• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Sequence Change-Point Model of Electrostatic State Parameters of Aircraft Engine

    2018-03-29 07:36:00,,,

    ,,,

    1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,P.R.China;

    2.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    Condition monitoring and fault diagnosis of aircraft engines are effective means to guaranteeing air safety and reduce maintenance costs.Engine monitoring system (EMS),prognostics and health management[1](PHM)have been recently further developed toward condition monitoring technology to realize condition-based maintenance(CBM)[2].Although traditional monitoring and diagnosis technologies hold advantages in aviation safety and economic efficiency,they are limited by the principle of monitoring means with many defects.

    In bore-detection based on internal damage detection,the light source is limited by the endoscopic diameter.The internal structure of the engine is complex,and it presents an irregular geometric shape.Under the illumination of point light sources,many shadow areas will be easily generated in the image.These drawbacks hinder the extraction of image features and the subsequent diagnosis[3-4].

    In vibration monitoring and diagnostic technology,abnormal vibration(i.e.,vibration generated under normal engine operation)is accompanied by strong background signals,making abnormal signals difficult to capture accurately[5-6].In addition,measured vibration signals can reflect only the overall vibration of engine,and the abnormal vibration is concealed in the macroscopic system-level vibration.Therefore,this technology is not ideal for fault localization.

    In gas path performance parameter monitoring technology[7-8],the deficiency of this method lies in its poor reaction capability to short-term performance change of the engine[9].Moreover,the system structure of the aircraft engine is extremely complex and the operating environment is harsh,leading to poor fault diagnosis capacity and localizing depth.

    Gas-path electrostatic monitoring is an approach for intelligent health management of online monitoring early-stage faults.An increasing amount of literature on its methodologies,applications,and experiments has been presented in recent years.Vatazhin et al.[10]presented the theoretical method,laboratory modeling and simulation of electrostatic monitoring for engine.The electrostatic monitoring technology was also used in engine diagnostics through monitoring the overall electrostatic charge level.Considering the great potential of electrostatic monitoring,F(xiàn)isher et al.[11]conducted an on-line monitoring experiment on gas path debris using electrostatic sensors.They reported that the electrostatic monitoring technology would be an important PHM tool.Powrie et al.[12]applied this technology to the PHM system of aero-engines.The inlet debris monitoring system and exhaust debris monitoring system (EDMS),using the electrostatic monitoring,were also developed and applied to a certain type of joint-fighter.Wilcox et al.[13]investigated the application in industrial gas turbines for gas path condition monitoring and discussed the sensor installation issues.Addabbo et al.[14-15]presented a theoretical modeling of an electrostatic gas path debris detection system and conducted an experimental validation.A similar research was conducted by the RMS Center of Nanjing University of Aeronautics and Astronautics in China.Wen et al.[16-17]optimized the electrostatic sensor design and conducted a simulated experimental study with a simulation test bench.Fu et al.[18-19]conducted a verified electrostatic monitoring experiment on a certain type of turbojet engine.Yin et al.[20]conducted a verified electrostatic monitoring experiment on a certain type of civil turbofan engine accordingly,and found a blade case rubbing fault and combustion fault.

    Combining gas-path electrostatic with the change-point analysis method[21]of time sequence AR(P)model,we diagnosed the occurrence of a corresponding fault and further localized the damaged component and the damage degree.The proposed diagnosis method has the following advantages:Guaranteed air safety,reduced cost,and improved service efficiency of aircraft,and so on.

    1 Formulation of Change-Point Model

    The change-point model is defined as″one or a number of points that suddenly change in the model″.This problem involves a sequence of samples in a chronological order.At an unknown time t,the mathematical features or statistical distribution of these samples suddenly change.Thus,t is called the change point at this time.For convenience,in the unary linear regression changepoint model,we assume that:X is an independent variable,Y is a dependent variable,andntimes of observed values are taken;i.e.,(Xi,Yi),i= 1,2,…,n.The model is set wheni=1,2,…,m-1,(Xi,Yi)follows the linear regression model,that is

    Wheni=m,m+1,…;(Xi,Yi)follows linear regression

    where eiis a random error in the model,a1and a2are the constant terms,b1and b2the independent variable coefficients of the equation,and Yiis thei-th valuation of the dependent variable.At least one of a1=a2and b1=b2is false.At point m,if the coefficients of this regression equation are unequal,m is called the regressive change point.

    2 Time Sequence Change-Point Model

    2.1 Difference calculation

    Most time series are non-stationary,and they could not accord with the precise demand to analyze aero-engine condition by change-point model of stationary time series.To realize a refined analysis of the aircraft engine state,stationary processing of the sample data must be conducted.At present, non-stationary time sequences are analyzed by using certain factor de-composition method,and difference method is a convenient and effective technique for information extraction.After the original data are stabilized with difference method,the stable time sequence change-point model(we take AR (P)as an example)can be used to analyze the identification of change points.

    For anyp-order auto-regression AR (P)process

    where xtis the observed value at time t;pthe order of auto-regression;φ1,…,φpare the auto-regression coefficients;andεtis the white noise series.

    The discrete-time sequence of p order difference is equal to p order derivation of the continuous time series.According to Cramer decomposition theorem,certain information in the sample sequence{xt}can be sufficiently extracted from the p order difference.Taking first-order difference as an example

    This equation indicates that the essence of the first-order difference is an auto-regression process,that is,historical data{xt}after onephase delay are used as independent variables to explain the change in date value{xt-1}in the current phase.Thus

    whereBis the backward shift operator,BmXt=Xt-m,m the time span,▽the backward difference operator,Xt=Xt-Xt-1=(1-B)Xt,d the times of difference.The AR (P)model can be obtained through the deformation of Eq.(4).Under suitable difference order operation,certain formation contained in the data can be sufficiently extracted by applying Cramer decomposition theorem.

    2.2 Model analysis

    Random dynamic data in time sequence are arranged according to time order.According to before-after correlation of dynamic data,a convenient and feasible AR (P)(p-order auto regression model)model is used to establish the time sequence change-point model.Its descriptions are as follows:A sequence of observed values{xt},t=1,2,…,N meet the following auto regression model

    Ifф= (φ1,…,φp)τ≠ ф′=Eq.(6)is called the discrete auto-regression time sequence change-point model,wheremis the change point in the model,coefficientsф=(φ1,gression parameters,and residual error atis the white noise series.

    2.3 Estimation and inspection of change points

    (1)Roll investigated sample sequence

    First,the sample length n and the investigation interval length n0are determined.That is,the sample data sequence is set as{Xt},t=1,2,… ,N,the total data sequence length n is the length of the phase I sample,the interval n0(n0≤n≤N)is rolled to divide the total data sequence into several subsequences:The first phase {x1,x2,…,xn},the second phase {xn+1,xn+2,…,xn+n},…,the m-th phase {x(m-1)n+1,x(m-1)n+2,…,x(m-1)n+n};the″rolling″analysis is conducted on the subsequences.

    (2)Establish time sequence AR (k)model

    ① When k=1,2,…,m-1,k<n,parametersφk1,φk2,…,φkkof AR(k)model are calculated as follows

    In Eq.(7),pjis the autocorrelation function and is estimated through the samples as follows

    ②The residual sum of squares of the AR(k)model recurred:k=1,2,…,m

    ③ The amount of information BIC(k),k=1,2,…,m of the AR (k)model is calculated as follows

    The solved model is named AR (P),and its parameters areφp1,φp2,…,φpp.

    (3)Test judgment

    Difference test is conducted on neighboring models.If the orders are the same and the coefficients are approximate,then the difference is insignificant;otherwise,F(xiàn)statistical judgment will be used

    where A0and A1are the residual sums of squares corresponding to subsequences in two different phases(calculation is shown in Eq.(9)),s is the difference of numbers of subsequence parameters in two different phases,and r is the number of high-order model parameters.

    The confidence levelαis provided in advance.The Fαvalue,which satisfies Fα(P(F≥Fα)=α),is searched through theFdistribution table.When F>Fα,the subsequences of the two phases will be significantly different.

    We consider one single change point as an example.If the subsequences of two neighboring phases are significantly different,t0is the terminal point of the early-phase subsequence,and the moments in section[t0-n0,t0+n0]are taken as alternate change-point moments.When an alternative change-point moment is taken as the boundary,the total data sequence is divided into two segments for modeling.The statistical quantityFwill then be calculated,and then the place with the most significant before-after difference value will be taken as the change-point estimation.

    3 Model Application and Discussions

    3.1 Data source

    The data were provided by aparticular turbojet engine test.This experiment was used to detect electrostatic particles in engine exhaust.To avoid the destruction of engine structure,the electrostatic sensor was installed at the outer bracket of the engine tailpipe.This test bench was applicable to all life tests for turbojets,and mainly used for overall performance,applicability performance,long performance and lifespan,etc.The test bench consisted of a thrust test bench system,a fuel oil supply system,and an electric control system.This experimental engine started a 200hlifespan performance test in July 2011,and a 40htest was added later,resulting in a total 240htest).The interval of the test was 1h.Electrostatic monitoring started from the 100th phase of life test and ended in the 240th phase.The first hour was removed because collection line was connected at the ground and it effectively monitored 139phases.These data were collected on November 12,2011between 08:00a.m.—10:00a.m.,and the searching interval was 1 min.The sampling site was as shown in Fig.1.

    Fig.1 Schematic of actual sampling site

    (1)Background signals

    According to Refs.[11-12],there are two important feature parameters in engine electro-static signal analysis,namely,activity level and event rate,which are calculated as follows:

    ①Activity level(AL):The activity level reflects the quantity of small particles(such as soot particles and fraction-lets)that continuously appear within a period of time T,and it is a measurement of ratio-frequency components of signals.Activity level is defined as follows

    where N is the number of samples within time T,and its activity level is the root-mean-square value.

    ② Event rate(ER):The event rate is used to measure the number of abnormal particles in airflow within unit time.Typical events include abnormal large particles generated by component fault and large soot particles generated by incomplete combustion.Event rate is expressed as follows

    where M is the number of events within the time T,N the total number of samples within time T.The physical significance represented by the event rate is within a certain time interval(1s)of the electrostatic sensor.The percentage of the number of points exceeding K times of charge of current interval AL value in the total number of sampled points.

    In ignition phase after the experiment starts,a large quantity of positive and negative ions were generated inside the pipeline,resulting in a drastic change in the induced voltage on the sensor,as shown in Fig.2(a),whereArepresents the amplitude of original data.After approximately 5s,the combustion tends to stabilize,and so does the induced voltage on the sensor.

    Fig.2 Signal and its feature parameters in startup phase

    In Fig.2(b),when the engine starts in the ignition phase,large soot particles generated by incomplete combustion are contained in tail gas,resulting in a major change in the activity level in the first 5s.When the AL charge reaches 30pc,the signal event rate ER in Fig.2(c)ascends accordingly,and the largest proportion reaches 10%.When the engine is under normal operating status(after 5s),combustion generates soot particles with minimal size(nanometer level).These soot particles are the main components of garpath charged particles.Moreover,the combustion process in the combustion chamber of the engine under normal operation is very stable.Thus,the generated soot particles are relatively stable,and the corresponding activity level and event rate tend to be 0.In the analysis chart in this paper,the activity level parameters are uniformly expressed by red solid dots″·″,and event rates are expressed by blue solid square dots“■”.

    (3)Abnormal signal

    This paper uses typical data monitored from 8:00to 10:00AM on November 12,2011.The value on each sampled point represents the electrostatic signal of the tail gas that passes through the sensor in last 1min.The data after difference stationary processes are taken as an example to establish the time sequence AR (P)change-point model

    whereQis the tail-gas electrostatic induction signal detected by the sensor,wheremis the change point in the model,coefficientsф=represent auto-regression parame-ters,and the residual error atis the white noise series.The model significance is shown in Eq.(6).Fig.3shows the original data curves of the electrostatic signals.

    Fig.3 Original data curves acquired by sensor

    3.2 Stabilizations method

    After the first-order difference of the original time sequence data (Fig.3){Qt}of sensor in Fig.1recorded as {Qt},Qt= Qt- Qt-1,{Qt}is as shown in Fig.4.

    As shown in Figs.3,4,the original sequence Qthas linear ascending and descending tendencies,and sequence {Qt}after difference has been stablizied nearby a fixed value.

    Fig.4 Original data first-order difference

    3.3 Change-point searching algorithm flow

    The change-point searching algorithm in Section 3can rapidly and accurately detect the time position at which quantitative change of electrostatic data occurs.The specific searching steps are as shown in Fig.5.

    3.4 Test results

    The test level is set asα=0.05.The parameters are calculated according to Eqs.(7—12)and then used to test the existence of the change points.The calculation results are shown in Table 1.

    Fig.5 Change-point searching flowchart

    Table 1 Change-point searching results

    Change-point searching results show that change points appear five times at 8:11a.m.,8:26a.m.,8:48a.m.,9:17a.m.,and 9:41a.m.Meanwhile,the engine produces a loud,abnormal sound.Detection by test personnel after disassembly revealed that large-particle carbon deposits appear in the combustion chamber(Fig.6).The real-world scenario verifies that this paper can perform real-time monitoring of change status of gas-path charging level of the engine to provide early warning of the initial fault status.Fig.7 shows the data and signal features acquired at a typical change-point time 08:11a.m.

    Fig.6 Carbon deposit in fuel spray nozzle

    Fig.7 Electrostatic signals and features at typical change-point time

    Comparisons of Figs.2(b,c)and Figs.7(b,c)show that the activity level and event rate after the engine starts and stabilizes tend to be 0.However,when the change point occurs,a corresponding activity level AL is maintained at a stable level 0.5—0.8(nc),and the proportion of the corresponding event rate reaches 50%,which is far greater than the stable status under normal operation of the engine.Actual operation of the engine shows that normal background noise signals are at milli-volt levels,but obvious abnormal pulse amplitude appears within the period of the 216th—217th test run and even volt-level signals appear.

    4 Conclusions

    The time sequence change-point model established in this paper rapidly and effectively detects the time when quantitative change occurs.

    (1)Within 5sin the engine ignition phase,the induced voltage amplitude experiences obvious change;the corresponding activity level is 30pc and event rate is approximately 10%.After it stabilizes,both the activity level and event rate of the induced signals return to a value near 0.

    (2)The activity level at a typical changepoint time is maintained at 0.5—0.8 (nc)and the event rate reaches 50%,both of which are far greater than the level under stable working conditions.

    (3)Based on the above searching algorithm,results show that five change-point times,namely,8:11a.m.,8:26a.m.,8:48a.m.,9:17a.m.,and 9:41a.m.,are detected,and the corresponding jumping degrees are 0.020 189,0.014 452,0.083 381,0.147 074,and 0.099 978.Normal background noise signals of the engine are at millivolt level,but volt-level signals appear at changepoint time.This finding indicates that excess soot particles are present at change-point time,and these abnormalities change the charging level of the charged particles in the gas path.The engine disassembly report shows that large-particle carbon deposits can be found in the combustion chamber,and change-point results of electrostatic induction signals determine the corresponding fault reflection.

    (4)Difference method can concisely and effectively extract certain information.After the original data are processed by the first-order differential formula,linear trend terms of this data sequence are effectively eliminated,thereby facilitating the extraction of information while the sample sequence is smoothed.

    (5)As an advanced early fault detection method,the change-point model can reflect the working conditions of the engine.This model is beneficial to improving monitoring techniques and realizing fault prediction and health management.

    Acknowledgements

    The work is supported by the Initial Scientific Research Fund (No.2015QD02S),the Foundation Research Funds for the Central Universities (No.3122016A004,3122017027),which are highly appreciated by the authors.

    [1] GUO Y M,CAI X B,ZHANG B Z.Review of prognostics and health management technology[J].Computer Measurement & Control,2008,16(9):1213-1216.

    [2] ROEMER M J,KACPRZYNSKI G J,SCHOELLER M H.Improved diagnostic and prognostic assessments using health management information fusion[C]//2001IEEE Systems Readiness Technology Conference.Valley Forge,PA:IEEE,2001:365-377.

    [3] YU H,ZUO H F,HUANG C Q.Advanced endoscopy and fault testing of aeronautic engine[J].Aviation Engineerging & Mainienance,2002(2):20-22.

    [4] LI C Y,SHI H,YAO H Y.Research on borescope image properties[J].Testing Equipment & Trchnology,2006,239(5):38-40.

    [5] CHEN G,LI C G,WANG D Y.Nonlinear dynamic analysis and experiment verification of rubbing faults of rotor-ball bearing-support-stator coupling system for aero-engine [J].Journal of Aerospace Power,2008,23(7):1304-1311.

    [6] CHEN G.Vibration modeling and analysis for dualrotor aero-engine[J].Journal of Vibration Engineering,2011,24(6):619-632.

    [7] VODOPIANOV V,NIKITIN V.A new approach to GPA-system for gas turbine engine[C]//The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Huntsville,Alabama:AIAA,2003:4986.

    [8] ROMESSIS C,MATHIOUDAKIS K.Bayesian network approach for gas path fault diagnosis[J].Journal of Engineering for Gas Turbines and Power,2006,128(1):64-72.

    [9] LI Y G.A gas turbine diagnostic approach with transient measurements[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2003,217(2):169-177.

    [10]VATAZHIN A,STARIK A,KHOLSHCHEVNIKOVA E.Electric charging of soot particles in aircraft engine exhaust plumes[J].Fluid Dynamics,2004,39(3):384-392.

    [11]FISHER C.Data and information fusion for gas path debris monitoring [C]// Aerospace Conference,2001,IEEE Proceedings.[S.l.]:IEEE,2001:3017-3022.

    [12]POWRIE H,NOVIS A.Gas path debris monitoring for F-35Joint Strike Fighter propulsion system PHM[C]// Aerospace Conference.[S.l.]:IEEE,2006:8.

    [13]WILCOX M,RANSOM D,HENRY M,et al.Engine distress detection in gas turbines with electrostatic sensors[C]//ASME Turbo Expo 2010:Power for Land,Sea,and Air.Marine Glasgow,UK:[s.n.],2010:39-51.

    [14]ADDABBO T,F(xiàn)ORT A,MUGNAINI M,et al.Theoretical modeling of an electrostatic gas-path debris detection system with experimental validation[C]∥Proceedings of 2015IEEE Sensors Applications Symposium.Zadar,Croatia:[s.n.],2015:13-15.

    [15]ADDABBO T,F(xiàn)ORT A,GARGIN R,et al.Theoretical characterization of a gas path debris detection monitoring system based on electrostatic sensors and charge amplifiers[J].Measurement,2015,64:138-146.

    [16]WEN Z H,ZUO H F,LI Y H.Gas path debris electrostatic monitoring technology and experiment[J].Journal of Aerospace Power,2008,23(12):2321-2326.

    [17]WEN Z,MA X,ZUO H F.Characteristics analysis and experiment verification of electrostatic sensor for aero-engine exhaust gas monitoring [J].Measurement,2014,47(1):633-644.

    [18]FU Y,ZUO H F,LIU P P,et al.Gas path electrostatic sensors monitoring and comparison experiment on turbojet engine[J].Transactions of Nanjing University of Aeronautics & Astronautics,2013,30(4):361-365.

    [19]FU Y,YIN Y B,WANG H,et al.Study on detection for aero-engine abnormal condition based on permutation entropy of electrostatic signal[J].Automation&Instrumentation,2017(11):1-5,19.

    [20]YIN Y,CAI J,ZUO H,et al.Experimental investigation on electrostatic monitoring technology for civil turbofan engine [J].Journal of Vibroengineering,2017,19(2):967-987.

    [21]FU Y.Recognition for change-point of traffic flow binary linear regressions based on projective transform method [J].Journal of Computer Applications,2010,30(1):263-262.

    桃红色精品国产亚洲av| 精品熟女少妇八av免费久了| 黄色片一级片一级黄色片| 亚洲在线自拍视频| 亚洲三区欧美一区| 亚洲视频免费观看视频| 免费人成视频x8x8入口观看| www国产在线视频色| 一级毛片精品| 亚洲 国产 在线| 亚洲国产精品999在线| 一级a爱片免费观看的视频| 亚洲国产精品sss在线观看 | 午夜a级毛片| 两个人免费观看高清视频| 另类亚洲欧美激情| 99在线人妻在线中文字幕| 亚洲性夜色夜夜综合| 久久精品国产亚洲av高清一级| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频| 成人影院久久| 在线观看www视频免费| 亚洲激情在线av| 一级,二级,三级黄色视频| 久久久久久大精品| 18禁裸乳无遮挡免费网站照片 | 久久人妻熟女aⅴ| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 国产av在哪里看| 国产免费现黄频在线看| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 五月开心婷婷网| 麻豆国产av国片精品| 久久人人爽av亚洲精品天堂| 12—13女人毛片做爰片一| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 正在播放国产对白刺激| 天堂俺去俺来也www色官网| 丰满的人妻完整版| 亚洲色图 男人天堂 中文字幕| 91老司机精品| 午夜精品国产一区二区电影| 国产精品爽爽va在线观看网站 | 免费高清在线观看日韩| 老司机午夜福利在线观看视频| 国产伦一二天堂av在线观看| 国产xxxxx性猛交| 男女之事视频高清在线观看| 多毛熟女@视频| 久久精品亚洲熟妇少妇任你| 村上凉子中文字幕在线| 交换朋友夫妻互换小说| 最新美女视频免费是黄的| 亚洲欧美激情在线| 久久久久久久午夜电影 | 国产又色又爽无遮挡免费看| 久久亚洲真实| 9色porny在线观看| 大型黄色视频在线免费观看| 俄罗斯特黄特色一大片| av网站在线播放免费| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 男人的好看免费观看在线视频 | 极品教师在线免费播放| 精品日产1卡2卡| 国产乱人伦免费视频| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 色尼玛亚洲综合影院| 一二三四在线观看免费中文在| 亚洲专区中文字幕在线| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 亚洲自偷自拍图片 自拍| 亚洲欧美日韩无卡精品| 大陆偷拍与自拍| 久久精品亚洲av国产电影网| 男人操女人黄网站| 精品熟女少妇八av免费久了| 91麻豆av在线| 一区二区三区国产精品乱码| 欧美日韩精品网址| 大型黄色视频在线免费观看| 免费少妇av软件| 国产一区二区三区综合在线观看| 日本免费a在线| 国产色视频综合| 97超级碰碰碰精品色视频在线观看| 久久午夜综合久久蜜桃| 成人影院久久| 人妻丰满熟妇av一区二区三区| 亚洲自偷自拍图片 自拍| 欧美日韩黄片免| 啦啦啦免费观看视频1| 亚洲男人天堂网一区| 性色av乱码一区二区三区2| 啪啪无遮挡十八禁网站| 国产精品秋霞免费鲁丝片| 国产精品一区二区在线不卡| 国产熟女xx| 999久久久精品免费观看国产| 新久久久久国产一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 大码成人一级视频| 久久久久久免费高清国产稀缺| 成年人免费黄色播放视频| 精品无人区乱码1区二区| 国产熟女xx| 国产不卡一卡二| 视频在线观看一区二区三区| 成人精品一区二区免费| 男人舔女人下体高潮全视频| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 成人三级黄色视频| 大香蕉久久成人网| 亚洲一区二区三区不卡视频| 午夜免费观看网址| 精品无人区乱码1区二区| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 岛国视频午夜一区免费看| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 一区福利在线观看| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 韩国av一区二区三区四区| 欧美在线黄色| 欧美日韩福利视频一区二区| 成年版毛片免费区| av有码第一页| 日本三级黄在线观看| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| av在线天堂中文字幕 | 欧美日韩亚洲高清精品| 俄罗斯特黄特色一大片| 人人澡人人妻人| 成人国产一区最新在线观看| 日韩人妻精品一区2区三区| 国产在线精品亚洲第一网站| 美女大奶头视频| 中亚洲国语对白在线视频| 久久人人爽av亚洲精品天堂| 国产又爽黄色视频| 69精品国产乱码久久久| 亚洲色图av天堂| 亚洲成av片中文字幕在线观看| 日本wwww免费看| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 亚洲精品在线美女| 69av精品久久久久久| 亚洲在线自拍视频| avwww免费| 真人一进一出gif抽搐免费| 美国免费a级毛片| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩另类电影网站| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3 | 搡老熟女国产l中国老女人| 久久精品aⅴ一区二区三区四区| 成人黄色视频免费在线看| 国产免费男女视频| 欧美激情极品国产一区二区三区| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 99riav亚洲国产免费| 午夜日韩欧美国产| 他把我摸到了高潮在线观看| 久久草成人影院| 国产亚洲精品一区二区www| 欧美乱码精品一区二区三区| 亚洲成人免费电影在线观看| 一a级毛片在线观看| 国产av精品麻豆| 99在线视频只有这里精品首页| 9色porny在线观看| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 国产麻豆69| 黄色毛片三级朝国网站| 一级黄色大片毛片| 日韩精品免费视频一区二区三区| 免费观看人在逋| 后天国语完整版免费观看| 91老司机精品| 久久精品国产亚洲av香蕉五月| 操出白浆在线播放| 一区二区三区激情视频| 久久99一区二区三区| 久久青草综合色| 久久狼人影院| 国产不卡一卡二| 99精品久久久久人妻精品| 色老头精品视频在线观看| 免费高清视频大片| 伦理电影免费视频| 国产又色又爽无遮挡免费看| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日本中文国产一区发布| 久久精品亚洲av国产电影网| 国内久久婷婷六月综合欲色啪| 91在线观看av| 婷婷精品国产亚洲av在线| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 国产成+人综合+亚洲专区| 亚洲激情在线av| 在线av久久热| 精品国产亚洲在线| 国产精品久久视频播放| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 悠悠久久av| 国产精品久久久久久人妻精品电影| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 欧美精品亚洲一区二区| 日本a在线网址| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 成熟少妇高潮喷水视频| 纯流量卡能插随身wifi吗| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 国产一卡二卡三卡精品| 精品久久久久久成人av| 波多野结衣av一区二区av| tocl精华| 亚洲三区欧美一区| 亚洲一区二区三区欧美精品| 亚洲国产精品合色在线| 日本免费a在线| 国产99久久九九免费精品| 国产高清激情床上av| 免费不卡黄色视频| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到| 九色亚洲精品在线播放| 久久99一区二区三区| 丝袜美足系列| 久久精品影院6| 高清在线国产一区| 男女下面进入的视频免费午夜 | 欧美黑人欧美精品刺激| 国产精品一区二区在线不卡| av视频免费观看在线观看| 人人妻人人澡人人看| 国产亚洲精品久久久久久毛片| 黄频高清免费视频| 咕卡用的链子| 亚洲久久久国产精品| 精品久久久久久成人av| 美女午夜性视频免费| 丝袜人妻中文字幕| 成人18禁在线播放| 国产精品影院久久| 少妇裸体淫交视频免费看高清 | 波多野结衣一区麻豆| 精品第一国产精品| 丰满饥渴人妻一区二区三| 亚洲成av片中文字幕在线观看| 男人操女人黄网站| 免费一级毛片在线播放高清视频 | 乱人伦中国视频| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 久久久国产欧美日韩av| 欧美成人性av电影在线观看| 国产成人啪精品午夜网站| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 国产在线精品亚洲第一网站| 99久久久亚洲精品蜜臀av| 琪琪午夜伦伦电影理论片6080| 精品无人区乱码1区二区| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 日韩av在线大香蕉| 亚洲精品国产色婷婷电影| 天堂俺去俺来也www色官网| 一二三四社区在线视频社区8| 日本一区二区免费在线视频| 韩国av一区二区三区四区| 搡老岳熟女国产| 亚洲精华国产精华精| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 精品欧美一区二区三区在线| 九色亚洲精品在线播放| 精品乱码久久久久久99久播| 成人黄色视频免费在线看| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 日韩av在线大香蕉| 9色porny在线观看| 男人舔女人的私密视频| 香蕉丝袜av| 日韩欧美在线二视频| 一区二区三区激情视频| 国产一区二区激情短视频| 欧美黄色淫秽网站| 激情在线观看视频在线高清| 久久天堂一区二区三区四区| 欧美乱妇无乱码| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 久久亚洲真实| 日韩大尺度精品在线看网址 | 亚洲美女黄片视频| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 乱人伦中国视频| 欧美在线一区亚洲| xxx96com| 天天躁夜夜躁狠狠躁躁| 亚洲九九香蕉| www.熟女人妻精品国产| 黄色 视频免费看| 日韩视频一区二区在线观看| 熟女少妇亚洲综合色aaa.| 久久精品91蜜桃| 久久精品人人爽人人爽视色| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频日本深夜| 国产精品九九99| 首页视频小说图片口味搜索| 777久久人妻少妇嫩草av网站| 男女午夜视频在线观看| 黑丝袜美女国产一区| 国产97色在线日韩免费| 美女午夜性视频免费| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区mp4| 大陆偷拍与自拍| 怎么达到女性高潮| 啦啦啦免费观看视频1| 无人区码免费观看不卡| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 一区二区三区国产精品乱码| 免费在线观看完整版高清| 久久草成人影院| 自线自在国产av| 日韩高清综合在线| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 欧美中文日本在线观看视频| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 欧美最黄视频在线播放免费 | 欧美日韩乱码在线| www.熟女人妻精品国产| 亚洲 国产 在线| 电影成人av| 男男h啪啪无遮挡| 男女下面进入的视频免费午夜 | 免费日韩欧美在线观看| 99热只有精品国产| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 久久精品人人爽人人爽视色| 欧洲精品卡2卡3卡4卡5卡区| ponron亚洲| 99国产精品一区二区蜜桃av| 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 久久性视频一级片| 无限看片的www在线观看| 亚洲第一青青草原| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 免费女性裸体啪啪无遮挡网站| 久久久久精品国产欧美久久久| www.自偷自拍.com| 久久精品91无色码中文字幕| 国产激情欧美一区二区| 亚洲国产看品久久| 操出白浆在线播放| 97人妻天天添夜夜摸| 90打野战视频偷拍视频| 正在播放国产对白刺激| 女人高潮潮喷娇喘18禁视频| 丝袜人妻中文字幕| av电影中文网址| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 亚洲精品国产区一区二| 欧美成人性av电影在线观看| 啦啦啦在线免费观看视频4| 一a级毛片在线观看| 精品国产一区二区久久| 国产视频一区二区在线看| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看| 免费少妇av软件| 免费在线观看黄色视频的| 久热爱精品视频在线9| 亚洲九九香蕉| 脱女人内裤的视频| 久热这里只有精品99| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 欧美成人性av电影在线观看| 在线观看免费高清a一片| 两个人免费观看高清视频| 两人在一起打扑克的视频| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 精品国产国语对白av| 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| 日韩精品青青久久久久久| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| av有码第一页| 精品第一国产精品| 亚洲精品一二三| 欧美黄色淫秽网站| 国产精品综合久久久久久久免费 | 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区精品91| 欧美激情久久久久久爽电影 | 日韩欧美免费精品| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 欧美一级毛片孕妇| 亚洲精品在线观看二区| 午夜精品在线福利| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 亚洲中文日韩欧美视频| 亚洲成av片中文字幕在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣av一区二区av| 18禁黄网站禁片午夜丰满| 精品国产亚洲在线| 一级,二级,三级黄色视频| 国产精品久久久久成人av| 国产成人精品在线电影| 黄色a级毛片大全视频| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 99香蕉大伊视频| 天堂俺去俺来也www色官网| 夜夜爽天天搞| 亚洲va日本ⅴa欧美va伊人久久| 90打野战视频偷拍视频| 一级毛片女人18水好多| 亚洲视频免费观看视频| 校园春色视频在线观看| 亚洲成人精品中文字幕电影 | 精品卡一卡二卡四卡免费| 91成人精品电影| 久久久久久久久久久久大奶| 亚洲自偷自拍图片 自拍| 欧美日韩中文字幕国产精品一区二区三区 | 超碰97精品在线观看| 中国美女看黄片| 精品福利观看| 欧美成人性av电影在线观看| 久久精品亚洲精品国产色婷小说| 淫秽高清视频在线观看| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 国产精品香港三级国产av潘金莲| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区精品| 在线观看www视频免费| 曰老女人黄片| 欧美在线一区亚洲| 精品福利观看| 久久久久国内视频| 夜夜看夜夜爽夜夜摸 | 黑人欧美特级aaaaaa片| 老汉色av国产亚洲站长工具| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 亚洲av片天天在线观看| 五月开心婷婷网| 窝窝影院91人妻| 黑丝袜美女国产一区| 国产熟女xx| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女 | 男人的好看免费观看在线视频 | av有码第一页| 黑人操中国人逼视频| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| av超薄肉色丝袜交足视频| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 亚洲 欧美 日韩 在线 免费| 99在线视频只有这里精品首页| 悠悠久久av| 国产成人一区二区三区免费视频网站| 久久久久久人人人人人| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 精品欧美一区二区三区在线| 巨乳人妻的诱惑在线观看| 精品日产1卡2卡| 精品一区二区三卡| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 久久伊人香网站| 国产精品二区激情视频| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一出视频| 久久天躁狠狠躁夜夜2o2o| 夜夜看夜夜爽夜夜摸 | 两个人看的免费小视频| 一二三四社区在线视频社区8| 国产1区2区3区精品| 国产av精品麻豆| 欧美精品啪啪一区二区三区| 午夜福利在线观看吧| 国产男靠女视频免费网站| 9色porny在线观看| 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线免费观看网站| 亚洲成人免费电影在线观看| 精品久久蜜臀av无| 国产精品九九99| 少妇 在线观看| 最新在线观看一区二区三区| 日本精品一区二区三区蜜桃| 免费日韩欧美在线观看| bbb黄色大片| 国产一卡二卡三卡精品| 免费在线观看视频国产中文字幕亚洲| 久久香蕉激情| 久久狼人影院| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女 | 少妇裸体淫交视频免费看高清 | 欧美亚洲日本最大视频资源| 一级作爱视频免费观看| av天堂在线播放| 色综合欧美亚洲国产小说| 日本欧美视频一区| 亚洲欧美精品综合久久99| 精品一品国产午夜福利视频| 国产精品一区二区免费欧美| 成人免费观看视频高清| 日韩国内少妇激情av| 视频在线观看一区二区三区| 老司机靠b影院| 桃色一区二区三区在线观看| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区在线臀色熟女 | 亚洲精品中文字幕一二三四区| 女同久久另类99精品国产91| av福利片在线| 在线视频色国产色| 成人影院久久| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 两性夫妻黄色片| 亚洲精品一区av在线观看| 夫妻午夜视频| 亚洲熟妇熟女久久| 日韩免费高清中文字幕av| av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| 中出人妻视频一区二区| 亚洲精品美女久久久久99蜜臀| 韩国av一区二区三区四区|