• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Dry Friction-Induced Vibration of Moving Slider-Elastic Annular Beam System

    2018-03-29 07:35:53,,2*

    ,,2*

    1.Department of Mechanics,Tianjin University,Tianjin 300350,P.R.China

    2.Tianjin Key Laboratory of Nonlinear Dynamics and Control,Tianjin 300350,P.R.China

    0 Introduction

    A friction system usually exists in the engineering such as braking system,where the friction-induced instable vibration has a negative influence on the braking system,especially the disc-pad system[1].Many researches have been carried out for this problem with analytical,computational and experimental techniques.Various models including the single-mode approximation,the beam model,the plate model[2]and the finite element model were established to investigate the brake system of rotating brake disc acted by fixed pads.The early achievements on disc brake system are attributed to the dry frictional stick-slip self-excited vibration[3-4]and unstable structural vibration[5-6].Stick-slip refers to a fluctuation of friction force or sliding velocity with time or sliding distance changing[7].

    In view of the stick-slip mechanism,the model of rigid body-rigid transmission belt has been widely used.In 2001,a dynamic system is presented by Galvanetto to get the mechanism of discontinuous bifurcations,where stick-slip vibration can be affected by the non-smooth bifurcations[8].Hereby,Stribeck-type coefficient is concluded to analyze the system stability and determine the critical speed of a dynamic model with two-degree-of-freedom[9].

    However,the use of rigid belt model ignores the interaction between the brake pad and disc in transverse direction.To overcome this shortage,elastic or flexible brake disc models are adopted in recent investigations.A braking system with a flexible thick plate for disc and two continuous beams for pads by using the Mindlin′s theory is established by Beloiu and Ibrahim to account for the influence of flexible belt on the braking behaviors.The braking noise and response in time and frequency domains are investigated analytical-ly and experimentally by considering the influence of non-linearity and randomness of contact forces[10].Nayfeh,Jilani and Manzione reduced the order of a circular flexible uniform thickness disk and analyzed its dynamical behavior analytically[11].Recently,an elastic annular disc model is adopted for a pre-loaded mass-damp-spring system with separation and reattachment by Li,Ouyang and Guan to investigate friction-induced vibration using the improved model[12].They found that separation often occurs in low speed,which is caused by friction during the unstable vibration.Larger in-plane stiffness and pre-load bring earlier separation and instability.In addition,the frequency of disc is increased with the effect of separation.However,the contact effect between the slider and disc and internal resonances were not considered.

    During braking process,the time-dependent nature of the contacting interface in the pad-disc system is important and must be considered even if lower relative speed[5].From the point of the rotating disc,its vibration is activated by the circumferentially moving action of the rigid pads.Influence of the moving force on brake stability attracts more and more attentions and the moving method is adopted in finite element method and experimental approaches.The deflection of a beam with moving force and the resonance velocity of the moving load are analyzed by Wayou,Tchoukuegno and Woafo[13].An approximation solution of moving oscillator was investigated by Pesterev and Bergman to describe the variation of displacement and shear force in a one-dimensional distributed system with an arbitrarily varying speed[14].Chen et al.analyzed a viscoelastic beam moving axially using the method of multiple scales.They found that the instability frequency intervals are influenced by the axial speed and the beam coefficient[15].Using the finite element method,unstable frequencies of a braking system inspired by moving loads can be obtained based on the system eigenvalue analysis[16].A linear complex-valued eigenvalue formulation for a disc with moving load is established by Cao et al.to calculate the stationary components of the disc brake[17].Based on the finite difference method and complex eigenvalue analysis,stability and uncertain parameters analyses[18]are carried out for disc-pad systems with moving-interactions.Accordingly,Ouyang investigated the instability of a brake disc by presenting the relationship between eigenvalue and disc′s rotating speed[15].

    However,up to now,the flexible coupling between the disc and pads and the moving interactions have not been considered simultaneously in one dynamical braking model.This paper deals with a rigid-flexible coupled braking system,and focuses attention mainly on motion of the pads moving on the elastic disc.The disc is simplified as an annular beam and the friction between the beam and pads are determined using a Stribecktype friction model.Then the 1st order Galerkin reduction is applied for the beam based on result of moving load simulation.Influence of acceleration of the disc rotation on the frictional instability of the pad is investigated.

    The values referred in this paper are shown in Table 1.

    1 Dynamic Modals

    1.1 Pads and disc

    During braking,the pads move circumferentially along the outer edge of the elastic disc.So the disc can be simplified as an annular beam which is supported on uniform and continuous flexible boundary(to simulate the distribution of flexible constraint effect from the inner part of disk)[19-20].The pad-disc coupling system is shown in Fig.1 (the boundary supporting is not included).The pads move at relative speedVand vibrate independently in horizontal directionsX1/X2and vertical directionsY1/Y2,and the rotational angles areΦ1/Φ2[21].For the disk,only its transverse displacementWdis considered,because it influences the pads′motion directly during braking contact.The contact stiffness involves the tangential onesKt1andKt2and the vertical oneKen.Parameters and their values of the system are listed in Table 1.

    Table 1 Parameters

    Fig.1 Pad-disc coupling system

    The equations of motion of the pad-disc coupling system are deduced as andσ=σ(T)represents the position of the loads varying with the time.

    1.2 Non-dimensional Form

    To rewrite the equations conveniently,introduce the dimensionless variables and parameters

    1.3 Friction

    Many models have been proposed to describe the friction properties,such as the coulomb friction(before occurrence of relative displacement between the contact parts),static friction(no relative velocity from static to relative motion)and-Stribeck effect,etc.

    The Stribeck effect refers to a phenomenon that the friction coefficient decreases.The negative slope in relation between the friction and relative velocity is known as the main reason of friction instability.The Stribeck-type friction coefficientμ(vr)can be expressed as

    wherefcandfsare the minimum and the maximum static friction coefficients respectively,vsis the Stribeck velocity,and vrthe relative velocity.Whenδ=1,Eq.(6)is also known as Tustin index model.The friction coefficient varies with relative velocity as shown in Fig.2.

    Fig.2 Static friction and Coulomb friction with Stribeck effect

    2 Moving Interaction and Galerkin Reduction

    2.1 Moving load simulation

    Considering a forcemoves along a straight beam.To analyze its response under the moving load,the beam is discretized intopelements.Let dtbe the unit time and dxthe unit space,the nodal forceis subsequently allocated in every unit time.

    For the moving load acted system,two conditions will be dealt with during calculation:

    (1)Cdx=vdt(Cis a positive integer).In this case,the load moves from one discrete point to theCth one after each time step dt.

    (2)dx=Cvdt(Cis a positive integer).In this case,after each time step dt,the load moves at a place between the discrete pointseande+1.Dividing the space step dxintoCequal subspaces,the load moves at the next sub-point after every time step dt.When the loadF槇 moves at theith one,(e+i/Cdx)wherei=1,2,…,C,the loadwill be resolved to the pointseande+1as=respectively,see Fig.3.

    Fig.3 Moving load simulation

    Corresponding to the moving load simulation mentioned above,the uniform and continuous flexible boundary of the beam should be discretized aspelastic springs with stiffnessk,as shown in Fig.4.kdepends on the material properties andp=50in the following analysis.Then the boundary and continual conditions can be expressed as

    where 1,iandLAare the leftmost,theith node and rightmost node in beam′s horizontal direction,respectively.jandj+1present thejth and(j+1)th time moment,respectively.

    Fig.4 Continuous flexible boundary discretized as p springs

    The disc partial differential Eq.(5)is solved by using the finite difference method and the ordinary differential Eq.(4)is solved by Runge-Kutta method,respectively.And the dynamical behavior of the braking system with moving actions between the parts can be simulated with the same time step dt=0.000 1and space step dx=0.02.The transverse response of disc solved by finite difference method is transferred to contact pressure and friction force items of pads,and then Eq.(4)can be solved.Takeσ珋=vt,then the transverse response of the beam is induced by successive change of the contact position between the pad and disc.LetKx=5.0×104kN/m,K=3.0×

    y104kN/m,v=2and 1,and simulation shows that both thexdirection response of the pad and the transverse response of the annular disc are periodic vibration as shown in Figs.5,6.The spectra of motions are also presented in the figures.It should be noted that except the difference of the equilibriums in velocity axis,the friction-induced dynamics of two pads are same with each other.So we present only the upper pad′s motion in this paper.

    Fig.5 Response of the system under moving interactions as relative-equilibrium occuring for the pad(v =2)

    Fig.6 Response of the system under moving interactions as friction-induced limit cycle occuring for the pad(v =1)

    Calculation shows that the natural frequencies areΩx=3.1Hz,Ωy=2.7Hz andΩφ=1.3Hz for horizontal,vertical and angle direction motions of the pads,and 1.25Hz(the first order)and 2.50Hz(the second order)for transverse motion of the disk,respectively.One finds that in spectrums under higher speed sustained moving interaction,sayv=2,motions of the pad and the disc in all directions are mixed with disc′s frequency in steady state,because the vibration frequencies are their natural frequencies and disc′s frequency in corresponding directions,respectively.However,as the moving speedvdecreases to 1,the friction-induced limit cycle vibration occurs for the pad,and common frequency 3.05Hz appears in all directions of the pad′s motion.It should be noted that even though the frictional instability has happened for the pad,the disc still vibrates in the first-order mode.So the equation of motion of the disc is discretized to the first-order mode by Galerkin model reduction in the following section.

    2.2 Approximate reduction equations

    Take the trial function(Eq.(8))to approximate the first-order transverse vibration of the disc.

    Substitute Eq.(8)into Eq.(5)and multiply the weighted function on both sides,then integrate it from 0toLinx,so the ordinary differential equation of transverse vibration of the disc is resulted as

    Approximation of first-order mode functionto the desired solution of transverse deflection of the disk at low speed.The time-varying function items included珋σ(t)in Eq.(9)reflect or interpret the fact that the space position of contacting load between the pads and disc varies with timet,after the vibration description for the beam is changed from a partial differential equation to an ordinary differential one.Because the stiffness value varies periodically with time,the natural frequency of the pad′s horizontal direction cannot keep in a fixed value but fluctuates periodically near 2.71Hz during integration,as shown in Fig.7.Accordingly,the system equilibrium positions will also fluctuate slightly(see the example of the angle equilibrium of pad in the vicinity of-2.678 6×10-6).

    Fig.7 Fluctuations

    Fig.8 Bifurcation of horizontal direction of pad

    Eqs.(4,5)are solved using the Runge-Kutta method,and the dynamical behavior of the braking system with moving interaction between parts can be investigated numerically.The complex eigenvalue analysis is carried out referred to Ref.[22]and the eigenvalues are 0.22+19.58iatv=1and-0.27+19.58iatv=2(assuming sign functions are positive).The bifurcation diagram in Fig.8reveals horizontal motion of the pad under braking process with the decrease of speedv.The points are sampled when the velocity of horizontal motion is zero.The instability of motion of the pad happens and the stick-slip limit cycle is resulted atv=1.25,which is also known as the critical speed.

    3 Numerical Analyses

    3.1 Non-internal resonances

    To reveal the variation of the coupling system dynamics during velocity decrease process,the time histories,spectra(Fig.5(a)and Fig.6(a)),and phase portraits(Fig.9)of the selected vibration characteristics of the upper pad are presented at the speedsv=2andv=1,respectively.Whenv=2,vibrations of pads will be damped,and a quasi-periodic motion occurs in this non-stationary case,which may be attributed to sustained oscillation of the contacting force resulted from the disc transverse deflection.The amplitude of upper pad inxdirection keeps vibrating with small amplitude,until changing to be an equilibrium at about 2.5×10-5.

    Whenvdecreases to 1,Stribeck-type friction effect induced by self-excited vibration (or stickslip)appears and limit cycles with rather large vibration amplitude for all parts of the system are resulted(see the presented horizontal vibration of the pad in Fig.9).

    3.2 Acceleration of disc rotation

    Fig.10shows the time histories of braking processes of the pads and disc at deceleration珔a=-0.005and珔a=-0.002,respectively.One finds that the higher the braking deceleration is,the faster the disc speed reaches to zero and the shorter the stick-slip vibration lasts.Obviously,the stick-slip vibration with high amplitude is more extensively at lower speed,where small"jitter"phenomena happens many times.As the speed approaches zero,the pads cannot stop vibration immediately.In fact,the vibration lasts for a short time under action of the relative friction force between the pads and disc.

    Fig.9 Phase portraits of the pad

    4 Conclusions

    Fig.10 Dynamic responses of the upper pad

    The disk-pads coupling braking system with-Stribeck-type frictional interaction with each other is investigated in this paper.The disk is simplified as an annular elastic beam and its vibration under action of moving loads is simulated using the finite difference method.Then Galerkin reduction is used for the disk vibration equation and numerical simulations are carried out for the 7-DOF equations.Conclusions are summarized in the following.

    (1)Mainly the first-order mode vibration of the annular beam can be induced by frictional moving loads.By using the Galerkin reduction,the first-order mode vibration equation of the disk is resulted with time-varying stiffness,which reflects the moving contact between the pads and disk.As a result,the system equilibrium positions and natural frequency of the disc will fluctu-ate periodically during time integration.

    (2)As the disc speed decreases below the critical one,the relative equilibrium of the pad in the disc loses its stability and stick-slip type vibration will be resulted in all directions′movements.As a counterpart of the pads,the disc vibrates also with large amplitude transversely.

    (3)During non-stationary braking process,braking deceleration shortens the period of stickslip vibration but enlarges the vibration amplitude.In addition,small"jitter"phenomena can happen many times during process.

    Acknowledgement

    This work is supported by the National Natural Science Foundation of China (Nos.51575378,11272228and 11332008).

    [1] KINKAID N M,O'REILLY O M,PAPACLOPOULOS P.Automotive disc brake squeal[J].Journal of Sound and Vibration,2003(267):105-166.

    [2] OUYANG H,MOTTERSHEAD J E,BOUNDED A.Region of disc-brake vibration instability[J].Journal of Vibration and Acoustics,2001(123):543.

    [3] CROWTHER A R,SINGH R.Analytical investigation of stick-slip motions in coupled brake-driveline systems[J].Nonlinear Dynamics,2007(50):463-481.

    [4] BERNARDO M D,KOWALCZYK P,NORDMARK A.Sliding bifurcations:A novel mechanism for the sudden onset of chaos in dry friction oscillators[J].International Journal of Bifurcation and Chaos,2003(13):2935-2948.

    [5] OUYANG H,MOTTERSHEAD J E,LI W.A moving-load model for disc-brake stability analysis[J].J Vib Acoust,2003(125):53-58.

    [6] HOCHLENERT D,HAGEDORN P.Control of disc brake squeal-modelling and experiments[J].Struct Control Hlth,2006(13):260-276.

    [7] KANG J.Finite element modeling for stick-slip pattern of squeal modes in disc brake[J].Journal of Mechanical Science and Technology,2014(28):4021-4026.

    [8] GALVANETTO U.Some discontinuous bifurcations in a two-block stick-slip system[J].Journal of Sound and Vibration,2001(248):653-669.

    [9] WANG Q,TANG J,CHEN S,et al.Dynamic analysis of chatter in a vehicle braking system with two degrees of freedom involving dry friction[J].Mechanical Science & Technology for Aerospace Engineering,2011(30):906-937.

    [10]BELOIU D M,IBRAHIM R A.Analytical and experimental investigations of disc brake noise using the frequency-time domain[J].Struct Control Hlth,2006(13):277-300.

    [11]NAYFEH A H,JILANI A,MANZIONE P.Transverse vibrations of a centrally clamped rotating circular disk[J].Nonlinear Dynamics,2001(26):163-178.

    [12]LI Z,OUYANG H,GUAN Z.Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment[J].Nonlinear Dynamics,2016(87):1045-1067.

    [13]WAYOU A N Y,TCHOUKUEGNO R,WOAFO P.Non-linear dynamics of an elastic beam under moving loads[J].Journal of Sound and Vibration,2004(273):1101-1108.

    [14]PESTEREV A V,BERGMAN L A.An improved series expansion of the solution to the moving oscillator problem[J].J Vib Acoust,2000(122):54-61.

    [15]CHEN L Q,WU J,ZU J W.Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J].Nonlinear Dynamics,2004(35):347-360.

    [16]SOOBBARAYEN K,SINOU J J,BESSET S.Numerical study of friction-induced instability and acoustic radiation-Effect of ramp loading on the squeal propensity for a simplified brake model[J].Journal of Sound and Vibration,2014(333):5475-5493.

    [17]CAO Q,OUYANG H,F(xiàn)RISWELL M I,et al.Linear eigenvalue analysis of the disc-brake squeal problem[J].International Journal for Numerical Methods in Engineering,2004(61):1546-1563.

    [18]L H,SHANGGUAN W B,YU D J.An imprecise probability approach for squeal instability analysis based on evidence theory[J].Journal of Sound and Vibration,2017(387):96-113.

    [19]OBERST S,LAI J C S.Pad-mode-induced instantaneous mode instability for simple models of brake systems[J].Mechanical Systems and Signal Processing,2015(62/63):490-505.

    [20]JOE Y G,CHA B G,SIM H J,et al.Analysis of disc brake instability due to friction-induced vibration using a distributed parameter model[J].Int J Auto Tech-Kor,2008(9):161-171.

    [21]ZHAO Y,DING Q.Dynamic analysis of dry frictional disc brake system based on the rigid-flexible coupled model[J].International Journal of Applied Mechanics,2015(7):1550044.

    [22]DING Q,COOPER J E,LEUNG A Y T.Hopf bifurcation analysis of a rotor/seal system[J].Journal of Sound and Vibration,2002(252):817-833.

    aaaaa片日本免费| 欧美性猛交黑人性爽| 激情在线观看视频在线高清| 日韩欧美在线乱码| 啦啦啦观看免费观看视频高清| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 中文资源天堂在线| 国产午夜精品论理片| 亚洲午夜理论影院| 亚洲无线观看免费| 久久精品国产亚洲av涩爱 | 神马国产精品三级电影在线观看| 亚洲美女黄片视频| 3wmmmm亚洲av在线观看| 久久精品国产清高在天天线| 免费高清视频大片| 国产三级黄色录像| 欧美性猛交黑人性爽| 亚洲av熟女| 91在线精品国自产拍蜜月 | 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 神马国产精品三级电影在线观看| 亚洲av一区综合| 国产成人av教育| 怎么达到女性高潮| 国产三级中文精品| 俄罗斯特黄特色一大片| 一进一出抽搐动态| 欧美zozozo另类| 久久久国产成人精品二区| 在线国产一区二区在线| 久久国产乱子伦精品免费另类| 九九热线精品视视频播放| 在线观看日韩欧美| 亚洲成av人片在线播放无| 亚洲 国产 在线| 床上黄色一级片| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 在线观看66精品国产| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 在线看三级毛片| 天堂av国产一区二区熟女人妻| 国产午夜福利久久久久久| 欧美午夜高清在线| 美女cb高潮喷水在线观看| 精品人妻一区二区三区麻豆 | 国产黄a三级三级三级人| 一本一本综合久久| 亚洲人成网站高清观看| 好男人电影高清在线观看| 国产国拍精品亚洲av在线观看 | 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 欧美一区二区亚洲| 90打野战视频偷拍视频| e午夜精品久久久久久久| 午夜免费男女啪啪视频观看 | 一级黄片播放器| 99久久精品一区二区三区| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 亚洲精品久久国产高清桃花| 国产色爽女视频免费观看| 一级黄色大片毛片| 美女高潮喷水抽搐中文字幕| 男人和女人高潮做爰伦理| 久久国产精品人妻蜜桃| 国产高潮美女av| 免费高清视频大片| 国产亚洲欧美98| 久久久久久久久中文| 中文字幕av成人在线电影| 久久久久久久午夜电影| 很黄的视频免费| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 999久久久精品免费观看国产| 岛国视频午夜一区免费看| 亚洲成av人片免费观看| a级一级毛片免费在线观看| 男人舔奶头视频| 精品久久久久久久毛片微露脸| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 97碰自拍视频| 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 少妇高潮的动态图| 国产蜜桃级精品一区二区三区| 中亚洲国语对白在线视频| 午夜久久久久精精品| 熟女电影av网| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 午夜福利在线在线| 91在线精品国自产拍蜜月 | 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 精品国产美女av久久久久小说| 久久久久九九精品影院| 一级毛片高清免费大全| www日本黄色视频网| 91久久精品国产一区二区成人 | 无遮挡黄片免费观看| 亚洲七黄色美女视频| 亚洲精品乱码久久久v下载方式 | 蜜桃亚洲精品一区二区三区| 波野结衣二区三区在线 | 久久草成人影院| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 亚洲国产日韩欧美精品在线观看 | 观看免费一级毛片| 一区二区三区高清视频在线| 在线观看美女被高潮喷水网站 | 亚洲天堂国产精品一区在线| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 精品一区二区三区av网在线观看| 亚洲乱码一区二区免费版| 日本a在线网址| 精品99又大又爽又粗少妇毛片 | 无限看片的www在线观看| 国产成人系列免费观看| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 丁香欧美五月| 成年人黄色毛片网站| 窝窝影院91人妻| 99国产极品粉嫩在线观看| 日本a在线网址| 尤物成人国产欧美一区二区三区| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕| 久久草成人影院| 又紧又爽又黄一区二区| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 午夜两性在线视频| 亚洲狠狠婷婷综合久久图片| 中文字幕人妻熟人妻熟丝袜美 | 欧美黄色淫秽网站| 成年女人看的毛片在线观看| 90打野战视频偷拍视频| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 国产成人啪精品午夜网站| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区激情短视频| 免费在线观看成人毛片| 成人国产综合亚洲| 有码 亚洲区| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 中文字幕人妻丝袜一区二区| 免费看日本二区| 日本成人三级电影网站| 乱人视频在线观看| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| av视频在线观看入口| 久久人妻av系列| 91字幕亚洲| 69人妻影院| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 日韩欧美精品免费久久 | 日韩欧美 国产精品| 天天添夜夜摸| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 国产成人影院久久av| 波多野结衣巨乳人妻| 91av网一区二区| a在线观看视频网站| 色综合婷婷激情| 国产高清激情床上av| 亚洲欧美日韩高清专用| 内射极品少妇av片p| 黄色女人牲交| 在线观看免费午夜福利视频| 国产精品1区2区在线观看.| 免费高清视频大片| 丰满人妻熟妇乱又伦精品不卡| 日韩人妻高清精品专区| 久久亚洲真实| 国产亚洲精品av在线| 国产高清激情床上av| 操出白浆在线播放| 午夜两性在线视频| 欧美性猛交╳xxx乱大交人| 亚洲第一电影网av| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 欧美乱色亚洲激情| 五月玫瑰六月丁香| 精品午夜福利视频在线观看一区| 国产高潮美女av| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 亚洲乱码一区二区免费版| 嫁个100分男人电影在线观看| 91在线观看av| 亚洲熟妇中文字幕五十中出| 欧美3d第一页| 变态另类成人亚洲欧美熟女| 51午夜福利影视在线观看| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 成人性生交大片免费视频hd| 99久久九九国产精品国产免费| 国产精品一区二区三区四区久久| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线在线| 国产真实乱freesex| 国产熟女xx| 国产精品,欧美在线| 国产97色在线日韩免费| 国产高清视频在线播放一区| 岛国在线免费视频观看| 亚洲成av人片在线播放无| 久久99热这里只有精品18| 一级黄片播放器| 熟女电影av网| 欧美成人a在线观看| 成人一区二区视频在线观看| 宅男免费午夜| 日韩欧美在线二视频| 小说图片视频综合网站| 欧美在线一区亚洲| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 18禁美女被吸乳视频| 高清在线国产一区| 欧美av亚洲av综合av国产av| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 久久伊人香网站| 精品人妻1区二区| 久久性视频一级片| 欧美绝顶高潮抽搐喷水| 黄色视频,在线免费观看| 天堂网av新在线| 久久精品夜夜夜夜夜久久蜜豆| 国产美女午夜福利| 午夜福利在线观看免费完整高清在 | 又黄又爽又免费观看的视频| 久久久久久久午夜电影| 日韩大尺度精品在线看网址| 日韩欧美三级三区| av黄色大香蕉| 国产真实伦视频高清在线观看 | 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 床上黄色一级片| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 好男人在线观看高清免费视频| 白带黄色成豆腐渣| av视频在线观看入口| 日韩欧美在线乱码| 九九热线精品视视频播放| 九色国产91popny在线| 少妇丰满av| 久久久久性生活片| 色哟哟哟哟哟哟| 国产精品 国内视频| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线 | 国产真实乱freesex| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 欧美高清成人免费视频www| 亚洲国产欧洲综合997久久,| 中文在线观看免费www的网站| 色在线成人网| 国产中年淑女户外野战色| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 岛国在线观看网站| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| av在线蜜桃| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 国产精品女同一区二区软件 | 亚洲av电影不卡..在线观看| 丁香欧美五月| 51国产日韩欧美| 国产午夜福利久久久久久| 中国美女看黄片| 少妇高潮的动态图| 亚洲黑人精品在线| 少妇高潮的动态图| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 制服人妻中文乱码| 在线免费观看的www视频| 亚洲国产中文字幕在线视频| avwww免费| 蜜桃亚洲精品一区二区三区| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 此物有八面人人有两片| 精品无人区乱码1区二区| 成人av一区二区三区在线看| 一本久久中文字幕| 午夜福利在线观看免费完整高清在 | 岛国在线免费视频观看| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 特级一级黄色大片| 在线观看美女被高潮喷水网站 | 日韩精品中文字幕看吧| 啪啪无遮挡十八禁网站| 免费av不卡在线播放| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 免费大片18禁| 老司机深夜福利视频在线观看| 国产欧美日韩一区二区精品| 国产精品亚洲美女久久久| 国产私拍福利视频在线观看| 色视频www国产| 国产99白浆流出| 欧美成人性av电影在线观看| 午夜久久久久精精品| 男人舔奶头视频| 欧美黑人巨大hd| 高潮久久久久久久久久久不卡| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 中出人妻视频一区二区| 亚洲成人免费电影在线观看| 露出奶头的视频| www.熟女人妻精品国产| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 免费人成在线观看视频色| av国产免费在线观看| 亚洲国产色片| 欧美不卡视频在线免费观看| 国产一区二区在线av高清观看| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 欧美成人a在线观看| 国语自产精品视频在线第100页| 两个人视频免费观看高清| 国内精品一区二区在线观看| 叶爱在线成人免费视频播放| 中文资源天堂在线| 91在线精品国自产拍蜜月 | 国产成人影院久久av| 99视频精品全部免费 在线| 十八禁人妻一区二区| 小说图片视频综合网站| 一本一本综合久久| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 午夜福利高清视频| bbb黄色大片| 亚洲一区二区三区色噜噜| 一本一本综合久久| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| ponron亚洲| 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 国产精品久久久久久久久免 | 一进一出抽搐gif免费好疼| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 日韩欧美 国产精品| 国产成人av教育| 日本免费一区二区三区高清不卡| 操出白浆在线播放| 精品电影一区二区在线| 免费在线观看亚洲国产| 国产真人三级小视频在线观看| 亚洲精品456在线播放app | 不卡一级毛片| 日韩有码中文字幕| 2021天堂中文幕一二区在线观| 少妇的丰满在线观看| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美黑人欧美精品刺激| a级一级毛片免费在线观看| 久久久久久大精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| av福利片在线观看| 1024手机看黄色片| 欧美+亚洲+日韩+国产| 国产日本99.免费观看| 亚洲美女黄片视频| 国产久久久一区二区三区| 午夜a级毛片| 级片在线观看| 欧美黑人欧美精品刺激| 一夜夜www| 色视频www国产| 无遮挡黄片免费观看| 99热这里只有精品一区| 国产精品,欧美在线| 国产探花在线观看一区二区| or卡值多少钱| 成人国产综合亚洲| 桃红色精品国产亚洲av| 又粗又爽又猛毛片免费看| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| av专区在线播放| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 一区二区三区免费毛片| 麻豆久久精品国产亚洲av| 一级黄片播放器| 亚洲国产精品sss在线观看| 熟女少妇亚洲综合色aaa.| 热99在线观看视频| 亚洲人成网站高清观看| 舔av片在线| 亚洲最大成人中文| 日本一二三区视频观看| 国产乱人伦免费视频| 男女之事视频高清在线观看| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 999久久久精品免费观看国产| 无人区码免费观看不卡| 午夜福利18| 精品熟女少妇八av免费久了| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久 | 久久精品国产亚洲av涩爱 | 美女高潮的动态| 一a级毛片在线观看| 午夜久久久久精精品| 国产成人福利小说| 香蕉久久夜色| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 首页视频小说图片口味搜索| 免费av毛片视频| 免费观看精品视频网站| 日韩欧美免费精品| 麻豆成人av在线观看| 国产淫片久久久久久久久 | 色噜噜av男人的天堂激情| 级片在线观看| 久久久久久大精品| 欧美激情久久久久久爽电影| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久 | 18禁国产床啪视频网站| 看片在线看免费视频| 日本免费a在线| 国产乱人伦免费视频| 久久久国产成人免费| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 国产伦精品一区二区三区四那| 我要搜黄色片| 久久香蕉精品热| 国产成人aa在线观看| 一级a爱片免费观看的视频| 精品人妻一区二区三区麻豆 | 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 色播亚洲综合网| 国产高潮美女av| 首页视频小说图片口味搜索| 在线播放无遮挡| 老鸭窝网址在线观看| 91久久精品电影网| 成人亚洲精品av一区二区| 国产精品,欧美在线| 亚洲成av人片在线播放无| 国产精品 国内视频| 两个人的视频大全免费| www国产在线视频色| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添小说| 欧美一区二区亚洲| 精品福利观看| 久久九九热精品免费| 国产av在哪里看| 尤物成人国产欧美一区二区三区| 琪琪午夜伦伦电影理论片6080| 国内精品一区二区在线观看| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| 亚洲天堂国产精品一区在线| 亚洲av电影在线进入| 国产乱人伦免费视频| 一进一出抽搐动态| 午夜影院日韩av| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 久久国产精品影院| 国产日本99.免费观看| 婷婷六月久久综合丁香| 亚洲中文日韩欧美视频| 国产精品 国内视频| 又粗又爽又猛毛片免费看| 国产精品 欧美亚洲| 国产国拍精品亚洲av在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 欧美精品啪啪一区二区三区| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 欧美国产日韩亚洲一区| 露出奶头的视频| 国产精品亚洲一级av第二区| 老司机午夜十八禁免费视频| 久久久成人免费电影| 精品久久久久久久人妻蜜臀av| 老鸭窝网址在线观看| 精品人妻偷拍中文字幕| 欧美中文综合在线视频| 国产一区二区亚洲精品在线观看| 亚洲av五月六月丁香网| 非洲黑人性xxxx精品又粗又长| 欧美午夜高清在线| 亚洲午夜理论影院| 欧美黑人巨大hd| 国产精品影院久久| 黄色丝袜av网址大全| 叶爱在线成人免费视频播放| 夜夜看夜夜爽夜夜摸| 成年女人毛片免费观看观看9| 国产成年人精品一区二区| 搞女人的毛片| tocl精华| 精华霜和精华液先用哪个| 高潮久久久久久久久久久不卡| av视频在线观看入口| 国产精品综合久久久久久久免费| 内地一区二区视频在线| 中文字幕熟女人妻在线| 99视频精品全部免费 在线| 亚洲一区高清亚洲精品| 久久久久久久久久黄片| 国产精品亚洲美女久久久| 好男人在线观看高清免费视频| 国产真实伦视频高清在线观看 | 校园春色视频在线观看| 国产一区二区在线av高清观看| 欧美最新免费一区二区三区 | 国产v大片淫在线免费观看| 亚洲精品美女久久久久99蜜臀| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器| 久久婷婷人人爽人人干人人爱| 看片在线看免费视频| 日韩高清综合在线| 丁香欧美五月| 可以在线观看毛片的网站| 一区二区三区免费毛片| 色在线成人网| 人妻丰满熟妇av一区二区三区| 免费搜索国产男女视频| 黄色日韩在线| 中文字幕精品亚洲无线码一区| 国产精品免费一区二区三区在线| 免费看光身美女| 成人性生交大片免费视频hd| 精品国产美女av久久久久小说| 亚洲午夜理论影院| 精品欧美国产一区二区三|