• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model for Asymmetry of Shock/Boundary Layer Interactions in Nozzle Flows

    2018-03-29 07:36:03,

    1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.Department of Aerospace Engineering,Nanjing University of Science and Technology,Nanjing 210094,P.R.China

    Nomenclature

    AArea

    aSonic speed

    hHeight of separation bubble

    L1Length of separation bubble

    L2Distance between the top of separation bubble and reattachment point

    MaMach number,mass

    MacConvective Mach number

    Mass flow rate

    NPR Nozzle pressure ratio,p0/pa

    pPressure

    rVelocity ratio across mixing layer

    sDensity ratio across mixing layer

    TTime

    uVelocity

    VVolume

    α Nozzle divergence angle

    γ Specific heat ratio

    Γ Index for flow asymmetry

    δ2Vertical coordinate of the edge of mixing layer on low-velocity side

    δwLocal thickness of mixing layer

    η Similarity variable

    ρ Density of fluid

    Φ Normalized spreading rate of mixing layer

    Subscripts

    0 Stagnation state at nozzle entrance

    1 High-velocity side of mixing layer

    2 Low-velocity side of mixing layer

    a Ambient condition

    b Separation bubble

    e Entrainment

    ex Nozzle exit

    m Averaged

    0 Introduction

    Asymmetry phenomenon of shock/boundary layer interaction(SBLI)in a completely symmetric duct with symmetric flow conditions,e.g.,an asymmetric shock(see Fig.1),has been observed frequently by many researchers.The reason for the flow asymmetry is still an open question,and is clarified neither by experiment nor computational fluid dynamics(CFD)[1].

    Fig.1 Experimental schlieren of asymmetric lambda shock in a planar nozzle[2]

    When a supersonic nozzle is operated at pressure ratio well below its design point,a shock system forms inside the nozzle and SBLI comes into being,which probably separates flow downstream of the shock from the nozzle walls and brings an asymmetric flowfield.The asymmetry in the nozzle flow can yield dangerous lateral forces,the so-called side-loads,which may damage the nozzle[1].Lawrence[3]studied the nature of flow asymmetry in planar and axisymmetric nozzles.He observed different symmetric and asymmetric flow structures.Papamoschou et al.[2]experimentally investigated the supersonic nozzle flow separation inside planar convergentdivergent nozzles.Their study shows that for the area ratio of nozzle exit to its throatAe/At≥1.4 and NPR>1.4,the flow pattern is asymmetric.This asymmetry does not flip during agiven test run,but it can change from one wall to the other and from one run to the next.This phenomenon was also observed by Shimshi et al.[4].Bourgoing et al.[5]found that shock configuration in a Mach 2planar nozzle is transformed from a symmetric pattern to an asymmetric one and asymmetric one again with the variation of NPR.A series of largeeddy simulations(LES)were conducted by Olson et al.[6]to model the asymmetry and unsteadiness of the SBLI in the planar nozzles tested by Ref.[2].

    Based on the aforementioned research on the asymmetry of SBLI in nozzles,some basic conclusions can be drawn:

    (1)Asymmetry of confined SBLI is closely relevant to the strength of SBLI,i.e.,the shock intensity and the confinement level.

    (2)Asymmetry of SBLI has a flipping phenomenon,i.e.,asymmetric shock system can flip between two sides of a nozzle.Flipping does not happen during agiven test run in nozzle experiments,but could takes place between runs.

    The reason for the asymmetry of confined SBLI is not clear yet,but many researcher,e.g.,Lawrence[3],Papamoschou et al.[2], Myshenkov[7], Wang[8],attributed it to Coanda effect which is used for the tendency of a fluid jet issuing tangentially on to a curved or angled solid surface to adhere to it[9].The entrainment of jet on ambient fluid is regarded as the cause for Coanda effect,but so far it has not been understood completely yet[10],even though it has been applied widely in industry.Coanda effect was confirmed experimentally by Allery et al.[11]to work in symmetrical configurations as it does in the single wall case:the jet reattaches randomly to either of two walls.

    The study is motivated by the research of Piponniau et al.[12]who proposed a model based on the properties of fluid entrainment in the mixing layer to explain low frequency unsteadiness on shock induced separation.Due to the close relation between his model and Coanda effect,Piponniau′s model is developed further here to explain the reason for the asymmetry of SBLI in an overexpanded nozzle whose flowfield data were obtained by numerical simulations.

    1 Theory

    1.1 Aerodynamic scheme

    According to Piponniau et al.[12],when a separation bubble is produced by SBLI(Fig.2),in the first part of the bubble,that is from the separation line,eddies are formed in the mixing layer zone(the reversed flow in the separation bubble is regarded as the other stream)and grow as it moves downstream.Fluid from the separated zone is entrained by the mixing layer.Near the middle of bubble(where the mixing layer has the maximum thickness),these eddies are shed into the downstream flow,bringing with them their mass,momentum and vortices outside the separated region.This generates,in the recirculating region,a default of mass that increases over time.Therefore, when the flow reattaches downstream,the mass amount inside the bubble decreases.

    Fig.2 Sketch of the entrainment of mixing layer on separation bubble[12]

    Now we consider the situation of asymmetric SBLI in a 2Dnozzle,whose flowfield pattern is sketched in Fig.3.Coanda effect works in this flow,entrainment of mixing layer on separation bubble on the upper wall decreases the mass and pressure inside the bubble,and the opposite phenomena happen on the lower wall.The pressure difference between two sides deflects the flow behind the shock to the upper wall.To understand how the result of asymmetry takes place,an imaginary symmetric flowfield,which is supposed to be the situation before the asymmetric flow pattern appearing,is sketched in Fig.4.Prior to create the asymmetry model,three assumptions are made in this situation:

    (1)Based on the feature of Conada effect introduced in Introduction,it is assumed that the entrainment of mixing layer only activates on one side,while the separation bubble on the other side keeps constant.

    Fig.3 Asymmetric SBLI pattern in a 2Dnozzle

    (2)After the shedding of eddies,the mass and pressure decrease inside the bubble but its size keeps constant.

    (3)If the final flow is still symmetric,a new amount of reversed flow from downstream enters the bubble at reattachment pointRto insure the balance[13].

    In the plane reflected shock case,large vortices are shed downstream at the position where the mixing layer reaches its maximum thickness,i.e.,the position with maximum separation bubble thickness,which is approximately at the middle of separation bubble[14].But for SBLI in a nozzle,the situation is a little different,the divergent wall leads to slender rear of separation bubble,and the maximum thickness of the bubble lies in the front of it instead of the middle as the plane case.Therefore,the shedding position for large vortices is still regarded as the position with the maximum bubble thickness in the nozzle case,but not at the middle of bubble.The distance from large vortices shedding position to the reattachment point is denoted asL2(Fig.4).

    Fig.4 Imaginary symmetric SBLI flowfield before asymmetric flow taking place in a 2Dnozzle

    Based on the above assumptions and deduction,now we can discuss the total mass entrained from separation bubble.Total entrained mass is the product of entrainment mass ratem·eand entrainment timeTe.The rate of mass entrainment can be obtained from Piponniau′s model,which will be deduced later.According to the third assumption,the distance between mass escaping from the bubble and mass returning into the bubble isL2,and then the time used for entrainment is given by

    wherea2is the sonic speed on the low-velocity side of the mixing layer.

    With the total entrained mass,the pressure inside the bubble after entrainment can be obtained based on the second assumption.Finally,the deflection angle of the flow will be obtained from the longitudinal momentum conservation equation,which will be compared with the actual deflection angle of the flow.

    1.2 Theoretical model for flow deflection with entrainment

    According to entrainment model of Piponniau′s,the separation bubble is approximated by a triangle of lengthL1and heighth(Fig.2),with an average density ofρm,then the air mass in the bubble by unit span is given by

    And rate of mass entrainment[11]

    whereδ2(x)is the vertical coordinate of the edge of the mixing layer on the low-velocity side,y0(x)the vertical coordinate of the centerline of the mixing layer,andx0=L3=L1-L2the position where large eddies shed,ηis the similarity variable,and the constantC0.14.δwandδ′ware the local thickness and the spreading rate of the mixing layer,respectively,and the latter can be expressed by the following relation according to Ref.[15]

    Φ (Mac)must be determined via experiment[17]and Fig.5gives its empirical value depending on the convective Mach number.Piponniau et al.[12]introduced a functiongas

    Fig.5 Normalized spreading rate as a function of the convective Mach number[12]

    Finally,the rate of mass entrainment is obtained.

    Consequently,we discuss the pressure variation in the bubble.The total mass of entrainment

    Based on the second assumption,the volume of bubble keeps constant,and the temperature in the bubble can be considered as invariant,then the density and pressure in the bubble after entrainment

    wherepmis the average pressure in the bubble.Then according to the first assumption,the pressure difference between two sides in the nozzle is obtained.

    With the pressure difference obtained from the above,we can calculate the deflection angle of flow,concerning the vertical momentum conservation for the control volume in Fig.4.

    whereL1is the length of separation bubble in the imaginary symmetric flow,pexthe pressure at nozzle exit,hexthe mainstream height at nozzle exit,αis the nozzle divergence angle,andβis the deflection angle of flow from horizontal direction on the nozzle symmetry plane (Fig.3).Then,from Eq.(13)we obtain

    The above asymmetry model is deduced based the nozzle flow with closed separation bubble, namely, restricted shock separation(RSS)[1].When the separation zone is open to the ambiance,namely,free shock separation(FSS)(Fig.6),although the situation is a little different from RSS,the theoretical model created above is still applicable in this case.Now separation lengthL1is the distance from the onset of separation to the nozzle exit,andL2the distance from the position with maximum separation thickness to the nozzle exit.

    Fig.6 Imaginary symmetric nozzle SBLI flowfield with FSS

    2 Model Application Based on Numerical Results of a Nozzle

    2.1 Nozzle geometry and numerical methods

    Simulations were conducted to obtain the detailed features of asymmetric SBLI in a planar nozzle.The nozzle model chosen for simulation is aplanar nozzle tested by Papamoschou et al.[2]and simulated by Xiao et al.[18],which has a throat height of 22.9mm,a length of 117mm and an area ratio(the area ratio of nozzle exit to throat)of 1.5.The nozzle is″trumpet-shaped″with the wall angle increasing monotonically from throat to exit.The maximum nozzle divergence angle is 3.83°.

    To apply the asymmetry model proposed above,forced symmetric(half)and full nozzle model were simulated,respectively.The Reynolds-averaged governing equations for compressible turbulent flow with a two equation SST turbulence model in CFX software was employed to simulate idea gas(γ=1.4)steady flows.The grid used in the simulations has a higher density near the wall and the minimum first grid point from the wall givesy+<1.The total number of grids used is 89 800for the full model and 51 900for the half model.Adiabatic,no slip wall boundary condition was specified for all the walls in these simulations.

    Computations were made for NPR between 1.20and 2.40by changing the total pressure at the nozzle entrance.Other boundary conditions were imposed as follows:The ambient pressure surrounding nozzle exitpa=101 325Pa,total temperature at nozzle entranceTt0=290K.

    2.2 Numerical results of asymmetric SBLI in full nozzle

    Fig.7shows the pressure distributions on the two walls of the nozzle from simulations and experiments at two NPRs (the abscissa is normalized by the height of nozzle throathtand the vertical axis is normalized by total pressure at nozzle entrancept0).Note that the nozzle throat is located atx=0.It can be seen that the flow is symmetric at NPR = 1.27and is asymmetric at NPR=1.61based on both numerical and experimental data.At NPR=1.61,though both numerical and experimental results give the asymmetric flowfield,the deflection direction of flow is opposite:The flow from simulation is deflected downward while that from experiment is deflected upward,which is caused by the randomicity of Coanda effect(entrainment)mentioned in Section 1.The shock positions from simulations are a little more upstream than experimental data,except this difference numerical results are satisfactory.

    Fig.7 Wall pressure distributions of the nozzle from simulations and experiments

    Three typical flow patterns at different NPRs are shown with numerical schlieren in Fig.8.At NPR=1.27,a symmetric flowfield with RSS on two sides is presented as Fig.8(a).At NPR=1.61,an asymmetric flowfield with FSS on one side and RSS on the other side appears as Fig.8(b).At NPR=2.40,a symmetric flowfield with FSS on two sides is obtained as Fig.8(c).

    Fig.8 Typical flow patterns in an over-expanded nozzle with numerical schlieren

    Deflection angle of nozzle exit flow at different NPRs are shown in Fig.9 (squares).It can be seen that the flow in the nozzle is symmetric as Fig.8(a)when NPR≤1.27,while it is asymmetric as Fig.8(b)after that and deflection angle becomes larger and larger with increasing NPR up to 2.10where the peak asymmetry reaches.Then,the flow returns to be symmetric as Fig.8(c)when NPR>2.20.

    Fig.9 Deflection angle of flow in the nozzle exit from full nozzle simulations and theoretical results

    2.3 Model application based on numerical results of half nozzle with forced symmetry

    The nozzle flowfields with forced symmetry were computed to apply the asymmetry model.The numerical results show that the flows with RSS (Fig.10(a))were obtained when NPR≤1.61,while the flowfields with FSS (Fig.10(b))were attained when NPR≥1.70.According to Eq.(14),the theoretical values of deflection angle of flow at nozzle exit at different NPRs have been calculated,which have been shown in Fig.9(triangles).One can see that there is a large difference between the results from theoretical model and actual deflection from full nozzle simulations.Theoretical results give a peak of deflection angle at NPR=1.47and then decrease gradually,which are close to the deflection of full nozzle only around NPR =1.70and NPR ≥2.30.The results show that there may be other factors to control the flow asymmetry besides Coanda effect.Table 1gives the aerodynamic parameters of the separation at typical NPRs.

    Fig.10 Numerical schlieren and streamlines of nozzle flow with forced symmetry

    Fig.11gives averaged pressure in the larger separation of full nozzle and in the separation of half nozzle with force symmetry,which shows averaged pressure in the separation on the side without entrainment is nearly constant before and after flow deflection at most NPRs except NPR=1.34,and consequently proves the validity of the first assumption in Section 1.1.

    Fig.11 Averaged pressure in the separation

    Table 1 Aerodynamic parameters of separation at typical NPRs for half nozzle with forced symmetry

    3 Conclusions

    A model for the asymmetry of SBLI in nozzle flows has been proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.Deflection angles obtained from the theoretical model based on the simulation results of a half nozzle with forced symmetry show a large difference from those of the actual full nozzle,which shows there should be other factors to control the flow asymmetry besides Coanda effect(or entrainment),and the entrainment of shear layer on the separation induced by SBLI is just one of causes for the asymmetry.

    Acknowledgements

    This work was supported by the National Natural Science Foundations of China(Nos.51476076,51776096).

    [1] HADJADJ A,ONOFRI M.Nozzle flow separation[J].Shock Waves,2009,19(4):163-169.

    [2] PAPAMOSCHOU D,ZILL A,JOHNSON A.Supersonic flow separation in planar nozzles[J].Shock Waves,2009,19(3):171-183.

    [3] LAWRENCE R A.Symmetrical and unsymmetrical flow separation in supersonic nozzles:Research Report Number 67-1[R].[S.l.]:Southern Methodist U-niversity,1967.

    [4] SHIMSHI E,BEN-DOR G,LEVY A,et al.Experimental investigation of asymmetric and unsteady flow separation in high Mach number planar nozzles[C]∥Proceedings of the 28th International Symposium on Shock Waves.Manchester:[s.n.],2011.

    [5] BOURGOING A,REIJASSE P.Experimental analysis of unsteady separated flows in a supersonic planar nozzle[J].Shock Waves,2005,14(4):251-258.

    [6] OLSON B J,LELE S K.A mechanism for unsteady separation in over-expanded nozzle flow[J].Physics of Fluids,2013,25:110809.

    [7] MYSHENKOV E V.Hysteresis phenomena in a plane rotatable nozzle[J].Fluid Mechanics,2010,45(4):667-678.

    [8] WANG T S.Transient two-dimensional analysis of side load in liquid rocket engine nozzles:AIAA 2004-3680[R].USA:AIAA,2004.

    [9] NEUENDORF R,WYGNANSKI I.On a turbulent wall jet flowing over a circular cylinder[J].J Fluid Mech,1999,381:1-25.

    [10]MIOZZI M,F(xiàn)RANCESCO L,ROMANO G P.Experimental investigation of a free-surface turbulent jet with Coanda effect[C]∥15th Int Symp on Applications of Laser Techniques to Fluid Mechanics.Lisbon,Portugal:[s.n.],2010.

    [11]ALLERY C,GUERIN S,HAMDOUNI A,et al.Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones[J].Mechanics Research Communications,2004,31:105-120.

    [12]PIPONNIAU S,DUSSAUGE J P,DEBIEVE J F,et al.A simple model for low-frequency unsteadiness in shock induced separation[J].J Fluid Mech,2009,629:87-108.

    [13]SIMPSON R L.Turbulent boundary-layer separation[J].Annu Rev Fluid Mech,1989,21:205-234.

    [14]DUPONT P,HADDAD C,DEBIEVE J F.Space and time organization in a shock induced boundary layer[J].J Fluid Mech,2006,559:255-277.

    [15]PAPAMOSCHOU D,ROSHKO A.The compressible turbulent shear layer:An experimental study[J].J Fluid Mech,1988,197:453-477.

    [16]BROWAND F K,TROUTT T R.The turbulent mixing layer:Geometry of large vortices[J].J Fluid Mech,1985,158:489-509.

    [17]SMITS A J,DUSSAUGE J P.Turbulent shear layers in supersonic Flow[M].New York:AIP Press,2006:155-156.

    [18]XIAO Q,TSAI H M,PAPAMOSCHOU D.Numerical investigation of supersonic nozzle flow separation[J].AIAA J,2007,45(3):532-541.

    我要搜黄色片| 亚洲性久久影院| 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 国产高清国产精品国产三级 | 国内精品一区二区在线观看| 精品人妻视频免费看| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 精品久久久噜噜| 亚洲色图av天堂| 黄片无遮挡物在线观看| 日本免费a在线| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 亚洲欧美精品自产自拍| 黑人高潮一二区| 国产精品久久视频播放| 在线播放国产精品三级| 精品国产露脸久久av麻豆 | 我的女老师完整版在线观看| av国产久精品久网站免费入址| 中文字幕制服av| 欧美+日韩+精品| 纵有疾风起免费观看全集完整版 | 国产精品三级大全| 国产真实乱freesex| 国产成人a区在线观看| 免费av不卡在线播放| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 亚洲国产色片| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 长腿黑丝高跟| 日韩 亚洲 欧美在线| 亚洲在线观看片| 亚洲成人av在线免费| 男人舔女人下体高潮全视频| 丰满少妇做爰视频| 国产高清三级在线| 在线天堂最新版资源| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 91av网一区二区| 青青草视频在线视频观看| 99热6这里只有精品| 日韩一区二区视频免费看| 国产极品精品免费视频能看的| 久久久久久伊人网av| 美女内射精品一级片tv| 男女那种视频在线观看| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| av女优亚洲男人天堂| 国产色婷婷99| av在线蜜桃| 爱豆传媒免费全集在线观看| 乱系列少妇在线播放| 中文字幕久久专区| 亚洲av中文av极速乱| 久久精品综合一区二区三区| 久久久国产成人精品二区| 尾随美女入室| 国产一区二区在线观看日韩| 一个人观看的视频www高清免费观看| 欧美极品一区二区三区四区| 国产真实乱freesex| 中文字幕久久专区| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 久热久热在线精品观看| 不卡视频在线观看欧美| 精品一区二区免费观看| 亚洲欧美日韩高清专用| 亚洲三级黄色毛片| 国产极品天堂在线| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 欧美不卡视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | av在线天堂中文字幕| 免费在线观看成人毛片| 伦精品一区二区三区| 国产 一区精品| 我要搜黄色片| 99久久成人亚洲精品观看| 熟女电影av网| 亚洲国产欧美人成| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 久久久久久久久大av| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 边亲边吃奶的免费视频| 超碰av人人做人人爽久久| 极品教师在线视频| 熟女电影av网| 我要看日韩黄色一级片| 成年av动漫网址| 一级黄色大片毛片| 九色成人免费人妻av| 水蜜桃什么品种好| 国产毛片a区久久久久| 亚洲欧洲国产日韩| 好男人在线观看高清免费视频| 秋霞伦理黄片| 日韩精品青青久久久久久| 激情 狠狠 欧美| 日本黄色片子视频| 色网站视频免费| 免费电影在线观看免费观看| 国产精品一区www在线观看| 少妇的逼水好多| 日本五十路高清| 青青草视频在线视频观看| 欧美成人免费av一区二区三区| 岛国毛片在线播放| 亚洲美女视频黄频| 国产人妻一区二区三区在| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 亚洲国产精品成人综合色| 中文字幕人妻熟人妻熟丝袜美| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 久久久久久久午夜电影| 女的被弄到高潮叫床怎么办| 精品熟女少妇av免费看| 舔av片在线| 男人狂女人下面高潮的视频| 色网站视频免费| АⅤ资源中文在线天堂| 晚上一个人看的免费电影| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 午夜精品国产一区二区电影 | 精品久久久久久久久久久久久| 精品熟女少妇av免费看| 免费大片18禁| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 最近视频中文字幕2019在线8| 男人狂女人下面高潮的视频| 亚洲欧美精品自产自拍| 搡老妇女老女人老熟妇| 国产日韩欧美在线精品| 欧美日韩在线观看h| 日韩av在线大香蕉| av专区在线播放| 国产av在哪里看| 色播亚洲综合网| 国产亚洲av片在线观看秒播厂 | 91av网一区二区| 亚洲国产最新在线播放| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 成人性生交大片免费视频hd| 成年版毛片免费区| 久久久久久国产a免费观看| 国产精品伦人一区二区| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 国产淫语在线视频| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线精品| 欧美日韩国产亚洲二区| 色吧在线观看| 久久久国产成人精品二区| 亚洲成人av在线免费| 亚洲国产欧美人成| 国产在线一区二区三区精 | 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 日韩av在线大香蕉| 久久久久久久久中文| www日本黄色视频网| 亚洲va在线va天堂va国产| 日韩一区二区视频免费看| 日本色播在线视频| 精品一区二区三区视频在线| 国产黄片美女视频| 丰满乱子伦码专区| 国产在视频线在精品| 久久久久久九九精品二区国产| 日本免费a在线| 国产亚洲av片在线观看秒播厂 | 日韩精品有码人妻一区| 最近的中文字幕免费完整| 黄色一级大片看看| 久久久久久久午夜电影| 最近最新中文字幕大全电影3| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频 | 国产av一区在线观看免费| 两个人的视频大全免费| 色播亚洲综合网| 国产精品电影一区二区三区| 亚洲综合色惰| 成人鲁丝片一二三区免费| 夜夜看夜夜爽夜夜摸| 国产亚洲最大av| 欧美另类亚洲清纯唯美| 男人舔奶头视频| 中文欧美无线码| 青青草视频在线视频观看| 日本三级黄在线观看| 国产爱豆传媒在线观看| 午夜免费激情av| av在线亚洲专区| 亚洲国产精品专区欧美| 美女高潮的动态| av.在线天堂| 中国国产av一级| 中文天堂在线官网| 亚洲精品影视一区二区三区av| 成人午夜精彩视频在线观看| 亚洲综合色惰| 亚洲av不卡在线观看| 亚洲中文字幕一区二区三区有码在线看| 激情 狠狠 欧美| 日韩欧美国产在线观看| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 一个人看视频在线观看www免费| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 久久久久久九九精品二区国产| 少妇猛男粗大的猛烈进出视频 | 99久久人妻综合| 天天躁夜夜躁狠狠久久av| 亚洲精品影视一区二区三区av| 18+在线观看网站| 日韩制服骚丝袜av| 极品教师在线视频| 只有这里有精品99| 在线免费十八禁| 女人久久www免费人成看片 | 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 国产av在哪里看| 国产亚洲精品久久久com| 免费看光身美女| 国产黄a三级三级三级人| 成年av动漫网址| 久久欧美精品欧美久久欧美| 麻豆成人午夜福利视频| 全区人妻精品视频| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 天堂√8在线中文| 老司机福利观看| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 人体艺术视频欧美日本| 免费搜索国产男女视频| 亚洲在久久综合| 又粗又硬又长又爽又黄的视频| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 99热6这里只有精品| av.在线天堂| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 免费av毛片视频| 国产单亲对白刺激| 亚洲精品,欧美精品| 亚洲四区av| 国产白丝娇喘喷水9色精品| 中国国产av一级| 日韩视频在线欧美| 我的女老师完整版在线观看| 亚洲图色成人| 精品久久久久久久久亚洲| 免费黄色在线免费观看| 午夜福利网站1000一区二区三区| 亚洲四区av| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 国产欧美日韩精品一区二区| 国产成年人精品一区二区| 久热久热在线精品观看| 国产真实伦视频高清在线观看| 1024手机看黄色片| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| 亚洲国产日韩欧美精品在线观看| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 干丝袜人妻中文字幕| 一区二区三区高清视频在线| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 亚洲国产精品成人综合色| 91狼人影院| 色综合站精品国产| 免费人成在线观看视频色| 免费电影在线观看免费观看| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 晚上一个人看的免费电影| 午夜福利在线在线| 国产成人aa在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲高清免费不卡视频| 国语自产精品视频在线第100页| 日韩成人av中文字幕在线观看| 国产又色又爽无遮挡免| 综合色av麻豆| 日韩在线高清观看一区二区三区| or卡值多少钱| 国产亚洲精品av在线| 国产亚洲午夜精品一区二区久久 | 成人亚洲精品av一区二区| 欧美日本亚洲视频在线播放| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 午夜福利高清视频| 国产美女午夜福利| ponron亚洲| 在现免费观看毛片| 国产免费一级a男人的天堂| 丰满少妇做爰视频| 精品国产露脸久久av麻豆 | 欧美色视频一区免费| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 成人亚洲欧美一区二区av| 少妇猛男粗大的猛烈进出视频 | 亚洲人成网站在线观看播放| 色哟哟·www| 国产一区有黄有色的免费视频 | 九九热线精品视视频播放| 精品国内亚洲2022精品成人| 欧美精品国产亚洲| 一级毛片aaaaaa免费看小| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 国产精品一区二区三区四区久久| 青春草视频在线免费观看| 国产成年人精品一区二区| 国产综合懂色| 亚洲一级一片aⅴ在线观看| 尤物成人国产欧美一区二区三区| 99久久中文字幕三级久久日本| 国产精品久久电影中文字幕| 成人国产麻豆网| 中文字幕免费在线视频6| 欧美日韩在线观看h| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 秋霞在线观看毛片| 2022亚洲国产成人精品| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 久久久国产成人免费| 午夜福利在线观看免费完整高清在| 成人无遮挡网站| 色网站视频免费| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 男女视频在线观看网站免费| 欧美日韩综合久久久久久| 我要看日韩黄色一级片| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 国产在视频线精品| 国产精品一区二区性色av| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看 | 99在线视频只有这里精品首页| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 久久久国产成人免费| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器| 国产av在哪里看| 欧美丝袜亚洲另类| 亚洲欧美精品专区久久| 欧美成人免费av一区二区三区| 欧美bdsm另类| 直男gayav资源| 亚洲伊人久久精品综合 | av在线观看视频网站免费| 久久精品国产亚洲网站| 亚洲成人中文字幕在线播放| av线在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 免费观看精品视频网站| 97在线视频观看| 亚洲精华国产精华液的使用体验| 日本av手机在线免费观看| www.av在线官网国产| 亚洲av熟女| 精品酒店卫生间| 午夜福利在线观看吧| 国产精品久久久久久久电影| 简卡轻食公司| 日本与韩国留学比较| 国产精品久久久久久久久免| 日本午夜av视频| 亚洲不卡免费看| 99热网站在线观看| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 国产黄片视频在线免费观看| 国产白丝娇喘喷水9色精品| 午夜老司机福利剧场| 全区人妻精品视频| 国产成人aa在线观看| 国产av在哪里看| 国产一级毛片在线| 色综合亚洲欧美另类图片| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 18+在线观看网站| 在线观看美女被高潮喷水网站| 久久久久国产网址| 亚洲综合精品二区| 在线观看av片永久免费下载| 麻豆av噜噜一区二区三区| www日本黄色视频网| 色尼玛亚洲综合影院| 亚州av有码| 亚洲av中文字字幕乱码综合| 一个人免费在线观看电影| 色综合色国产| 午夜老司机福利剧场| 我的老师免费观看完整版| 水蜜桃什么品种好| 免费看a级黄色片| 国产一级毛片七仙女欲春2| 能在线免费看毛片的网站| 国产精品一区二区在线观看99 | 毛片女人毛片| 91午夜精品亚洲一区二区三区| 成人鲁丝片一二三区免费| 成人国产麻豆网| 丝袜喷水一区| 亚洲av成人av| 国产成人一区二区在线| 美女内射精品一级片tv| 午夜福利网站1000一区二区三区| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 亚州av有码| 国产午夜精品一二区理论片| 一夜夜www| 色网站视频免费| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 岛国在线免费视频观看| 精品熟女少妇av免费看| 日韩一区二区三区影片| 日本wwww免费看| 亚洲在线自拍视频| 国产视频首页在线观看| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 91午夜精品亚洲一区二区三区| 久久草成人影院| 日日撸夜夜添| 天堂av国产一区二区熟女人妻| 一个人免费在线观看电影| 一级黄色大片毛片| 欧美xxxx性猛交bbbb| 日韩中字成人| 国产色婷婷99| 天美传媒精品一区二区| 日本黄色视频三级网站网址| 国产乱来视频区| 热99在线观看视频| 成人一区二区视频在线观看| 青青草视频在线视频观看| 欧美最新免费一区二区三区| 在线免费十八禁| 少妇人妻一区二区三区视频| 日本一本二区三区精品| 免费看美女性在线毛片视频| av天堂中文字幕网| 久久精品夜色国产| 亚洲欧洲国产日韩| av专区在线播放| 一区二区三区四区激情视频| 亚洲av日韩在线播放| 久久精品国产亚洲网站| www.色视频.com| 欧美潮喷喷水| 精品免费久久久久久久清纯| 国产午夜福利久久久久久| 久久99热6这里只有精品| 亚洲欧洲国产日韩| 国产伦精品一区二区三区四那| 一区二区三区四区激情视频| av在线蜜桃| 嘟嘟电影网在线观看| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 一本久久精品| 国产三级在线视频| 观看免费一级毛片| 免费大片18禁| 免费观看在线日韩| 又爽又黄无遮挡网站| 亚洲av男天堂| 18+在线观看网站| 久久午夜福利片| 日韩精品青青久久久久久| 高清毛片免费看| 国产一区二区亚洲精品在线观看| 免费无遮挡裸体视频| 能在线免费观看的黄片| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 日日干狠狠操夜夜爽| 精品熟女少妇av免费看| 成人二区视频| 国产亚洲91精品色在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| eeuss影院久久| 啦啦啦韩国在线观看视频| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 亚洲av不卡在线观看| 亚洲内射少妇av| 少妇熟女aⅴ在线视频| 国产淫片久久久久久久久| 看非洲黑人一级黄片| 日韩视频在线欧美| 欧美激情在线99| 精品人妻偷拍中文字幕| 内地一区二区视频在线| 综合色av麻豆| 精品国产露脸久久av麻豆 | 亚洲国产精品国产精品| 男女国产视频网站| 精品不卡国产一区二区三区| 桃色一区二区三区在线观看| 国产精品一及| 国产精品99久久久久久久久| 亚洲欧美日韩高清专用| 最新中文字幕久久久久| 中文字幕av在线有码专区| 亚洲精品影视一区二区三区av| 久久久午夜欧美精品| 亚洲国产精品国产精品| 欧美性感艳星| 永久网站在线| 一卡2卡三卡四卡精品乱码亚洲| 99在线人妻在线中文字幕| 黄色配什么色好看| 51国产日韩欧美| 亚洲av.av天堂| 高清视频免费观看一区二区 | 国产成人精品一,二区| 狠狠狠狠99中文字幕| 日本免费一区二区三区高清不卡| 亚洲精品一区蜜桃| 人妻系列 视频| 97超视频在线观看视频| 亚洲,欧美,日韩| 亚洲av免费高清在线观看| 久久精品国产自在天天线| 成人综合一区亚洲| 毛片一级片免费看久久久久| 国产精品国产三级专区第一集| 国产 一区 欧美 日韩| 国产黄片视频在线免费观看| 久久热精品热| 尤物成人国产欧美一区二区三区| 久久综合国产亚洲精品| 色网站视频免费| 水蜜桃什么品种好| 美女大奶头视频| av黄色大香蕉| 大又大粗又爽又黄少妇毛片口| 一级毛片电影观看 | 久久精品91蜜桃| 国产老妇伦熟女老妇高清| 亚洲精品乱码久久久久久按摩| a级毛色黄片| 97超视频在线观看视频| 欧美激情久久久久久爽电影| 国产麻豆成人av免费视频| 美女黄网站色视频| 九草在线视频观看| 99热全是精品| 国产精品一区二区三区四区久久| 免费看光身美女| 免费黄色在线免费观看|