• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New D-GCL for Unidirectional Motion with Large Displacement

    2018-03-29 07:36:04,,

    ,,

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    Flows around moving boundaries can be encountered in many practical situations,such as aeroelastic problems of aircrafts,stage separation of rockets,separation of projectile and the takeoff and landing of aircrafts,and so on.Generally,there are mainly four kinds of computational fluid dynamic(CFD)methods for moving boundary problems:(1)Grid velocity method[1],which is to simulate unsteady flows via grid movement;(2)overset grid method[2],where valid Chimera holes need to be cut in each grid in regions that overlap with solid bodies or any other non-flow regions which belong to the other grids of the overset grid system;(3)moving grid method[3],which uses arbitrary Lagrangian-Eulerian(ALE)scheme to solve unsteady Euler/Navier-Stokes(N-S)equations;(4)the immersed boundary method[4],which is becoming apopular approach due to its simplicity and easy implementation.

    To avoid the error induced by grid motion,the geometric conservation law (GCL)proposed by Thomas and Lombard[5],should be taken into consideration.It poses some restrictions on the update procedure for the positions of grid points and grid velocities.Lesoinne and Farhat[6]stated that the change in area(volume)of each control volume betweentnandtn+1must be equal to the area(volume)swept by the cell boundaries duringΔt=tn+1-tn,and they found that spurious and potentially unstable oscillations may occur if GCL was violated.Later,Koobus and Farhat[7]formulated the consequence of GCL on the second-order implicit temporal discretization of the semi-discrete equations,and used it as a guideline to construct a new family of second-order time-ac-curate and geometrically conservative implicit numerical schemes for flow computations on moving grids.They also stated that it had been shown that violating GCL in aeroelastic computations could introduce a parasitic weak instability in the lift response.Therefore,GCL should be satisfied without much increase of computational complexity.From another point of view,Guillard and Farhat[8]proved that satisfying an appropriate DGCL is a sufficient condition for a numerical scheme to guarantee at least first-order time accuracy on moving grids.Further,F(xiàn)arhat et al.[9]pointed out that for sample ALE schemes,satisfying the corresponding D-GCL is a necessary and sufficient condition for a numerical scheme to preserve the nonlinear stability of its fixed grid counterpart,and the impact of this theoretical result was numerically studied through some practical applications.

    In general,GCL can be solved explicitly at each control volume face for the boundary velocities[10],where geometric calculation would be complex and thus more computational efforts are needed.In practice,a more simple and efficient way is to directly evaluate the volume fluxes through all control volume faces,by which complex geometric calculation can be avoided.However,the accumulated error may be produced when using this method and sometimes they could not be ignored,e.g.,in the cases of unidirectional large mesh deformation.Moreover,due to the error,the non-physical negative cell volume may be encountered,causing the program blowing up,yet there is little research about this issue.Hence,a new D-GCL is proposed in this paper which uses the control volume analytically evaluated from the grid motion at the time leveln,instead of using the calculated value from the DGCL itself.By analyzing the truncation error,it is theoretically proven that the accumulated error could be effectively reduced,while without loss of the accuracy of numerical schemes.The capability of the proposed method is numerically demonstrated by adopting a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case.

    1 GCL and Original Discrete Procedure

    GCL originates from the basic requirement that any ALE schemes should be able to exactly predict the trivial solution of a uniform flow.The ALE equation of mass conservation is usually taken as the starting point to derive the geometric conservation law.For an arbitrary control volume Ωbounded by a closed surface S,the integral form of the law of mass conservation can be written as follows[11]

    whereρis the fluid density,Vthe fluid velocity,vtthe velocity of the boundary of the control volumeΩ ,and n = (nx,ny,nz)is the unit normal vector pointing outwards of the surface element ds,as shown in Fig.1.

    Fig.1 Discretization of the original GCL

    With the assumption of a uniform flow having a constant densityρa(bǔ)nd a constant velocity V ,Eq.(1)turns to in the integral form of the geometric conservation law

    Eq.(2)can be temporally discretized by using the same numerical method as used to solve the physical conservation laws.In the case of a first-order time discretization,the corresponding discrete GCL is written as[11]

    whereNfrepresents the number of control volume faces and the superscripts n and(n+1)denote the current and the next time levels,respectively.From Eq.(3),we have

    Note that Eq.(4)is an explicit scheme for obtainingΩn+1I,considering that vtand ncan be analytically evaluated in advance according to the grid motion.

    2 New D-GCL and Truncation Error Analysis

    2.1 Cumulative error

    Theoretically,the volume flux in Eq.(3)equals to zero for such moving control volumes,where the shapes of the grid cells do not change in time.However,the numerical error is inevitably introduced by a spatial discretization method,i.e.

    For a reciprocating motion,e.g.the pitching motion of an airfoil,the error can be counteracted by itself.But for a unidirectional motion with large displacements,such as the rotation of a wind turbine and the landing and take-off of an aircraft,the error will be gradually accumulated when Eq.(3)is marched over time.In this case,the continuous accumulation of a negativeεwill probably lead to a negative volume.In other words,the phenomenon of D-GCL′s cumulative error is found out just according to a negative volume.

    Fig.2 Schematic of a rotating circular cylinder

    Fig.3 Grid zones for the rotating circular cylinder case

    One typical example is a rotating circular cylinder as sketched in Fig.2.Fig.3shows the corresponding computational domain,which is divided into two zones:Zone 1rotates rigidly with the circular cylinder,and Zone 2remains stationary.O-type grids are applied to both zones and the grid nodes are equally distributed on the interface of the two zones.For achieving apoint matched sliding mesh,as indicated in Fig.4,the physical time step is carefully chosen so that the inner zone rotates across one grid cell per time step.In Fig.5,the cell volume shows an unphysical increase over time when the original D-GCL is used,which is exactly caused by the cumulative error in a unidirectional rotation case.

    Fig.4 Schematic of point matched sliding mesh

    Fig.5 Calculated volumes of cell(1,1)by using the original D-GCL and the proposed D-GCL

    2.2 New D-GCL and error analysis

    To avoid the cumulative error here,the control volume at the time levelnis analytically evaluated according to the grid motion,instead of using the calculated value from the D-GCL itself.In addition,the normal vector is computed at the midpoint configuration between two neighboring time levels,by which the numerical error of the volume flux computation can be effectively reduced.As a result,a new D-GCL is presented

    does not contain any accumulated error of time leveln,and the calculated cell volume is almost constant as shown in Fig.5,according with the real situation.

    Here we turn to the analysis of truncation error of numerical schemes with the new D-GCL.Extending Eq.(1)additionally to the laws of momentum and energy conservation by using a firstorder time-accurate scheme,we can have

    whereτis the time step,F(xiàn)the flux function evaluated by a traditional central difference scheme,gmthe gravity center of the facem,Sm=nmΔSmthe face vector,andθ=tfor explicit schemes and θ=t+τfor implicit ones.The corresponding local truncation error of control volumeΩIcan be written as

    Further,F(xiàn)(ρ(gm,t))is similarly expanded

    Eq.(22)indicates that with the developed D-GCL,the truncation error of the given scheme can be guaranteed to be at least first-order timeaccurate.Therefore,it is theoretically proven from the above that the accuracy of numerical scheme can be maintained while the accumulated error is reduced.

    3 Results and Discussions

    To validate the proposed D-GCL,the unsteady flows around a rotating circular cylinder and the descending GAW-(1)two-element airfoil are investigated.

    The unsteady 2-D N-S equations on structured moving grids are solved by a finite volume method and a dual time-stepping scheme.Non-reflecting boundary condition is used in the far field,and the no slip boundary condition is enforced at solid walls.Calculation of the rotating circular cylinder uses the laminar flow model.The Spalart-Allmaras one-equation turbulence model is employed for the simulation of turbulent flows around the GAW-(1)two-element airfoil,since it is suitable for the simulation of flow around a multi-element airfoil[12].

    3.1 Rotating circular cylinder

    There are two parameters governing the development of the flow around a rotating circular cylinder.One is the Reynolds number,defined byRe=ρDU/μ,where D is the diameter of the cylinder,Uthe fluid velocity,andμthe kinematic viscosity.The other is the ratio of rotation speed to rectilinear speeds,defined byα=ωR/U,where ωis the angular speed andRthe radius of the cylinder.In this case,Reis taken as 200andαas 0.5.The multi-block structured grid is used to discretize the computational domain as described in Section 2.1and a simple dynamic mesh method is adopted.For comparison,the original D-GCL and the proposed method are employed,respectively.

    Fig.6shows the time histories of the lift coefficient.The result calculated by the proposed DGCL is in excellent agreement with that in Ref.[13],where an explicit finite-difference/pseudospectral technique and a new implementation of the Biot-Savart law were used to integrate a velocity/vorticity formulation of the Navier-Stokes equations.On the contrary,the result calculated by the original D-GCL significantly deviates from the other two,which is directly caused by the cumulative error.Therefore,the cumulative error is eliminated and a reasonable result is obtained by using the proposed D-GCL.

    Fig.6 Comparison of calculated time histories of lift coefficient with reference data

    3.2 Descending GAW-(1)two-element airfoil

    The computation is performed at a freestream Mach number of 0.2,a Reynolds number of 2.2×106and an attack angle of 3.0°.The physical time-step is 1.0×10-3s and the number of the sub-iterations in pseudo time is set as 400.The initial height above ground is 50c.The GAW-(1)two-element airfoil descends at the speed of w0=3.563 7m/s,and the airfoil′s attack angle is 4.8°.

    For this descending airfoil,the strategy of moving grids with local mesh reconstruction as presented in Ref.[14]is adopted.Figs.7,8illustrate the C-H-O-type multi-block grid topology and the local mesh around the airfoil,respectively.The number of grid cells is about 9.3millions.To improve the dynamic mesh quality,during the descending process,Zones from 5to 9move with the airfoil in a purely translational motion,while Zones from 1to 4are deformed by a hybrid RBFs-TFI dynamic mesh method[15].When the grids become too skewed somewhere,the local mesh reconstruction is then used.

    Fig.7 Grid topology of GAW-(1)two-element airfoil

    Fig.8 Computational structured grids of GAW-(1)twoelement airfoil

    As listed in Table 1,a negative volume is firstly observed at cell(36,18)in Zone 2when any of the original D-GCL,the sophisticated third-order compound Simpson formula in Ref.[16]and the Runge-Kutta method in Ref.[17]is used.However,as demonstrated in Fig.9,the instantaneous dynamic mesh around cell(36,18)is physically very normal,so the calculated negative volume is actually caused by the cumulative error of D-GCL in this large deformation case.Instead,the proposed D-GCL has avoided the numerical problem and predicts a positive and reasonable cell volume.

    Table 1 Comparison of calculated cell volumes of Cell(36,18)at t=13.8s

    Fig.9 Schematic of the physical grid cell of cell(36,18)in Zone 2

    Further,the computed time history of lift coefficient and pressure contour is shown in Figs.10,11,respectively.It is seen that with the proposed D-GCL,the non-physical phenomenon of negative volume does not appear.As the airfoil approaches the ground,the unsteady ground effect has also been investigated.The computation indicates that the lift of the airfoil decreases as it gets close to the ground.Besides,the result is compared with that from the quasi-steady computation,which adds the equivalent attack angle to airfoil′s attack angle.It is found that with the height decreasing,the unsteady ground effect makes the lift first greater than the quasi-steady value and later becomes less after about 13s.

    Fig.10 Comparison of calculated time histories of lift coefficient

    Fig.11 Pressure contour at t=13s

    4 Conclusions

    To eliminate the cumulative error caused by the discrete procedure in the original D-GCL,a new D-GCL is proposed.Error analysis indicates that it can guarantee the truncation error of the numerical scheme at least first-order time-accurate while the accumulated error is reduced.The capability of the method is demonstrated by investigating a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case.The good agreements between the numerical results and the literature data show that the proposed D-GCL can be well applied to unidirectional motions with large displacements.More importantly,the cumulative error is minimized or eliminated and the numerical difficulty of negative cell volume is overcome.

    Acknowledgement

    This work supported by the National Basic Research Program of China(″973″Project)(No.2014CB046200).

    [1] PARAMESWARAN V,BAEDER J D.Indicial aerodynamics in compressible flow-direct computational fluid dynamics calculations[J].Journal of Aircraft,1997,34(1):131-133.

    [2] NAKAHASHI K,TOGASHI F,SHAROV D.Intergrid-boundary definition method for overset unstructured grid approach[J].AIAA Journal,2000,38(11):2077-2084.

    [3] JAHANGIRIAN A,HADIDOOLABI M.Unstructured moving grids for implicit calculation of unsteady compressible viscous flows[J].Int J Numer Meth Fluids,2005,47:1107-1113.

    [4] PESKIN C S.Flow patterns around heart valves:A numerical method[J].Journal Computer Physics,1972,2:2252-2271.

    [5] THOMAS P D,LOMBARD C K.Geometric conservation law and its applications to flow computations on moving grids[J].AIAA Journal,1979,17:1030-1037.

    [6] LESOINNE M,F(xiàn)ARHAT C.Geometric conservation laws for flow problems with moving boundaries and deformable meshes,and their impact on aeroelastic computations[J].Comput Methods Appl Mech Engrg,1996,134:71-90.

    [7] KOOBUS B,F(xiàn)ARHAT C.Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes[J].Comput Methods Appl Mech Engrg,1999,170:103-129.

    [8] GUILLARD H,F(xiàn)ARHAT C.On the significance of the geometric conservation law for flow computations on moving meshes[J].Comput Methods Appl Mech Engrg,2000,190:1467-1482.

    [9] FARHAT C,GEUZAINE P,Grandmon C.The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids[J].Journal of Computational Physics,2001,174:669-694.

    [10]DEMIRDZIC I.Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries[J].International Journal for Numerical Methods in Fluids,1990,10:771-790.

    [11]DONEA J,HUERTA A,PONTHOT J P,et al.Arbitrary Lagrangian-Eulerian methods[M]∥ Encyclopedia of Computational Mechanics.[S.l.]:John Wiley&Sons,Ltd,2004.

    [12]RUMSEY C L,YING S X.Prediction of high lift:Review of present CFD capability[J].Progress in Aerospace Sciences,2002(38):145-180.

    [13]CHEN Y M,OU Y R,PEARLSTEIN A J.Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion[J].Fluid Mech,1993,253:449-484.

    [14]ZHU Yixi,LU Zhiliang,GUO Tongqing.Numerical simulation of multi-element airfoil in unsteady ground effect[J].Acta Aerodynamic Sinica,2015,33(6):806-811.(in Chinese)

    [15]DING Li,LU Zhiliang,GUO Tongqing.An efficient dynamic mesh generation method for complex multiblock structured grid[J].Advances in Applied Mathematics and Mechanics,2014,6(1):120-134.

    [16]GERALD C F,WHEAT LEY P O.Applied numerical analysis[M].Reading Mass:Addison Wesley,1984.

    [17]GUO Zheng.Numerical simulation technique research for unsteady multi-body flowfield involving moving boundaries[D].Changsha:National University of Defense Technology,2002.(in Chinese)

    亚洲18禁久久av| 亚洲综合精品二区| h日本视频在线播放| 一区二区三区四区激情视频| 又粗又硬又长又爽又黄的视频| 亚洲真实伦在线观看| 亚洲av中文av极速乱| 中文天堂在线官网| av在线亚洲专区| 男女那种视频在线观看| 韩国高清视频一区二区三区| 69人妻影院| 免费大片18禁| 国产黄a三级三级三级人| 久久久久久伊人网av| 日日啪夜夜撸| 午夜福利网站1000一区二区三区| 三级男女做爰猛烈吃奶摸视频| a级一级毛片免费在线观看| 国产 一区 欧美 日韩| 日本黄色片子视频| 乱系列少妇在线播放| 亚洲高清免费不卡视频| 噜噜噜噜噜久久久久久91| 久久久久久久久大av| 日产精品乱码卡一卡2卡三| 欧美区成人在线视频| 啦啦啦啦在线视频资源| 亚洲欧美日韩卡通动漫| a级毛片免费高清观看在线播放| 国内揄拍国产精品人妻在线| 午夜福利高清视频| 三级男女做爰猛烈吃奶摸视频| 国产伦理片在线播放av一区| 男女那种视频在线观看| 亚洲精品国产av蜜桃| 韩国av在线不卡| 婷婷色综合www| 搡老妇女老女人老熟妇| 亚洲熟妇中文字幕五十中出| 91av网一区二区| ponron亚洲| 亚洲av二区三区四区| 在线播放无遮挡| 国产成人精品一,二区| 亚洲成人一二三区av| 麻豆成人午夜福利视频| 国产精品久久久久久av不卡| 校园人妻丝袜中文字幕| 亚洲熟妇中文字幕五十中出| 美女xxoo啪啪120秒动态图| 久久久久久久久久黄片| 日韩大片免费观看网站| 精品久久久久久久久av| 亚洲av一区综合| 一区二区三区四区激情视频| 床上黄色一级片| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线免费看完整版不卡| 两个人的视频大全免费| 99久久九九国产精品国产免费| 国产探花在线观看一区二区| 中国美白少妇内射xxxbb| 中文字幕av在线有码专区| 久久久欧美国产精品| 国产色婷婷99| 国产色爽女视频免费观看| 国产精品蜜桃在线观看| 国产视频内射| av女优亚洲男人天堂| 国产亚洲精品久久久com| 亚洲婷婷狠狠爱综合网| 少妇猛男粗大的猛烈进出视频 | 精品国产一区二区三区久久久樱花 | 日日摸夜夜添夜夜爱| 色播亚洲综合网| av在线播放精品| 69av精品久久久久久| 午夜亚洲福利在线播放| 深爱激情五月婷婷| a级毛片免费高清观看在线播放| 国产一区亚洲一区在线观看| 日韩不卡一区二区三区视频在线| 在线免费观看不下载黄p国产| 久久久久性生活片| 精品国内亚洲2022精品成人| 国产白丝娇喘喷水9色精品| 午夜福利网站1000一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品94久久精品| 视频中文字幕在线观看| 18禁在线无遮挡免费观看视频| 久久久久性生活片| 真实男女啪啪啪动态图| 免费黄网站久久成人精品| 欧美 日韩 精品 国产| 一级av片app| 久久精品久久久久久久性| 晚上一个人看的免费电影| 如何舔出高潮| 国产探花在线观看一区二区| 日韩一区二区视频免费看| 精品久久久噜噜| 欧美一级a爱片免费观看看| 丝袜喷水一区| 免费黄频网站在线观看国产| 又爽又黄a免费视频| 午夜精品国产一区二区电影 | 777米奇影视久久| 黑人高潮一二区| 日韩欧美三级三区| 高清日韩中文字幕在线| 日日撸夜夜添| 亚洲综合色惰| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品成人久久久久久| 欧美日韩在线观看h| 亚洲乱码一区二区免费版| 亚洲精品乱码久久久久久按摩| 大话2 男鬼变身卡| 在线天堂最新版资源| av天堂中文字幕网| h日本视频在线播放| 国产成人freesex在线| 亚洲欧美日韩东京热| 日韩国内少妇激情av| av在线亚洲专区| 成年女人看的毛片在线观看| 日韩人妻高清精品专区| 亚洲欧美精品自产自拍| 22中文网久久字幕| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 亚洲av免费在线观看| 一边亲一边摸免费视频| 九色成人免费人妻av| 91精品伊人久久大香线蕉| 成年人午夜在线观看视频 | av女优亚洲男人天堂| 少妇人妻精品综合一区二区| 国产片特级美女逼逼视频| 中文乱码字字幕精品一区二区三区 | 一级毛片我不卡| 国产亚洲av嫩草精品影院| 成人无遮挡网站| 最后的刺客免费高清国语| 性插视频无遮挡在线免费观看| 国产精品久久久久久av不卡| 精品久久久精品久久久| 久久久色成人| 好男人在线观看高清免费视频| 国内精品宾馆在线| 久久久久九九精品影院| 日本一二三区视频观看| 国产麻豆成人av免费视频| 久久人人爽人人片av| 亚洲精品第二区| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品电影小说 | 2018国产大陆天天弄谢| 少妇的逼好多水| 国产成人精品婷婷| 欧美精品国产亚洲| 日韩三级伦理在线观看| 久久久久久久久久黄片| 国产男人的电影天堂91| 国产 亚洲一区二区三区 | 免费观看a级毛片全部| 日本与韩国留学比较| 深夜a级毛片| 蜜臀久久99精品久久宅男| 亚洲精品自拍成人| 2021天堂中文幕一二区在线观| 国产极品天堂在线| 只有这里有精品99| 午夜福利在线在线| 国产黄色免费在线视频| 永久免费av网站大全| 久久久亚洲精品成人影院| 亚洲av国产av综合av卡| 亚洲国产日韩欧美精品在线观看| 干丝袜人妻中文字幕| 中文字幕制服av| 午夜精品一区二区三区免费看| 一个人看视频在线观看www免费| 最近中文字幕2019免费版| 哪个播放器可以免费观看大片| 国产精品三级大全| 高清欧美精品videossex| 99久国产av精品国产电影| 亚洲美女搞黄在线观看| 久久精品熟女亚洲av麻豆精品 | 久久久欧美国产精品| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 精品久久久久久久久av| 国产精品久久久久久av不卡| 精品人妻熟女av久视频| 99久国产av精品| 精品久久久久久久人妻蜜臀av| 国产黄片美女视频| 2021天堂中文幕一二区在线观| 26uuu在线亚洲综合色| 国产成人精品婷婷| 嫩草影院新地址| 18禁裸乳无遮挡免费网站照片| 韩国av在线不卡| 午夜久久久久精精品| 成年女人在线观看亚洲视频 | 国产探花在线观看一区二区| 天天一区二区日本电影三级| 中文天堂在线官网| 热99在线观看视频| 91久久精品国产一区二区三区| 欧美成人a在线观看| 亚洲国产成人一精品久久久| 国产探花极品一区二区| 麻豆久久精品国产亚洲av| 夜夜爽夜夜爽视频| 男人舔奶头视频| 免费大片18禁| 99久久人妻综合| 天堂中文最新版在线下载 | 22中文网久久字幕| 亚洲av一区综合| 亚洲不卡免费看| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看 | 久久这里有精品视频免费| 亚洲精品自拍成人| 男女国产视频网站| 国产精品久久久久久av不卡| 欧美成人精品欧美一级黄| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 综合色av麻豆| 国产麻豆成人av免费视频| 亚洲精品乱码久久久v下载方式| 亚洲在线观看片| 免费观看av网站的网址| 丰满人妻一区二区三区视频av| 97精品久久久久久久久久精品| av在线亚洲专区| 亚洲成人中文字幕在线播放| 亚洲国产日韩欧美精品在线观看| 国产伦理片在线播放av一区| 成人亚洲精品一区在线观看 | 亚洲av成人精品一二三区| 综合色丁香网| 亚洲精品第二区| 联通29元200g的流量卡| 国产男女超爽视频在线观看| av播播在线观看一区| 色哟哟·www| 免费观看的影片在线观看| 嘟嘟电影网在线观看| 成人欧美大片| .国产精品久久| 免费看a级黄色片| 国产精品人妻久久久影院| 女人十人毛片免费观看3o分钟| 能在线免费观看的黄片| 婷婷色av中文字幕| 赤兔流量卡办理| 亚洲国产高清在线一区二区三| 日本色播在线视频| 午夜激情久久久久久久| 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 国产伦理片在线播放av一区| 久久久久久九九精品二区国产| www.色视频.com| 少妇裸体淫交视频免费看高清| 亚洲欧美清纯卡通| 欧美日韩亚洲高清精品| 午夜免费观看性视频| 人体艺术视频欧美日本| 亚洲国产精品sss在线观看| 国产精品一区二区三区四区久久| 日日干狠狠操夜夜爽| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 亚洲自拍偷在线| 2018国产大陆天天弄谢| 99久国产av精品国产电影| 国产v大片淫在线免费观看| 国产在线男女| 亚洲欧美精品自产自拍| 色哟哟·www| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人 | 久久久a久久爽久久v久久| 人人妻人人看人人澡| 午夜福利高清视频| 亚洲av福利一区| 日韩成人av中文字幕在线观看| 99久国产av精品国产电影| 国产淫语在线视频| 欧美日韩综合久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲欧美一区二区三区国产| av在线亚洲专区| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 亚洲av中文av极速乱| 国产黄色小视频在线观看| 伊人久久国产一区二区| 午夜福利高清视频| 亚洲精品久久午夜乱码| 精品久久久久久久久久久久久| 男的添女的下面高潮视频| 久久6这里有精品| 中文字幕久久专区| 国产精品无大码| 久久久久九九精品影院| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 少妇高潮的动态图| 高清av免费在线| 久久精品国产鲁丝片午夜精品| 22中文网久久字幕| 免费观看性生交大片5| 久久久久久久国产电影| 91午夜精品亚洲一区二区三区| 国精品久久久久久国模美| 欧美潮喷喷水| 在线观看一区二区三区| 久99久视频精品免费| 国产白丝娇喘喷水9色精品| 精品一区在线观看国产| 一级av片app| 午夜福利高清视频| 亚洲国产精品成人综合色| 午夜免费观看性视频| 日韩精品有码人妻一区| 国产精品一二三区在线看| 国产成人精品久久久久久| 91久久精品国产一区二区成人| 可以在线观看毛片的网站| 只有这里有精品99| 一区二区三区乱码不卡18| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 男女视频在线观看网站免费| 极品少妇高潮喷水抽搐| 日本-黄色视频高清免费观看| 久久精品综合一区二区三区| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 亚洲最大成人av| 亚洲av不卡在线观看| 午夜福利在线观看免费完整高清在| 一级二级三级毛片免费看| 国产色爽女视频免费观看| 国产黄色免费在线视频| 亚洲综合精品二区| 国产精品久久久久久久电影| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 精品久久久精品久久久| 国产一级毛片七仙女欲春2| 国产在视频线精品| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 日本午夜av视频| 免费看av在线观看网站| eeuss影院久久| 久热久热在线精品观看| 最新中文字幕久久久久| 极品少妇高潮喷水抽搐| 高清日韩中文字幕在线| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花 | 大香蕉97超碰在线| 大话2 男鬼变身卡| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 三级毛片av免费| 神马国产精品三级电影在线观看| 欧美3d第一页| 成人国产麻豆网| 熟妇人妻不卡中文字幕| 日本色播在线视频| 亚洲精品456在线播放app| 91av网一区二区| 如何舔出高潮| 亚洲伊人久久精品综合| 国产在视频线在精品| 免费电影在线观看免费观看| videos熟女内射| 免费av毛片视频| 高清毛片免费看| 久久久成人免费电影| 亚洲精品一区蜜桃| 黑人高潮一二区| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 国产精品三级大全| 国产伦在线观看视频一区| 最近中文字幕高清免费大全6| 亚洲三级黄色毛片| 亚洲欧美精品专区久久| 嫩草影院入口| 日韩视频在线欧美| 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 亚洲欧美一区二区三区国产| 成年版毛片免费区| 亚洲欧洲日产国产| 久久草成人影院| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 亚洲最大成人中文| av一本久久久久| 联通29元200g的流量卡| 久久久久久久久大av| 又爽又黄无遮挡网站| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 91狼人影院| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 日韩av免费高清视频| 又黄又爽又刺激的免费视频.| 色吧在线观看| 又爽又黄a免费视频| 免费播放大片免费观看视频在线观看| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 天堂√8在线中文| 蜜桃亚洲精品一区二区三区| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 国产永久视频网站| av女优亚洲男人天堂| 全区人妻精品视频| 熟女电影av网| 女人十人毛片免费观看3o分钟| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| 欧美三级亚洲精品| 久久国内精品自在自线图片| 欧美三级亚洲精品| 日本一二三区视频观看| 国产有黄有色有爽视频| 亚洲高清免费不卡视频| 九草在线视频观看| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 天堂av国产一区二区熟女人妻| 免费观看a级毛片全部| 插阴视频在线观看视频| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 久久这里有精品视频免费| 亚洲18禁久久av| 日日啪夜夜爽| 国产伦精品一区二区三区视频9| 18禁动态无遮挡网站| 神马国产精品三级电影在线观看| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| kizo精华| 国国产精品蜜臀av免费| 午夜免费观看性视频| 一级a做视频免费观看| 久久久久久久亚洲中文字幕| 免费av毛片视频| 国产在线一区二区三区精| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久久久按摩| 午夜爱爱视频在线播放| 欧美日韩在线观看h| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 女人久久www免费人成看片| 日韩亚洲欧美综合| 久久99蜜桃精品久久| 伊人久久国产一区二区| 国产精品爽爽va在线观看网站| 国产毛片a区久久久久| 精品欧美国产一区二区三| 亚洲欧美精品专区久久| 久久久a久久爽久久v久久| 乱人视频在线观看| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 国产成人精品福利久久| 男人和女人高潮做爰伦理| 自拍偷自拍亚洲精品老妇| 国产在视频线在精品| 综合色av麻豆| 国产高清不卡午夜福利| 少妇熟女欧美另类| 久久久久久伊人网av| 国产午夜精品一二区理论片| 好男人视频免费观看在线| 在线观看av片永久免费下载| 亚洲美女搞黄在线观看| a级毛片免费高清观看在线播放| 国产伦理片在线播放av一区| 搡老妇女老女人老熟妇| 大香蕉久久网| 好男人在线观看高清免费视频| 深夜a级毛片| 男女那种视频在线观看| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人爽人人夜夜 | 狂野欧美白嫩少妇大欣赏| 久久精品夜夜夜夜夜久久蜜豆| videos熟女内射| 日韩三级伦理在线观看| 国产色婷婷99| 两个人视频免费观看高清| 1000部很黄的大片| 久久久久久久国产电影| 国国产精品蜜臀av免费| 国产精品1区2区在线观看.| 国产黄色视频一区二区在线观看| 搡女人真爽免费视频火全软件| 天堂av国产一区二区熟女人妻| 一个人观看的视频www高清免费观看| 国产精品综合久久久久久久免费| 免费黄网站久久成人精品| 床上黄色一级片| 国产成人精品福利久久| 日韩 亚洲 欧美在线| 亚洲怡红院男人天堂| 免费av观看视频| 男女视频在线观看网站免费| 亚洲av国产av综合av卡| 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 国产老妇女一区| 国产精品一二三区在线看| 久久久久久久久久黄片| 不卡视频在线观看欧美| 亚洲国产精品成人久久小说| 国内揄拍国产精品人妻在线| 国产成人午夜福利电影在线观看| 亚洲va在线va天堂va国产| 亚洲自拍偷在线| 免费观看精品视频网站| 男女视频在线观看网站免费| 午夜福利在线在线| av在线老鸭窝| 国产高清有码在线观看视频| 国产乱人视频| 精品久久久久久久久久久久久| 欧美一区二区亚洲| 免费观看在线日韩| 如何舔出高潮| 色综合站精品国产| 国产高清不卡午夜福利| 美女高潮的动态| 午夜激情久久久久久久| 网址你懂的国产日韩在线| 免费在线观看成人毛片| 亚洲自偷自拍三级| 色综合色国产| 国产中年淑女户外野战色| 美女国产视频在线观看| 国产精品99久久久久久久久| 国产精品久久久久久精品电影小说 | 人人妻人人看人人澡| 精品久久久精品久久久| 久久国产乱子免费精品| a级一级毛片免费在线观看| 一级毛片我不卡| 深夜a级毛片| 99久久精品一区二区三区| 一级毛片我不卡| av国产免费在线观看| 日韩欧美一区视频在线观看 | 天天躁夜夜躁狠狠久久av| 精品久久久久久久久久久久久| 欧美日韩视频高清一区二区三区二| 国产成人精品久久久久久| 九九爱精品视频在线观看| 深爱激情五月婷婷| 亚洲精品aⅴ在线观看| 直男gayav资源| 综合色丁香网| 国产乱人视频| 又黄又爽又刺激的免费视频.| 少妇裸体淫交视频免费看高清| 老司机影院毛片| 午夜爱爱视频在线播放| 深夜a级毛片| 又黄又爽又刺激的免费视频.| 国产亚洲最大av| 九草在线视频观看| 免费观看的影片在线观看| 日韩精品青青久久久久久| 日产精品乱码卡一卡2卡三|