• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Countermeasure Against Regenerative and Forced Chatter of Flexible Workpieces in Milling Processs Using Bi-directional Excitation

    2018-03-29 07:35:43,,,
    關(guān)鍵詞:鉀肥趨勢(shì)用量

    ,,,

    1.Department of Mechanical Engineering,School of Engineering,Tokyo Institute of Technology,Tokyo 152-8552,Japan;

    2.Department of Mechanical Sciences and Engineering,Graduate School of Science and Engineering,Tokyo Institute of Technology,Tokyo 152-8552,Japan

    0 Introduction

    Chatter is an undesired instability phenomenon that occurs during the machining process which drastically reduces machining efficiency,limits obtaining the required surface quality and adversely affects tool life.Since the late 1950s,prediction of chatter has been a main research interest.Tobias[1]introduced the″stability lobes diagram (SLD)″,where the axial depth of cut is plotted against the spindle speed,representing the threshold of the chatter,or the stability limit.The concept was to predict the two optimal parameters of stable machining in advance,to achieve the maximum″material removal rate(MRR)″.In 1995,Altintas et al.[2]proposed a semi-analytical frequency domain method for the prediction of chatter in milling,which for most cases is a fast estimation.

    Prior investigations[3,4]mainly focused on chatter suppression of the tool,instead of the workpiece,as chatter easily occurs on the tool when manufacturing sufficiently stiff workpieces.However,recently,manufacture of lighter and more flexible components is in high demand,especially by the aeronautical and aerospace industries.Machining of such components and thinwalled structures such as turbine blades and impellers generally causes chatter in the workpiece instead of the tool.These flexible workpieces typ-ically have lower stability limits(resulting in lower MRR),which makes it difficult to avoid chatter only by using SLDs.Therefore,it is necessary to take countermeasures against the chatter of the workpiece and consequently increase the stability limit.

    There are several chatter suppression approaches for machining of flexible workpieces.There are passive strategies[3-6]such as application of a variable helix tool[7]and a variable pitch cutter[8],tuned mass dampers[9].However,in the case of machining of thin-walled flexible workpieces,vibrational characteristics can rapidly vary with material removal from the workpiece.Therefore,active strategies[10-13]are more popular and industrially appealing approaches for machining of flexible workpieces[14].Prior work[15-17]by Sallese et al.has investigated chatter suppression by implementing an actuation stage(also referred to as an″active workpiece holder(AWH)″or″active fixture holder(AFH)″)controlled by piezoelectric actuators.The investigations were mainly focused on tool chatter.

    Further,the resonance due to the intermittent cutting forces acting on the workpiece,can easily cause forced chatter on the workpiece.Therefore,countermeasures should be taken to suppress not only the regenerative chatter,but also the forced chatter.

    The regenerative and forced chatter suppression of flexible workpieces by exciting the workpiece in two orthogonal directions with the application of AWH focus on the up-cut milling process as chatter vibration can be easily arisen.Although,the vibrational characteristics can vary due to the material removal from the workpiece,the present investigation was conducted where the change of the vibrational characteristics is negligible.The method can be applied even when the vibrational characteristics are changing,if the vibrational characteristics can be identified and consequently optimizing the excitation parameters in real time.Additionally,the results are compared with the conventional one-directional excitation method reported by the authors[18].Our findings suggest that the proposed excitation method has a remarkable vibration reduction effect for both the regenerative chatter and forced chatter vibrations.

    1 The Proposed Excitation Method

    In this section,AWH which is designed to execute bi-directional excitations,is briefly explained.In the analysis,the workpiece,AWH system,is modelled as a lumped-mass model.Consequently,the governing equations of motion required for the numerical simulations are derived.Further,the modal parameters are identified and the proposed excitation method is described.

    1.1 Active workpiece holder design

    The literature reports different mechanical designs for the AWH design which allow two directional excitations[19].The monolithic nested architecture designed with flexure hinges as shown in Fig.1(a)is more appealing,because it theoretically allows the AWH to have decoupled motion in two orthogonal directions[17].A thin layer of thickness of 1mm was removed from the backside of the AWH as shown in Fig.1(b),permitting the intermediate stages of the AWH to move freely without any frictional interference.Hereinafter,we set the coordinate system,such thatxrepresents the feed direction andyrepresents the cross-feed direction.

    Fig.1 Active workpiece holder[20]

    The stage is made from stainless steel(SUS304).Figs.2 (a,b)show the dominant modes for the AWH by FEM analysis.We obtained 1 024Hz along the feed direction(xdirection)and 779Hz along the cross-feed direction(ydirection),as the dominant modes without the workpiece mounted.

    Fig.2 Dominant modes obtained by FEM analysis for the AWH

    The AWH fixed to the machining center(Hitachi-Seiki VK45)is shown in Fig.3.The workpiece was intentionally made more flexible than the designed AWH in the cross-feed direction by mounting the workpiece on two leaf springs.Thus,the chatter vibration occurs easily.The end mill(OSG EDS6)with a diameter of 6 mm,2flutes and a helix angle of 30°was utilized.Free-cutting brass C3713Pwas used as the workpiece material for easy identification of the chatter marks.

    Fig.3 AWH with workpiece fixed to the machining center

    1.2 Equation of motion

    The workpiece-AWH system can be modelled as two degrees of freedom subsystems in each direction(i.e.feed directionxand cross-feed directiony)as shown in Fig.4.For the sake of simplicity,the AWH is assumed to be a lumped mass system.The AWH is capable of producing movements inxandydirections independently.Thus,the equations of motion can be derived as

    where

    Fig.4 Simplified model of the workpiece-AWH model

    Here,the modal mass,the modal damping coefficient and the modal stiffness are denoted bym,c,k,respectively.Additionally,the subscript notations″xs,xw,ys,yw″imply thexdirection of the stage (AWH),xdirection of the workpiece,ydirection of the stage(AWH),ydirection of the workpiece,respectively.FexandFeyare the external excitation forces andFx,F(xiàn)yare the cutting forces inxandydirections,respectively.Further,xs,xware the coordinates of the stage and workpiece inxdirection,andys,yware the coordinates of the stage and workpiece inydirection,respectively.

    外施鉀肥處理中, Chla、Chlb和Chl(a+b)值均隨鉀肥用量的增加呈遞增趨勢(shì),K2、K1處理下Chla含量分別比CK高27.82%和7.56%,Chlb高44.7%和22.17%,而Chl(a+b)分別是CK的1.33和1.12倍;但各處理Car含量無(wú)顯著差異(P > 0.05)。 CK處理時(shí)Chla/Chlb顯著高于K1、K2處理,而兩者間無(wú)顯著差異(圖6)。

    1.3 Hammering test

    Hammering test on a workpiece mounted on the AWH was performed to identify the modal parameters of the system.The AWH was fixed to the machining table of the machining center.Then,the frequency response functions of the stage and the workpiece were obtained.Finally,curve fitting was performed using Matlab.Consequently,the modal parameters were identified(Table 1).Additionally,the hammering test was performed for the tool and the first mode natural frequency of the tool was obtained as 11.27kHz.Thus,the vibrations in the tool can be assumed to be negligible.

    Table 1 Identified modal parameters by the hammering test

    1.4 Excitation method

    The cutting forces(Fx,F(xiàn)y)in Eq.(1)are estimated by considering multi-regenerative effect and air-cutting conditions by a tool run-out[18].In this subsection,the external forced excitations(Fex,F(xiàn)ey)are mathematically expressed.In the feed direction,the workpiece is subject to sinusoidal periodic force in order to disrupt the regenerative effect[18].The intermittent cutting forces acting on the workpiece causes forced chatter,thus resulting in resonance.It is necessary to minimize not only the regenerative chatter but also the forced chatter.Thus,to minimize forced chatter effect,an excitation force with the magnitude of the estimated cutting force(Fsy)is applied in the opposite direction of the cross-feed direction (i.e.ydirection).It should be noted that this cutting force is merely an estimation,assuming the chip generation is purely by the static chip thickness and the dynamic chip thickness is neglected

    where

    wherefe,Ae,ψare the excitation frequency,the excitation amplitude,phase shift in the feed direction,respectively.Kgainis a multiplier.Moreover,in the experiments we adjusted the gain by applying a voltage 100Vcloser to the maximum operable values,due to the amplitude limitations of the piezoelectric actuators.Here,the effect of the phase difference of the sinusoidal signal in the feed direction,ψis not investigated and set to zero.

    The coefficients in Eq.(4),Kt,Kr,ap,stare the cutting coefficients in the tangential and the radial directions[2],axial depth of cut,feed rate,respectively.Further,g(·)is a unit step function to evaluate whether thejth cutting edge is engaged with the workpiece or not,γ(·)is a unit step function which determines the air cutting of the tool,andφjrepresents the angle of immersion of the toothj.In this study,a new parameterαis introduced.It denotes the phase shift between the cutting force and the actuation force.

    We investigated how the suppression effect deviates with this parameter,and explained it in Chapter 2.Referring to the prior work[15],the actuation frequency (fe)for the feed direction is determined by

    whereftprepresents the tooth passing frequency.However,in this paper,the optimal actuation frequency is selected to be the closest value to the natural frequency of the stage and it is considered to be independent of the number of flutes of the tool.

    2 Numerical Simulation Results

    2.1 Time history analysis without excitation

    Time history analysis was performed for the equations of motion using Runge-Kutta method[21].The multiple regenerative effect[18]count was taken up to 4counts.The simulations are performed with 1 000intervals per tooth passing period (i.e.1 000NΩ/π;whereΩ denotes the spindle speed in rad/s andNdenotes the number of flutes).

    The stability limit was determined by identifying the chatter frequency component of the Fourier spectrum and using a dedicated algorithm(Fig.5).The machining process is a linear system for any chatter-free cutting condition.Therefore,unless chatter vibration occurs,the dominant peak of the Fourier spectrum shows a linear increment for any linear increment of the axial depth,at any given spindle speed.Time history analysis is performed for depth of cut atith step,ai.Then,F(xiàn)FT is performed for the time history displacement data and the dominant peakPiis obtained.Consequently,the parametersΔ2,1,Δ1,0are calculated (i.e.Δ2,1=Pi-2-Pi-1,Δ1,0=Pi-1-Pi)fori>2.IfΔ2,1,Δ1,0are within a preset tolerance range,the system is assumed to be linear.The critical axial depth of cutalimis defined as the first axial depth of cut value,which goes beyond the tolerance range.In this paper,the tolerance range was set to±1%.This stability criterion procedure was performed with an increment of an axial depth of cut,Δa=0.02mm and over the spindle speed range of 1 400—2 600r/min with an increment of 10r/min.The numerical simulations were validated by comparing the results with the zeroth order approximation(ZOA)method proposed by Altintas et al.[2,22]and the cutting tests without the excitation.Fig.6 shows an excellent agreement with ZOA method and the cutting tests.

    Fig.5 Flowchart for the algorithm used in determining stability limit from time history analysis

    Nonetheless,the stability lobe diagram obtained by the numerical solutions are deviated at some spindle speed domains,due to the resonance caused by forced chatter.

    Fig.6 Stability lobe diagram comparison without excitation for 1 400—2 600r/min

    2.2 Time history analysis with excitation

    The numerical simulations were performed with excitation for both the local minima of SLD(Case-A),where the regenerative chatter is dominant(Figs.7(a,b))and the local maxima of SLD(Case-B)where the forced chatter is dominant(Figs.7(c,d)).The parameters used for the simulation are listed in Table 2.

    Fig.7 Simulation results

    Fig.7shows the vibration displacements of the cross-feed direction and their Fourier spectrafor a chatter occurring condition at the local minima and local maxima.The results obtained by the proposed bi-directional excitation method(Blue)are compared with the conventional onedirectional(i.e.feed direction only)excitation method (Red)[18].It can be evaluated that the proposed method has a better suppression effect for the local minima of the stability lobe.Furthermore,significantly larger suppression can be observed at the local maxima of the stability lobe,where the forced vibrations acting on the workpiece are dominant.The proposed method has a significant impact on not only regenerative chatter but also the forced vibration suppression which results in a major amplitude reduction (Figs.7(c,d)).The proposed bi-directional excitation method provides chatter-free machining conditions for both Case-A and Case-B.Although,the same periodic excitation force is applied in the feed direction,the axial depth of cut for the local maxima is two times that of local minima,implying twice MRR in the proposed method for the local maxima.

    Table 2 Parameters used for numerical simulations

    Further,the vibration amplitude suppression can be verified by the Fourier spectra(Figs.7(b,d)).The amplitudes without the excitation(Black),have been reduced by one-directional excitation method (Red)and significantly reduced by the proposed bi-directional excitation method(Blue).

    2.3 Effect of phase shift

    The phase shiftαin Eq.(4)between the cutting force and excitation force in the cross-feed direction can significantly affect the suppression effect,especially for the local maxima.Thus,the relationship between the phase shift and the displacement has been numerically investigated for the local maxima (Fig.8).The minimum and maximum values(Blue)and the root mean square values(Red)of the displacement in the cross-feed direction,the maximum peak value(Yellow)of the Fourier spectrum of the cross-feed directional displacement after the bi-directional excitation method applied was computed numerically.The aforementioned numerical results were normalized by the displacements without the excitation and plotted over the normalized phase shift,which is the phase shift,αnormalized by the pitch angle(i.e.pitch angle for 2flute end-mill is 180°).The analysis was performed for each 2.5°over one complete pitch angle.

    Fig.8 Relationship between the normalized phase shift and the displacement normalized by displacements without excitation for Case B

    The minimum displacement/amplitude or the maximum suppression effect has been achieved at phase shifts,α=0°andα=180°.Fig.8shows that the normalized displacements vary over the phase shift.The proposed method has improved suppression effect for the phase shifts where the normalized displacement is less than 1.

    3 Experimental Apparatus and Experimental Results

    Fig.9shows a schematic representation of the experiment apparatus.

    For the signal processing and control purposes,the CompactRIO platform by National Instruments with a maximum clock speed of 400 MHz and powered by an onboard field programming gate array(FPGA)was utilized along with the I/O modules(NI 9411,NI 9263).A laser proximity sensor(Keyence LV-N10)was implemented at the tool holder to estimate the starting angle of immersion,using the rotational pulse signal input.A tri-axial accelerometer(Ono-Sokki NP3572,maximum measurable acceleration=4 000m/s2)was fixed to the stage and two single-axial accelerometers (Ono-Sokki NP2106,maximum measurable acceleration=100 000m/s2)were fixed to the jig located just below the workpiece as shown in Fig.9.The data acquisition was performed by using the FFT Analyzer(Ono-Sokki DS-3200)with an integrated 24bit resolution A/D converter.

    Fig.9 Schematic representation of the experiment apparatus

    Fig.10shows the experimental data for the local minima(1 900r/min)where the axial depth of cut is 2.2mm.Figs.10(a,c)show the time-h(huán)istory for the one-directional and the proposed bidirectional excitation methods,respectively.Similarly,F(xiàn)igs.10(b,d)show the Fourier spectra for the one-directional and the proposed bi-directional excitation methods,respectively.The proposed bi-directional excitation method (Blue)demonstrates larger suppression effect compared to the one-directional method(Red)in the local minima even at an axial depth of cut which is larger than critical depth of cut.

    It can be seen before the excitation for both one-directional and the bi-directional excitation methods had similar dominant peak amplitude of nearly 60μm at 387—389Hz.With one-dimensional method,the peak was reduced to 25μm,on the other hand,for the bi-directional excitation method,the dominant peak appears at 382Hz which is about 5μm.It should be noted that the 982Hz (i.e.63.3Hz×15.5)was the excitation frequency for the feed direction.

    Fig.10 Experimental results for local-minima(1 900r/min,ap= 2.2mm)

    Next,in order to evaluate the effectiveness of the forced chatter suppression at the local maxima,axial depth of cut was set to 1.2mm,slightly above from the critical depth of cut at 2 040r/min.Fig.11shows experiment data for the local maxima,where the forced chatter is dominant.The subfigure notations,(a),(b),(c),(d)are similar to those of Fig.10.For both cases,it can be observed that the dominant frequency,410Hz is the forced chatter component which represents the natural frequency of the workpiece.The frequency component of 376Hz is the regenerative chatter frequency.The optimum excitation frequency in the feed direction 986Hz(i.e.14.5×68.0Hz )can be seen in Fig.11.

    Fig.11 Experimental results for local-minima(2 040r/min,ap= 1.2mm)

    Although,significant suppression of the vibration amplitudes (Figs.11(a,c))in the time history results was not visible,the Fourier spectrum for the proposed bi-directional excitation method (Fig.11(d))shows a larger suppression effect for the dominant peak at 410Hz,than the Fourier spectrum for the one-directional excitation method(Fig.11(b)).Our results suggest 20.7%reduction of the dominant peak for the one-directional excitation method and 47.3%of reduc-tion of the dominant peak for the proposed bi-directional excitation method.

    In the analysis,phase shiftαwas set to zero.However,in the experiment,the phase shiftα could not be zero due to the estimation error of the starting angle of the cutting edge immersion estimated by using the rotational pulse signal.The deviation of the phase shiftαcan affect suppression effect significantly,as explained in Fig.8.Thus,the experimental accuracy depends on the accuracy of the phase shift estimation.

    4 Conclusions

    The effectiveness of the regenerative and the forced chatter suppression using bi-directional external excitations applied to the workpiece is investigated.The proposed method is effective for the local minima of the stability lobe,where the regenerative chatter is dominant.Furthermore,the numerical simulations showed a remarkable vibrational amplitude reduction for the local maxima of the stability lobe,where the forced chatter is dominant.Our experiment results also confirmed of a qualitative agreement with the simulation results.

    Future work is recognized as achieving higher excitation amplitudes by modifying the AWH.Additionally,it is necessary to perform wider range of experimental investigations for different combinations of spindle speeds and axial depth of cuts,including end-mills with higher number of flutes,for further validation.

    Acknowledgement

    This work was supported by JSPS KAKENHI(No.JP15K05856).

    [1] TOBIAS S A,F(xiàn)ISHWICK W.Theory of regenerative machine tool chatter[J].The Engineer,1958:205.

    [2] ALTINTAS Y,BUDAK E.Analytical prediction of stability lobes in milling[J].Annals of the CIRP,1995,44(1):357-362.

    [3] MUNOA J,BEUDAERT X,DOMBOVARI Z,et al.Chatter suppression techniques in metal cutting[J].CIRP Annals-Manufacturing Technology,2016,65:785-808.

    [4] QUINTANA G,CIURANA J.Chatter in machining process:A review[J].International Journal of Machine Tools and Manufacture,2011,51:363-376.

    [5] HAHN R S.Design of Lanchester damper for elimination of metal-cutting chatter[J].Journal of Engineering Theories,1951,73(3):331-335.

    [6] FEI J,LIN B,YAN S,et al.Chatter mitigation using moving damper[J].Journal of Sound and Vibration,2017,410:49-63.

    [7] YUSOFF A R,SIMS N D.Optimisation of variable helix tool geometry for regenerative chatter mitigation[J].International Journal of Machine Tools and Manufacture,2011,51:133-141.

    [8] COMAK A,BUDAK E.Modeling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability[J].Precision Engineering,2017,47:459-468.

    [9] NAKANO Y,TAKAHARA H,KONDO E.Countermeasure against chatter in end milling operations using multiple dynamic absorbers[J].Journal of Sound and Vibration,2013,332:1626-1638.

    [10]LONG X,JIANG H,MENG G.Active vibration control for peripheral milling processes[J].Journal of Materials Processing Technology,2013,213(5):660-670.

    [11]MONNIN J,KUSTER F,WEGENER K.Optimal control for chatter mitigation in milling—Part 1:Modeling and control design[J].Control Engineering Practice,2014,24:156-166.

    [12]RASHID A,MIHAI NICOLESCU C.Active vibration control in palletized work holding system for milling[J].International Journal of Machine Tools and Manufacture,2006,46:1626-1636.

    [13]WANG C,ZHANG X,LIU Y,et al.Stiffness variation method for milling chatter suppression via piezoelectric stack actuators[J].International Journal of Machine Tools and Manufacture,2018,124:53-66.

    [14]BRECHER C,MANOHARAN D,LADRA U,et al.Chatter suppression with an active workpiece holder[M].German Academic Society for Production Engineering,2010.

    [15]SALLESE L,GROSSI N,SCIPPA A,et al.Numerical investigation of chatter suppression in milling using active fixtures in open-loop control[J].Journal of Vibration Control, 2016, doi:10.1177/1077546316668686.

    [16]SALLESE L,GROSSI N,TSAHALIS J,et al.Intelligent fixtures for active chatter control in miling[J].Procedia CIRP,2016,55:176-181.

    [17]SALLESE L,INNOCENTI G,GROSSI N,et al.Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy[J].International Journal of Advanced Manufacturing Technology,2017,89(9/10/11/12):2771-2787.

    [18]NAKANO Y,TAKAHARA H,AKIYAMA Y.Improvement of workpiece chatter stability in end-milling process by workpiece excitation[C]∥The 22nd International Congress on Sound and Vibration.Florence,Italy:[s.n.],2015.

    [19]CAMPATELLI G,SALLESE L,SCIPPA A.Design of an active workpiece holder[C]∥9th International Conference on Axiomatic Design.Florence,Italy:Elsevier Procedia,2015.

    [20]NAKANO Y,TAKAHARA H,AKIYAMA Y.The effect of time delay variation induced by workpiece excitation on regenerative chatter in milling[C]∥The 24th International Congress on Sound and Vibration.London,England:[s.n.],2017.

    [21]NIU J,DING Y,ZHU L,et al.Runge-Kutta methods for a semi-analytical prediction of milling stability[J].Nonlinear Dynamics,2014,76:289-304.

    [22]ALTINTAS Y,STEPHAN G,MERDOL D,et al.Chatter stability of milling in frequency and discrete time domain[J].CIRP Journal of Manufacturing Science and Technology,2008,1:35-44.

    猜你喜歡
    鉀肥趨勢(shì)用量
    2021年日本鈦加工材在各個(gè)領(lǐng)域用量統(tǒng)計(jì)
    我國(guó)在境外首個(gè)百萬(wàn)噸級(jí)鉀肥項(xiàng)目竣工
    釋放鉀肥儲(chǔ)備正當(dāng)時(shí)
    趨勢(shì)
    大豆種植意向增加16.4%化肥用量或?qū)p少
    鉀肥迎來(lái)零關(guān)稅
    初秋唇妝趨勢(shì)
    Coco薇(2017年9期)2017-09-07 21:23:49
    Side force controlon slender body by self-excited oscillation flag
    姍姍來(lái)遲的鉀肥大合同
    SPINEXPO?2017春夏流行趨勢(shì)
    国产精品三级大全| 亚洲欧美精品自产自拍| 国产高清激情床上av| 午夜精品国产一区二区电影 | 黄色日韩在线| 亚洲美女视频黄频| 国产单亲对白刺激| 精品午夜福利在线看| 色综合色国产| 国产乱人偷精品视频| 偷拍熟女少妇极品色| 91av网一区二区| 看十八女毛片水多多多| 天堂影院成人在线观看| 最后的刺客免费高清国语| 国产乱人视频| 国产亚洲精品综合一区在线观看| 国产片特级美女逼逼视频| 中国国产av一级| 午夜福利高清视频| 亚洲中文日韩欧美视频| 日本一二三区视频观看| 一级毛片电影观看 | 黄片wwwwww| a级毛色黄片| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 简卡轻食公司| 亚洲精品日韩在线中文字幕 | 精品久久久噜噜| 日本a在线网址| 免费不卡的大黄色大毛片视频在线观看 | 国产高清激情床上av| 久久久久久久久中文| 性欧美人与动物交配| 综合色av麻豆| 深夜a级毛片| 国语自产精品视频在线第100页| 成人无遮挡网站| 在线免费观看的www视频| 欧美日韩精品成人综合77777| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看 | 在线天堂最新版资源| 免费看日本二区| 久久国内精品自在自线图片| 国产成人精品久久久久久| 亚洲成a人片在线一区二区| 国产午夜福利久久久久久| 人妻久久中文字幕网| 床上黄色一级片| 亚洲中文字幕一区二区三区有码在线看| 99精品在免费线老司机午夜| 亚洲自拍偷在线| 免费看光身美女| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| 少妇熟女欧美另类| 婷婷亚洲欧美| 熟女电影av网| 观看免费一级毛片| 亚洲丝袜综合中文字幕| 国产精品野战在线观看| 国产成人a区在线观看| 黑人高潮一二区| 免费看a级黄色片| 欧美bdsm另类| 国产v大片淫在线免费观看| 国产成人a∨麻豆精品| 99久久精品热视频| 久久精品国产亚洲av涩爱 | 久久热精品热| 日韩在线高清观看一区二区三区| 国产91av在线免费观看| 国产精品一区二区三区四区久久| 亚洲中文字幕日韩| av专区在线播放| 亚洲欧美日韩卡通动漫| 无遮挡黄片免费观看| 亚洲性久久影院| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 免费人成在线观看视频色| 99久久精品热视频| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 久久99热6这里只有精品| 亚洲五月天丁香| 男女下面进入的视频免费午夜| 亚洲最大成人中文| 国产中年淑女户外野战色| 一级毛片电影观看 | 亚洲18禁久久av| av在线天堂中文字幕| 国产三级中文精品| 久久久久免费精品人妻一区二区| 亚洲久久久久久中文字幕| 成人无遮挡网站| 国产精品免费一区二区三区在线| 婷婷亚洲欧美| 亚洲第一电影网av| 男人的好看免费观看在线视频| 欧美性猛交黑人性爽| 婷婷亚洲欧美| 成人鲁丝片一二三区免费| 激情 狠狠 欧美| 国产精品福利在线免费观看| 国产在线男女| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 精品一区二区三区视频在线观看免费| 久久久久免费精品人妻一区二区| 成人美女网站在线观看视频| 亚洲国产精品久久男人天堂| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 久久久精品欧美日韩精品| 国产精品无大码| 亚洲av二区三区四区| 国产精品乱码一区二三区的特点| 特级一级黄色大片| 男人狂女人下面高潮的视频| 精品久久久久久久末码| 黄色视频,在线免费观看| 国产精品人妻久久久影院| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| 人人妻人人澡欧美一区二区| 成人毛片a级毛片在线播放| 亚洲美女搞黄在线观看 | 日本三级黄在线观看| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 国产黄色视频一区二区在线观看 | 一级av片app| 日韩欧美 国产精品| 中文在线观看免费www的网站| 一本久久中文字幕| 国内精品美女久久久久久| 高清午夜精品一区二区三区 | 中文字幕久久专区| 亚洲精品乱码久久久v下载方式| 一级毛片电影观看 | 亚洲av二区三区四区| 久久国内精品自在自线图片| 亚洲美女黄片视频| 在线a可以看的网站| 免费无遮挡裸体视频| av在线老鸭窝| 内地一区二区视频在线| a级毛片a级免费在线| 哪里可以看免费的av片| 丰满的人妻完整版| 国产高清视频在线观看网站| 六月丁香七月| 97超级碰碰碰精品色视频在线观看| 99精品在免费线老司机午夜| 国产熟女欧美一区二区| 男人舔奶头视频| 国产精品免费一区二区三区在线| 免费看美女性在线毛片视频| 国产麻豆成人av免费视频| 成人美女网站在线观看视频| 国产精品1区2区在线观看.| 18禁黄网站禁片免费观看直播| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 中文字幕免费在线视频6| 欧美人与善性xxx| 日本-黄色视频高清免费观看| 亚洲欧美日韩东京热| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| 97超视频在线观看视频| 久久综合国产亚洲精品| 久久韩国三级中文字幕| 丝袜美腿在线中文| 婷婷色综合大香蕉| 麻豆av噜噜一区二区三区| 精品少妇黑人巨大在线播放 | 99久国产av精品国产电影| 99久久中文字幕三级久久日本| 亚州av有码| 亚洲成人久久性| 看免费成人av毛片| 亚洲最大成人av| 成年女人毛片免费观看观看9| 91久久精品国产一区二区三区| 久久热精品热| 午夜视频国产福利| 色5月婷婷丁香| 日日摸夜夜添夜夜添小说| 日韩制服骚丝袜av| 美女大奶头视频| 久久亚洲国产成人精品v| 小说图片视频综合网站| 伦理电影大哥的女人| 日本成人三级电影网站| 欧美最新免费一区二区三区| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 亚洲乱码一区二区免费版| 欧美不卡视频在线免费观看| 丝袜喷水一区| 国产精品久久电影中文字幕| 热99re8久久精品国产| 男人狂女人下面高潮的视频| 免费黄网站久久成人精品| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 国产精品人妻久久久影院| 国产真实伦视频高清在线观看| 日日啪夜夜撸| 三级国产精品欧美在线观看| 日本五十路高清| 亚洲激情五月婷婷啪啪| 亚洲国产精品sss在线观看| 亚洲国产日韩欧美精品在线观看| 国产麻豆成人av免费视频| 高清毛片免费观看视频网站| 丝袜美腿在线中文| 欧美性感艳星| 日韩欧美免费精品| 听说在线观看完整版免费高清| 97人妻精品一区二区三区麻豆| 亚洲真实伦在线观看| 亚洲中文字幕日韩| 99久久精品一区二区三区| 午夜久久久久精精品| 午夜久久久久精精品| 九九爱精品视频在线观看| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看 | 久久中文看片网| 菩萨蛮人人尽说江南好唐韦庄 | 国产伦在线观看视频一区| 欧美最黄视频在线播放免费| 国内精品久久久久精免费| av在线播放精品| 性插视频无遮挡在线免费观看| 色综合站精品国产| 国产不卡一卡二| 久久99热这里只有精品18| 麻豆久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产亚洲av涩爱 | 国产精品1区2区在线观看.| 嫩草影院入口| 免费看av在线观看网站| 国产 一区 欧美 日韩| 国产视频一区二区在线看| 久久亚洲精品不卡| 男女之事视频高清在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 大型黄色视频在线免费观看| 国产欧美日韩精品亚洲av| 国产淫片久久久久久久久| 久久草成人影院| 伦理电影大哥的女人| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕 | 久久久久国产精品人妻aⅴ院| 搡女人真爽免费视频火全软件 | 国产91av在线免费观看| 99久久九九国产精品国产免费| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 亚洲av二区三区四区| 一进一出好大好爽视频| 国模一区二区三区四区视频| 观看免费一级毛片| 国产午夜福利久久久久久| 在线观看一区二区三区| av卡一久久| 精品久久久久久成人av| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 亚洲精品影视一区二区三区av| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 色播亚洲综合网| 直男gayav资源| 免费无遮挡裸体视频| 久久这里只有精品中国| 国模一区二区三区四区视频| 在线播放国产精品三级| .国产精品久久| 丰满的人妻完整版| 春色校园在线视频观看| 天堂网av新在线| 久久久久久九九精品二区国产| 天堂动漫精品| 熟女人妻精品中文字幕| 欧美高清成人免费视频www| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 日韩欧美在线乱码| 人人妻人人澡欧美一区二区| 校园人妻丝袜中文字幕| 老司机福利观看| 亚洲国产高清在线一区二区三| 亚洲国产欧洲综合997久久,| 国产淫片久久久久久久久| 午夜日韩欧美国产| 国产 一区精品| 国产精品久久视频播放| 亚洲在线自拍视频| 中文字幕av成人在线电影| 有码 亚洲区| 亚洲精品456在线播放app| 伦精品一区二区三区| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 免费看av在线观看网站| 日韩,欧美,国产一区二区三区 | 国产av麻豆久久久久久久| 日产精品乱码卡一卡2卡三| 日日干狠狠操夜夜爽| 99热这里只有是精品50| 神马国产精品三级电影在线观看| 免费观看人在逋| 精品久久久久久久久久久久久| 国产熟女欧美一区二区| АⅤ资源中文在线天堂| 午夜激情福利司机影院| 亚洲国产精品合色在线| 久久久久久久久久黄片| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 最新中文字幕久久久久| 午夜免费激情av| 看黄色毛片网站| 国产不卡一卡二| 毛片女人毛片| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 久久久色成人| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美一区二区亚洲| 99热这里只有精品一区| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 一本精品99久久精品77| 波多野结衣高清无吗| 欧美成人a在线观看| 国内精品久久久久精免费| 自拍偷自拍亚洲精品老妇| 精品免费久久久久久久清纯| 亚洲图色成人| 大型黄色视频在线免费观看| 日本a在线网址| av黄色大香蕉| 国产成人精品久久久久久| 五月玫瑰六月丁香| 免费在线观看成人毛片| 黄色配什么色好看| 国产精品三级大全| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 狂野欧美激情性xxxx在线观看| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 日本免费a在线| 欧美极品一区二区三区四区| 久久热精品热| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 午夜福利在线观看免费完整高清在 | 欧美色视频一区免费| 国产精品不卡视频一区二区| 99热网站在线观看| 亚洲人与动物交配视频| 尤物成人国产欧美一区二区三区| 日韩欧美在线乱码| 小蜜桃在线观看免费完整版高清| a级毛色黄片| 美女cb高潮喷水在线观看| av在线天堂中文字幕| 国产高清视频在线观看网站| 黑人高潮一二区| 99国产极品粉嫩在线观看| 一进一出好大好爽视频| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 亚洲国产精品久久男人天堂| 亚洲激情五月婷婷啪啪| 99久久精品国产国产毛片| 久久久久国产网址| 丰满乱子伦码专区| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 日韩欧美免费精品| 久久久精品大字幕| 国产不卡一卡二| 午夜激情福利司机影院| av.在线天堂| 69人妻影院| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 乱系列少妇在线播放| 日韩精品中文字幕看吧| 成人高潮视频无遮挡免费网站| 亚洲av美国av| 99热这里只有精品一区| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 不卡视频在线观看欧美| 国产欧美日韩精品亚洲av| 日韩欧美国产在线观看| 国产精品福利在线免费观看| 1024手机看黄色片| 亚洲av二区三区四区| 欧美性感艳星| 波多野结衣巨乳人妻| 国产亚洲91精品色在线| 尤物成人国产欧美一区二区三区| av在线观看视频网站免费| 日韩亚洲欧美综合| 亚洲专区国产一区二区| 日本爱情动作片www.在线观看 | 看非洲黑人一级黄片| av女优亚洲男人天堂| 国产精品亚洲一级av第二区| 少妇裸体淫交视频免费看高清| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 最近2019中文字幕mv第一页| 国产精品亚洲一级av第二区| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| 搡老岳熟女国产| 午夜激情欧美在线| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 五月伊人婷婷丁香| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 长腿黑丝高跟| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 插逼视频在线观看| 看非洲黑人一级黄片| 性欧美人与动物交配| 午夜福利高清视频| 国产人妻一区二区三区在| 欧美最新免费一区二区三区| 一夜夜www| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| av黄色大香蕉| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 国产成人a∨麻豆精品| 亚洲色图av天堂| 免费大片18禁| 欧美高清成人免费视频www| 日韩欧美三级三区| 国产精品久久久久久久久免| 大型黄色视频在线免费观看| 国产精品嫩草影院av在线观看| 亚洲性久久影院| 超碰av人人做人人爽久久| 99精品在免费线老司机午夜| 十八禁网站免费在线| 国产精品伦人一区二区| 欧美日本亚洲视频在线播放| 最近2019中文字幕mv第一页| 国产亚洲精品久久久久久毛片| 午夜福利在线观看吧| 日本熟妇午夜| 中文字幕熟女人妻在线| av专区在线播放| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 国产精品福利在线免费观看| a级毛色黄片| 日产精品乱码卡一卡2卡三| 非洲黑人性xxxx精品又粗又长| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区 | 色吧在线观看| 午夜精品国产一区二区电影 | 欧美一级a爱片免费观看看| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 日韩精品中文字幕看吧| av在线播放精品| 人妻制服诱惑在线中文字幕| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 免费大片18禁| 日韩在线高清观看一区二区三区| 天堂√8在线中文| 中文字幕久久专区| 国产男人的电影天堂91| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 秋霞在线观看毛片| 嫩草影视91久久| 免费观看的影片在线观看| 身体一侧抽搐| 亚洲欧美日韩高清专用| 我的老师免费观看完整版| 女人十人毛片免费观看3o分钟| 91狼人影院| 综合色丁香网| 国产免费男女视频| 欧美日韩乱码在线| 精品少妇黑人巨大在线播放 | 午夜福利成人在线免费观看| 欧美不卡视频在线免费观看| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 欧美激情国产日韩精品一区| 岛国在线免费视频观看| 亚洲成人久久爱视频| 99视频精品全部免费 在线| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 99久久无色码亚洲精品果冻| 久久久欧美国产精品| 国产av不卡久久| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| 97超视频在线观看视频| 99热这里只有精品一区| 看非洲黑人一级黄片| 国产精品永久免费网站| 亚洲精品日韩av片在线观看| 九九爱精品视频在线观看| www.色视频.com| 十八禁国产超污无遮挡网站| 久久久久久伊人网av| 欧美国产日韩亚洲一区| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 国产 一区精品| 亚洲美女搞黄在线观看 | 内地一区二区视频在线| 高清午夜精品一区二区三区 | 欧美3d第一页| 国产精品福利在线免费观看| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 麻豆乱淫一区二区| 深夜a级毛片| 亚洲图色成人| 亚洲美女黄片视频| 成人亚洲精品av一区二区| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 午夜福利18| 午夜爱爱视频在线播放| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 色5月婷婷丁香| 狠狠狠狠99中文字幕| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三| 久久精品夜色国产| 久久人人精品亚洲av| 亚洲不卡免费看| 亚洲美女视频黄频| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 日本免费a在线| 亚洲欧美日韩东京热| 精品久久久久久久久av| 亚洲人成网站高清观看| 亚洲国产欧美人成| 国产免费男女视频| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 最后的刺客免费高清国语| 日本黄大片高清| 免费在线观看成人毛片| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 亚洲av免费在线观看| 国产亚洲精品综合一区在线观看| 色吧在线观看| 亚洲成av人片在线播放无| or卡值多少钱| 搡老熟女国产l中国老女人| 成人午夜高清在线视频| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频|