视频了| 午夜福利免费观看在线| 亚洲五月天丁香| 亚洲中文av在线| 乱人伦中国视频| 纯流量卡能插随身wifi吗| 巨乳人妻的诱惑在线观看| 国产一区二区在线av高清观看| 久久久久久久精品吃奶| 国产成人av教育| 丰满人妻熟妇乱又伦精品不卡| av电影中文网址| 九色亚洲精品在线播放| 人人妻人人澡欧美一区二区 | 久久精品国产亚洲av香蕉五月| 露出奶头的视频| 亚洲人成电影免费在线| 亚洲在线自拍视频| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 老司机午夜十八禁免费视频| 亚洲午夜精品一区,二区,三区| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| 亚洲精品在线美女| 淫秽高清视频在线观看| 两个人看的免费小视频| 黄色 视频免费看| 免费女性裸体啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 大陆偷拍与自拍| 亚洲国产精品久久男人天堂| 黑人巨大精品欧美一区二区蜜桃| 夜夜爽天天搞| 久久青草综合色| 久久精品国产清高在天天线| 久99久视频精品免费| 国产成+人综合+亚洲专区| 婷婷六月久久综合丁香| 国内精品久久久久久久电影| 亚洲午夜理论影院| 国产在线观看jvid| 青草久久国产| 久久精品亚洲精品国产色婷小说| 精品乱码久久久久久99久播| 欧美黄色淫秽网站| 成人永久免费在线观看视频| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 国产精品一区二区三区四区久久 | 丁香欧美五月| 国产黄a三级三级三级人| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| av超薄肉色丝袜交足视频| 久久久久久久午夜电影| 99香蕉大伊视频| 色播在线永久视频| 国产av一区二区精品久久| 国产欧美日韩综合在线一区二区| 国产乱人伦免费视频| 国产在线观看jvid| 久久性视频一级片| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 老司机福利观看| 一二三四在线观看免费中文在| 99精品欧美一区二区三区四区| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 嫩草影院精品99| 日韩欧美国产在线观看| 国产亚洲精品一区二区www| 欧美黑人精品巨大| svipshipincom国产片| 日本五十路高清| 日韩高清综合在线| 美国免费a级毛片| 免费在线观看完整版高清| 免费不卡黄色视频| 亚洲电影在线观看av| 制服丝袜大香蕉在线| 亚洲第一电影网av| 亚洲精品在线观看二区| 久久精品91无色码中文字幕| 色播在线永久视频| 黄片小视频在线播放| 成人国语在线视频| 999精品在线视频| 国产成人精品无人区| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 日韩av在线大香蕉| 亚洲av片天天在线观看| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 久久久久国内视频| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 亚洲精品国产一区二区精华液| 99久久久亚洲精品蜜臀av| 黑丝袜美女国产一区| 国产激情欧美一区二区| 欧美午夜高清在线| 中文字幕色久视频| 悠悠久久av| 亚洲国产欧美一区二区综合| 国产亚洲精品一区二区www| 99热只有精品国产| 多毛熟女@视频| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 一夜夜www| 免费观看精品视频网站| 欧美午夜高清在线| 婷婷丁香在线五月| 精品人妻1区二区| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一码二码三码区别大吗| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| svipshipincom国产片| 91字幕亚洲| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | 男人操女人黄网站| 免费在线观看日本一区| 精品国产亚洲在线| 香蕉久久夜色| 亚洲第一av免费看| 亚洲av熟女| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 亚洲国产高清在线一区二区三 | 国产成人啪精品午夜网站| 欧美日韩瑟瑟在线播放| 日韩欧美三级三区| 可以在线观看的亚洲视频| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 久热这里只有精品99| 好男人在线观看高清免费视频 | 亚洲aⅴ乱码一区二区在线播放 | 人人澡人人妻人| 亚洲少妇的诱惑av| 中亚洲国语对白在线视频| 窝窝影院91人妻| 免费少妇av软件| 日韩大码丰满熟妇| 精品国内亚洲2022精品成人| 午夜福利18| 给我免费播放毛片高清在线观看| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 丝袜人妻中文字幕| 天堂影院成人在线观看| 色老头精品视频在线观看| 日韩欧美一区二区三区在线观看| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 国产私拍福利视频在线观看| 国产1区2区3区精品| 91av网站免费观看| 麻豆成人av在线观看| 久久性视频一级片| 婷婷精品国产亚洲av在线| www国产在线视频色| 男女做爰动态图高潮gif福利片 | 免费看a级黄色片| 夜夜夜夜夜久久久久| 午夜影院日韩av| 法律面前人人平等表现在哪些方面| 日韩欧美三级三区| 精品国产国语对白av| 99国产精品一区二区蜜桃av| 亚洲中文字幕一区二区三区有码在线看 | 久久久久国产精品人妻aⅴ院| 一边摸一边抽搐一进一小说| 亚洲 国产 在线| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 国产亚洲精品av在线| 亚洲黑人精品在线| 999久久久精品免费观看国产| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲| av天堂久久9| 久久久久久久午夜电影| 国产精品国产高清国产av| 久久性视频一级片| 男女午夜视频在线观看| 成人18禁在线播放| 久久久久久久午夜电影| 激情在线观看视频在线高清| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 国产高清videossex| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 嫁个100分男人电影在线观看| 伊人久久大香线蕉亚洲五| 国产成人欧美在线观看| 精品乱码久久久久久99久播| 91九色精品人成在线观看| 亚洲五月天丁香| 久久久久久人人人人人| 91麻豆av在线| 久久精品影院6| 搞女人的毛片| 两性夫妻黄色片| 国产亚洲精品第一综合不卡| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 97人妻天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久av美女十八| 黄片播放在线免费| 欧美日韩乱码在线| 久久久久久免费高清国产稀缺| 桃色一区二区三区在线观看| 1024香蕉在线观看| 咕卡用的链子| 桃红色精品国产亚洲av| 91成人精品电影| 久久影院123| 大陆偷拍与自拍| 黑人巨大精品欧美一区二区mp4| 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 黄色a级毛片大全视频| 欧美激情高清一区二区三区| 亚洲电影在线观看av| 国产区一区二久久| 岛国视频午夜一区免费看| 国产亚洲精品一区二区www| 日韩大码丰满熟妇| 国产三级在线视频| 欧美久久黑人一区二区| 黄色视频,在线免费观看| 黑人巨大精品欧美一区二区mp4| 国产精品秋霞免费鲁丝片| 午夜福利一区二区在线看| 中文字幕av电影在线播放| 免费人成视频x8x8入口观看| 大型黄色视频在线免费观看| 日本在线视频免费播放| or卡值多少钱| 国产精品亚洲一级av第二区| 国产区一区二久久| 男女床上黄色一级片免费看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月婷婷丁香| 91成人精品电影| 亚洲情色 制服丝袜| 99国产综合亚洲精品| 日韩中文字幕欧美一区二区| 性欧美人与动物交配| 亚洲成av片中文字幕在线观看| 欧美 亚洲 国产 日韩一| 精品欧美国产一区二区三| 免费少妇av软件| 欧美最黄视频在线播放免费| 最近最新中文字幕大全免费视频| 老汉色∧v一级毛片| 成熟少妇高潮喷水视频| 变态另类丝袜制服| 九色亚洲精品在线播放| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| 亚洲自偷自拍图片 自拍| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 成人欧美大片| 久久精品91无色码中文字幕| 涩涩av久久男人的天堂| xxx96com| 满18在线观看网站| 伊人久久大香线蕉亚洲五| 日韩欧美国产在线观看| 国产亚洲精品久久久久5区| 激情视频va一区二区三区| 女人被狂操c到高潮| АⅤ资源中文在线天堂| 国语自产精品视频在线第100页| 精品一区二区三区四区五区乱码| 亚洲,欧美精品.| 国产伦一二天堂av在线观看| 久9热在线精品视频| 国产主播在线观看一区二区| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 亚洲伊人色综图| 国产在线精品亚洲第一网站| 黄频高清免费视频| 精品国产超薄肉色丝袜足j| 三级毛片av免费| 美女免费视频网站| 亚洲 欧美一区二区三区| 人成视频在线观看免费观看| 亚洲国产欧美日韩在线播放| 女人精品久久久久毛片| 午夜福利一区二区在线看| 欧美日本视频| 青草久久国产| 在线观看免费视频网站a站| 国产亚洲精品av在线| 如日韩欧美国产精品一区二区三区| 在线观看一区二区三区| 精品国产国语对白av| 如日韩欧美国产精品一区二区三区| avwww免费| 在线国产一区二区在线| 成人手机av| 日本 av在线| 香蕉久久夜色| 日本 欧美在线| 国产成人欧美| 首页视频小说图片口味搜索| 在线观看免费视频网站a站| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美在线二视频| 麻豆久久精品国产亚洲av| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线| 精品欧美一区二区三区在线| 美女高潮喷水抽搐中文字幕| av电影中文网址|