• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influence of Oxygen on the Development of Nanorana parkeri Tadpoles

    2018-03-28 06:20:59XingzhiHANQiongZHANGLiqingFANLeYANGandZhenshengLIU
    Asian Herpetological Research 2018年1期

    Xingzhi HAN, Qiong ZHANG, Liqing FAN, Le YANG and Zhensheng LIU,*,#

    1College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, China

    2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101, China

    3Tibet Agriculture and Animal Husbandry College, Linzhi 860000, Tibet, China

    4Tibet Plateau Institute of Biology, Lhasa 850001, Tibet, China

    1. Introduction

    Low temperature, low-oxygen levels, and strong ultraviolet radiation are the main characteristics of the high-altitude environment (Bickler and Buck, 2007;Blumthaleret al., 1997; Scheinfeldt and Tishkoff, 2010).Among these, the influence of low oxygen has received the most attention by ecologists and evolutionary biologists because low oxygen represents a major stress to aerobic metabolism (Gouet al., 2014; Wuet al., 2013).Some life-history traits, including body size, body mass,growth rate, development time, and mortality determine fitness and survival under given environmental conditions(Semenza, 2000). For example, in a low-oxygen environment, the body size of some ectothermic species(e.g., lizards and frogs) decreases (Cvetkovi?et al.,2009; Liaoet al., 2010; Maet al., 2009; Zhanget al.,2012), and the growth rate of a subtropical frog (Rana nigromaculata) increases (Liaoet al., 2010); the body weight of yaks (Bos grunniens) increases (Wanget al.,2006).

    In addition, telomere length (TL) represents a promising biomarker of overall physiological state,fitness and of past environmental experiences (Heidingeret al., 2012; Olssonet al., 2011a,b), which could help us understand the drivers of life-history variation in natural populations. A growing number of studies in birds (Paulinyet al., 2006), fish (Debeset al., 2016)and mammals(e.g. roe deer, Wilbournet al., 2017)suggest that environmental stress or poor environmental conditions are associated with shortened TL, but studies of such relationships in ectothermic animals are rare.

    Compared with endothermic animals, ectothermic animals are tolerant of variable oxygen availability(Bickler and Buck, 2007). Amphibian hypoxia tolerance is between that of mammals and that of turtles and carp (Bickler and Buck, 2007). For example, ranids can survive a few days of hypoxia at low temperatures(Stewartet al., 2004). Larvae tolerate hypoxia better than adult frogs of the same species (Bradford, 1983;Crowderet al., 1998). Indeed, previous studies have also shown that tadpoles ofCochranella granulosa, a lowland species, grew faster and more active in hypoxic water than in oxygenated water (Hoffmann, 2010). However,for plateau ectothermic species, the influence of low oxygen on development remains unknown.

    Nanorana parkeriis an anuran endemic to the southern Tibetan plateau and this species has lived in the Tibetan plateau for approximately 19 million years (Cheet al.,2010). Because this species occurs across an extensive altitudinal range, which extends from 2850 to 5100 m above sea level (a.s.l.), and has the highest distribution of any amphibian in the world (Hu, 1987),N. parkeriis an excellent model with which to study the influence of oxygen levels on fitness-related life history traits and telomere dynamics of plateau ectothermic species.Our question was that whether low oxygen represents a major stress for the development of the Tibetan plateau tadpoles. In this study,N. parkeritadpoles were raised under different oxygen-level conditions until metamorphosis, where upon body size, body weight,development time, and growth rate were recorded, and telomere length was estimated. Based on the performance of lowland amphibians exposed to low-oxygen levels and the local adaptation of plateau species, we hypothesized that low-oxygen levels was not a stressful factor for the development ofN. parkeritadpole. Our results will aid in the elucidation of the adaptation mechanisms of the Tibetan plateau amphibians.

    2. Materials and Methods

    2.1.Egg Collection and IncubationWe collected multiple fresh laid egg masses ofNanorana parkeriat Bujiu, Nyingtri of Tibet, China (2 939 m a.s.l.) in the middle of May in 2015 and drew experimental population randomly (about 100 eggs) from this mixed egg masses.They were transported to the laboratory at the Institute of Zoology, Chinese Academy of Science, Beijing. In the lab, they were maintained in a climate controlled room at a temperature of 24 ± 0.32 °C and a photoperiod of 12 h:12 h (L: D). They were raised in standing unchlorinated tap water until the external gills of tadpoles completely disappeared at stage 25 (Gosner, 1960).

    2.2. Experimental TreatmentsTo begin the experiment with nearly uniformly sized larvae, tadpole size was measured by Motic Images Plus 2.0 (Motic China Group Co., Ltd.), and 50 tadpoles of nearly uniform size were selected (stage 25, Gosner, 1960) and randomly divided into two groups. In the low-oxygen group(LOG), 30 tadpoles were maintained in deoxygenated,unchlorinated tap water with nitrogen injection. In the high-oxygen group (HOG), 20 tadpoles were raised in water oxygenated with an aquarium pump. A special facility was developed, which consisted of two tanks,one with bubbling nitrogen, and the other with bubbling oxygen. Thirty (radius = 7.5 cm, height = 10 cm) and 20 bowls were placed in the nitrogenated and oxygenated tank, respectively. To allow water to circulate, each bowl had numerous pores (radius = 0.05 cm) on the bottom and sides, and each tadpole was raised in an independent bowl. The bowls in the LOG were covered with plastic lids to maintain the low oxygen levels. The temperature for the two groups was 17 ± 0.24 °C, which was set according to the average temperature in the field in the high-altitude region of the Tibetan plateau in May and June (Basang, 2005). The photoperiod was 12 h: 12 h (L:D). Each tadpole was fed chopped spinach (0.03 g) twice a week in conjunction with water changes. Eighty percent of the water was changed twice a week for both groups,when the water was changed, feces and excess food were removed by siphoning. Because dissolved oxygen (DO)ranged from 4.6 ± 0.02 mg/L to 5.4 ± 0.01 mg/L at 4,300 m a.s.l., and ranged from 5.5 ± 0.03 mg/L to 11 ± 0.02 mg/L at 2 850 m a.s.l. in the field (Fan, pers. obs.), in our experiment, DO was set at 5.00 ± 0.30 mg/L in the LOG, and 8.25 ± 0.20 mg/L in the HOG, which was the average DO concentration in field at 4,300 m a.s.l. and 2 850 m a.s.l., respectively. The DO concentration was measured with a YSI-55 DO meter (YSI, Yellow Springs,Ohio, USA) three times daily. Nitrite concentration was assessed using the colorimeter HACH DR/850 (Hach Company, Loveland, Colorado, USA) before each water change. We also measured the value in the field at the corresponding HOG and LOG habitat at 2 850 m a.s.l.and 4 300 m a.s.l., respectively.

    When the tadpoles were approaching metamorphosis(stage 42; occurrence of at least one forelimb; Gosner,1960), the bowls were checked twice a day to determine the timing of metamorphosis (i.e., development time =days elapsed from reaching Gosner stage 25 to reaching stage 46). At the end of metamorphosis (stage 46, tail completely resorbed, metamorphosis complete), fresh body mass and snout-vent length (SVL, the length from the tip of snout to the end of vent) were measured with an electronic balance (to the nearest 0.0001 g;Mettler-Toledo GmbH, Greifensee, Switzerland) and digital Vernier calipers (to the nearest 0.01 mm; Kanon Instruments, Japan), respectively. The average growth rate (g/d) for body weight for each individual was estimated by dividing body weight at metamorphosis by development time. The average growth rate for body length was also estimated using body length increments(mm/d), similar to that of body weight. Mortality was also recorded. Metamorphosed tadpoles were euthanized with an overdose of MS-222, and heart, liver, and muscle were harvested and frozen at –80 °C. All animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee of the Institute of Zoology,Chinese Academy of Sciences (Permit Number:IOZ11012).

    2.3 DNA Isolation and Quantitative PCRGenomic DNA was isolated from the heart, liver, and muscle using a DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer’s protocol. DNA quantification was performed using an ND-1000-Spectrophotometer(NanoDrop, Wilmington, Delaware, USA).

    Telomere length was quantified using real-time quantitative PCR developed to measure relative telomere length, as previously described in Cawthon (2002) and Criscuoloet al.(2009). The relative telomere length was expressed as a ratio of telomere repeat copy number (T) to a control single-gene copy number (S) (Cawthon, 2002).Quantitative PCR was performed using the SYBR Select Master Mix (Takara, Dalian, China) with an ABI PRISM 7500 (Applied Biosystems, Foster City, California, USA).The forward telomere primer was 5′-CGGTTTGTTTG GGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′, the reverse telomere primer was 5′-GGCTTGCCTTACCCT TACCCTTACCCTTACCCTTACCCT-3′ (Callicott and Womack, 2006). Because the 18S rRNA gene is highly shared between humans and frogs (Mallatt and Winchell,2007), we used 18S as the non-variable copy number gene with the following primer sequences originally designed for humans (Takara Bio Inc., Shiga, Japan): forward primer, 5′-ACTCAACACGGGAAACCTCA-3′, reverse primer 5′-AACCAGACAAATCGCTCCAC-3′. QPCR for both 18S and telomeres was performed using 25 ng of DNA per reaction. The total volume was 10 μL (9 μL of master mix + 1 μL of DNA). The master mix contained 2 μL of each primer and 5 μL of Applied Biosystems SYBR Green PCR master mix. PCR conditions for telomeres and 18S were 5 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 15 s at 60 °C, and 15 s at 72 °C. Both reactions ended with a dissociation program of 1 min at 95 °C, 30 s at 55 °C, and 30 s at 95 °C.

    Telomere length was expressed relative to the singlecopy number gene (18S) measured using the same sample of DNA. The telomeric DNA relative to the constant 18S amplicon was calculated with the following formula:telomere length = 2(–ΔCt)where(Cawthonet al., 2002).

    2.4 Statistical analysisWe tested the normality of distributions and homogeneity of variances for the data with the Kolmogorov-Smirnov and Levene’s test,respectively, prior to analysis. Group means for body weight, body length, growth rate for body weight,growth rate for body length, development time, nitrite concentration, and telomere length were compared using an independent-samplet-test. Results were presented as means ± SE per group. A value ofP< 0.05 was considered statistically significant. Differences in mortality between the two groups were compared using Fisher’s exact test. All analyses were performed using SPSS ver. 17.0 IBM software (SPSS Inc., Chicago,Illinois, USA).

    3. Results

    3.1. Fitness-related traitsBody length (df= 14,t=–3.936,P= 0.001, Figure 1A), body weight (df= 14,t= –4.101,P= 0.001, Figure 1B), growth rate for body length (df= 25,t= –3.038,P= 0.006), and body weight(df= 25,t= –4.782,P= 0.002) were greater in the LOG than the HOG. As a result, the tadpoles grew to a larger size in terms of body length and weight at metamorphosis(Figure 1A, B). However, DO did not affect the development time (df= 14,t= –0.588,P= 0.566, Figure 1C) or mortality of tadpoles (60%vs.84%,P= 0.100).

    3.2. Nitrite concentrationThe nitrite concentration of the HOG and LOG ranged from 0 to 1.152 ± 0.0002 mg/L and from 0 to 0.516 ± 0.0005 mg/L, respectively. The mean value of the nitrite concentration in the HOG was significantly higher than that in the LOG (0.096 ±.0.0003 mg/Lvs.0.043 ± 0.0002 mg/L,df= 25,t= 137.597,P<0.001).

    3.3. Telomere lengthTelomere length did not differ between the two groups of tadpoles in the heart (df=30,t= –1.599,P= 0.138, Figure 2A), liver (df= 30,t=–1.054,P= 0.313, Figure 2B), or muscle (df= 30,t=–1.419,P= 0.183, Figure 2C).

    4. Discussions

    Figure 1 The group means for body length (A), body weight (B),and development time (C) when metamorphosis was completed in the low-oxygen group (LOG) and the high-oxygen group (HOG) as compared by an independent-sample t-test; values are means ± SE.

    Figure 2 The group means of relative telomere length of Nanorana parkeri in heart (A), liver (B), and muscle (C) in the low-oxygen group (LOG) and high-oxygen group (HOG), as compared by an independent-sample t-test; values are means ± SE.

    4.1.Oxygen Level and Fitness-Related Life History TraitsOur results showed that oxygenated water was not beneficial to the development of tadpoles; on the contrary,to some extent, the low oxygen concentration was more beneficial to tadpole development. This was consistent with the findings for a lowland species,Cochranella granulosa(Hoffmann, 2010). This can be attributed to the concentration of various nitrogen compounds derived from tadpole feces in hypoxic and oxygenated water, in oxygenated water, ammonium was oxidized to nitrates,and nitrates were secondarily reduced to nitrites. Nitrites are toxic, and as nitrites pass through the bloodstream,they transform hemoglobin into methemoglobin, which causes methemoglobinemia (Hoffmann, 2010). The mean nitrite concentrations of the HOG and LOG groups were similar to the means at low (2 850 m a.s.l.; 0.105 ±0.0015 mg/L) and high altitude (4 300 m a.s.l.; 0.046 ±0.0012 mg/L) in the field, respectively. Therefore, LOG also experienced a low nitrate level, which was beneficial to tadpole development.

    4.2.Oxygen Level and Telomere Length DynamicsBased on the results of life-history traits, we hypothesized that the HOG should have shorter telomere than the LOG because the toxic nitrites induced oxidative stress (Ferrarioet al., 2009), and oxidative stress causes an increased number of single-strand breaks leading to loss of distal telomere fragments and accelerated telomere shortening(von Zglinickiet al., 2002). For example, telomere length was shortened when sand lizards (Lacerta agilis) were exposed to a stressful environment (Olssonet al., 2010).However, we didn’t observe significant difference in telomere length between these two groups. Two possible factors attributed to this result. First, although the body length, body weight and the growth rate was significant greater in LOG than in HOG, the oxygen levels were set based on corresponding field altitude conditions, due to local adaptation and wide oxygen-level tolerance, no matter the oxygen concentration or nitrite concentrations,neither of them was not stress to change telomere length.Secondly, although toxic sources led to paler heads for tadpoles in the HOG than in the LOG, and the toxic water delayed the growth of tadpoles in the HOG, the nitrate content fluctuated because the water was changed twice a week. Thus, the harmful environment was not a consistent and long-lasting stress that could accelerate telomere shortening. Indeed, the nitrate content also fluctuated in field for the frequent rainfalls. Therefore, there was no significant difference in telomere length between the two groups.

    In conclusion, although the oxygen concentration influenced some phenotype traits of plateau tadpoles,but it didn’t influence the telomere length and survival rate, which indicated that low oxygen was not a stress toNanorana parkeritadpoles’ fitness and survival. This is the first exploration of the influence of oxygen level on the telomere length of a native Tibetan plateau amphibian.Our study provided new insights for telomere assays in ecology and evolution, and further studies on the adaptive significance of these effects are warranted in the future.

    AcknowledgementsWe thank the anonymous villagers in Tibet for assisting by collecting samples. We thank Professor Weiguo DU and two anonymous reviewers for the helpful comments and discussion on the manuscript.Our research was supported by National Natural Science Foundation of China (No. 31471994). The samples were analyzed at Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences.All animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee of the Institute of Zoology, Chinese Academy of Sciences(Permit Number: IOZ11012).

    Basang.2005. The progenitive ecosystem of Altirana Seeingeger in Lhasa District. J Tibet Univ, 20:74–90

    Bickler P. E., Buck L. T.2007. Hypoxia tolerance in reptiles,amphibians, and fishes: life with variable oxygen availability.Annu Rev Physiol, 69:145–170

    Blumthaler M., Ambach W., Ellinger R.1997. Increase in solar UV radiation with altitude. J Photochem Photobiol B-Biol,39:130–134

    Bradford D. F.1983. Winterkill, oxygen relations, and energy metabolism of a submerged dormant amphibian,Rana muscosa.Ecology, 64:1171–1183

    Callicott R. J., Womack J. E.2006. Real-time PCR assay for measurement of mouse telomeres. Comparative Med, 56:17–22

    Cawthon, R. M.2002. Telomere measurement by quantitative PCR. Nucleic Acids Res, 30: E47

    Che, J., Zhou W. W., Hu J. S., Yan F., Papenfuss T. J., Wake D.B., Zhang Y. P.2010. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc. Natl Acad Sci U S A, 107:13765–13770

    Criscuolo F., Bize P., Nasir L., Metcalfe N.B., Foote C. G.,Griffiths K., Gault E.A., Monaghan P.2009. Real-time quantitative PCR assay for measurement of avian telomeres. J Avian Biol, 40:342–347

    Crowder W. C., Nie M., Ultsch G. R.1998. Oxygen uptake in bullfrog tadpoles (Rana catesbeiana). J Exp Zool Part A,280:121–134

    Cvetkovi? D., Toma?evi? N., Ficetola G.F., Crnobrnja-Isailovi?,Miaud C.2009. Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toadBufo bufo. J Zool Syst Evol Res, 47:171–180

    Debes P. V., Visse M., Panda B., IImonen P., Vasem?gi A.2016.Is telomere length a molecular marker of past thermal stress in wild fish ? Mol Ecol, 25: 5412-5424 | doi:10.1111/mec.13856

    Ferrario D., Collotta A., Carfi M., Bowe G., Vahter M., Hartung T., Gribaldo L.2009. Arsenic induces telomerase expression and maintains telomere length in human cord blood cells.Toxicology, 260:132–141

    Gou X., Wang Z., Li N., Qiu F., Xu Z., Yan D., Yang S., Jia J.,Kong X., Wei Z., Lu S., Lian L., Wang X., Li G., Ma T., Jiang Q., Zhao X., Yang J., Liu B., Wei D., Li H., Yang J., Yan Y.,Zhao G., Dong X., Li M., Deng W., Leng J., Wei C., Wang C., Mao H., Zhang H., Ding G., Li Y.2014. Whole genome sequencing of six dog breeds from continuous altitudes reveals adaption to high-altitude hypoxia. Genome Res, 24:1308-1315 |Doi:10.1101/gr.171876.113

    Gosner K. L.1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16:183–190

    Heidinger B. J., Blount J. D., Boner W., Griffiths K., Metcalfe N. B., Monaghan P.2012. Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA, 109:1743-1748 | Doi:10.1073/pnas.1113306109

    Hoffmann H.2010. Cyanosis by methemoglobinemia in tadpoles of Cochranella granulosa (Anura: Centrolenidae). Rev Biol Trop,58:1467–1478

    Hu S. Q.1987. Amphibia-Reptilia in Tibet. Science Press, China

    Liao W. B., Zhou C. Q., Yang Z. S., Hu J. C., Lu X.2010. Age,size and growth in two populations of the dark-spotted frogRana nigromaculataat different altitudes in southwestern China.Herpetolog J, 20:77–82

    Ma X. Y., Lu X., Meril? J.2009. Altitudinal decline of body size in a Tibetan frog. J Zool, 279:364–371

    Mallatt J., Winchell C. J.2007. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes,elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol,43:1005–1022

    Olsson M., Pauliny A., Wapstra E., Blomqvist D.2010. Proximate determinants of telomere length in sand lizards (Lacerta agilis).Biol Lett, 6:651–653

    Olsson M., Pauliny A., Wapstra E., Uller T., Schwartz T.,Blomqvist D.2011a. Sex differences in sand lizard telomere inheritance: Paternal epigenetic effects increases telomere heritability and offspring survival. PLoS One 6: e17473

    Olsson M., Pauliny A., Wapstra E., Uller T., Schwartz T., MillerE., Blomqvist D.2011b. Sexual differences in telomere selection in the wild. Mol Ecol, 20: 2085–2099

    Pauliny A., Wagner P. H., Augustin J., Szép T., Blomqvist D.2006. Age-independent telomere length predicts fitness in two bird species. Mol Ecol, 15:1681–1687

    Scheinfeldt L. B., Tishkoff S. A.2010. Living the high life: highaltitude adaptation. Genome Biol, 11:133

    Semenza G.L.2000. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol,88:1474–1480

    Stewart E. R., Reese S. A., Ultsch G. R.2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physiol Biochem Zool, 77:65–73

    Von Zglinicki T.2002. Oxidative stress shortens telomeres. Trends Biochem Sci, 27:339–344

    Wang D. P., Li H. G., Li Y. J., Guo S. C., Yang J., Qi D. L.,Jin C., Zhao X. Q.2006. Hypoxia-inducible factor 1α cDNA cloning and its mRNA and protein tissue specific expression in domestic yak (Bos grunniens) from Qinghai-Tibetan plateau.Biochem Biophys Res Commun, 348:310–319

    Wilbourn R. V., Froy H., McManus M., Cheynel L., Gaillard J.,Gilot-Fromont E., Regis C., Rey B., Pellerin M., Lema?tre J., Nussey D. H.2017. Age-dependent associations between telomere length and environmental conditions in roe deer. Biol Lett, 13: 20170434|http://dx.doi.org/10.1098/rsbl.2017.0434

    Wu X. Y., Liang C. N., Ding X. Z., Guo X., Bao P. J., Chu M.,Liu W. B., Yang P.2013. Association of novel single-nucleotide polymorphisms of the vascular endothelial growth factor-A gene with high-altitude adaptation in yak (Bos grunniens). Genet Mol Res, 12:5506–5515

    Zhang L. X., Ma X. Y., Jiang J. P., Lu X.2012. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol J Linnean Soc, 107:558–565

    免费大片18禁| 亚洲在线观看片| 十八禁网站免费在线| 国内精品久久久久精免费| 91久久精品国产一区二区三区| 亚洲国产日韩欧美精品在线观看| 我要看日韩黄色一级片| 国产精品亚洲美女久久久| 欧美在线一区亚洲| 成人特级黄色片久久久久久久| 51国产日韩欧美| avwww免费| 十八禁国产超污无遮挡网站| 麻豆国产97在线/欧美| 伦精品一区二区三区| 日本 欧美在线| 婷婷精品国产亚洲av在线| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲午夜理论影院| 久久久久久久久久久丰满 | 最后的刺客免费高清国语| 亚洲国产欧美人成| 国产不卡一卡二| 亚洲第一区二区三区不卡| 中国美白少妇内射xxxbb| 国产又黄又爽又无遮挡在线| 国产中年淑女户外野战色| 午夜精品久久久久久毛片777| 丝袜美腿在线中文| 国产黄a三级三级三级人| eeuss影院久久| 一进一出抽搐gif免费好疼| 少妇熟女aⅴ在线视频| 啦啦啦观看免费观看视频高清| 性欧美人与动物交配| 成年人黄色毛片网站| 国产一区二区激情短视频| 男女下面进入的视频免费午夜| 欧美一区二区精品小视频在线| 看免费成人av毛片| 中文字幕高清在线视频| 国产高清三级在线| 91麻豆av在线| 国产成人av教育| 国产精品久久视频播放| 一级毛片久久久久久久久女| 亚州av有码| 18禁黄网站禁片免费观看直播| 国产亚洲精品久久久久久毛片| 国产老妇女一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲三级黄色毛片| 成熟少妇高潮喷水视频| 免费在线观看成人毛片| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 综合色av麻豆| 亚洲18禁久久av| 亚洲av.av天堂| 亚洲成人中文字幕在线播放| 欧美黑人欧美精品刺激| 免费无遮挡裸体视频| 在线国产一区二区在线| 国产 一区 欧美 日韩| 亚洲精品456在线播放app | 又紧又爽又黄一区二区| 午夜日韩欧美国产| 亚洲av成人精品一区久久| 特大巨黑吊av在线直播| 毛片女人毛片| 国产真实乱freesex| 国产欧美日韩一区二区精品| 久久久久久久精品吃奶| 欧美日本亚洲视频在线播放| 九色国产91popny在线| 一区二区三区四区激情视频 | 免费av毛片视频| 天天一区二区日本电影三级| x7x7x7水蜜桃| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久久电影| 精品久久久久久久久久免费视频| 日本在线视频免费播放| 成年女人毛片免费观看观看9| 一级av片app| 干丝袜人妻中文字幕| 欧美xxxx性猛交bbbb| 国内精品宾馆在线| 日韩亚洲欧美综合| av女优亚洲男人天堂| 男插女下体视频免费在线播放| 国模一区二区三区四区视频| 久久天躁狠狠躁夜夜2o2o| 毛片女人毛片| 欧美丝袜亚洲另类 | 精品一区二区三区人妻视频| 永久网站在线| 久久精品人妻少妇| 欧美一区二区精品小视频在线| 男人舔奶头视频| 国产精品久久久久久亚洲av鲁大| 亚洲精品亚洲一区二区| 波多野结衣高清无吗| 一区二区三区高清视频在线| 1000部很黄的大片| 国产免费一级a男人的天堂| 日本色播在线视频| 九色成人免费人妻av| 亚洲精华国产精华精| 极品教师在线视频| 老师上课跳d突然被开到最大视频| 亚洲av电影不卡..在线观看| 精品午夜福利视频在线观看一区| 成人二区视频| 成年免费大片在线观看| 如何舔出高潮| 欧美极品一区二区三区四区| 人妻久久中文字幕网| 精品日产1卡2卡| 国产精品久久电影中文字幕| 如何舔出高潮| 99久久成人亚洲精品观看| 亚洲在线观看片| 免费人成在线观看视频色| 国产亚洲精品av在线| 91在线观看av| 亚洲,欧美,日韩| 伦理电影大哥的女人| 成人国产综合亚洲| 网址你懂的国产日韩在线| 一个人看的www免费观看视频| 久久久久国产精品人妻aⅴ院| 少妇高潮的动态图| 国产精品98久久久久久宅男小说| av福利片在线观看| 亚洲成人免费电影在线观看| 成年女人看的毛片在线观看| 欧美三级亚洲精品| 日本-黄色视频高清免费观看| 人妻夜夜爽99麻豆av| 国内精品美女久久久久久| 国产午夜福利久久久久久| 午夜福利在线观看免费完整高清在 | 九色国产91popny在线| 久久久久久久亚洲中文字幕| 国产色婷婷99| 亚洲,欧美,日韩| 亚洲色图av天堂| 成人毛片a级毛片在线播放| 免费av毛片视频| 俺也久久电影网| 午夜久久久久精精品| 国产伦在线观看视频一区| 又黄又爽又免费观看的视频| 99久久精品一区二区三区| 女人被狂操c到高潮| 亚洲欧美精品综合久久99| 久久精品国产亚洲av天美| 观看免费一级毛片| 午夜视频国产福利| 久久久久久久久久成人| 欧美绝顶高潮抽搐喷水| 精品福利观看| 久久久久久九九精品二区国产| 自拍偷自拍亚洲精品老妇| 婷婷六月久久综合丁香| 亚洲国产欧美人成| av在线天堂中文字幕| 成人午夜高清在线视频| 国产精品久久视频播放| 国产人妻一区二区三区在| 桃色一区二区三区在线观看| 免费黄网站久久成人精品| 黄色丝袜av网址大全| 国产伦精品一区二区三区四那| 中文资源天堂在线| 亚洲av二区三区四区| 人人妻,人人澡人人爽秒播| 国产一区二区三区av在线 | 美女高潮的动态| 91麻豆av在线| 中文在线观看免费www的网站| 欧美最黄视频在线播放免费| 级片在线观看| av在线老鸭窝| 免费av观看视频| 国产精品98久久久久久宅男小说| 国内精品美女久久久久久| 免费在线观看影片大全网站| 色哟哟哟哟哟哟| 久久国产乱子免费精品| 一进一出好大好爽视频| 少妇的逼好多水| 偷拍熟女少妇极品色| 国模一区二区三区四区视频| 国产精品一区www在线观看 | 在线观看av片永久免费下载| 国产av在哪里看| 免费av毛片视频| 黄色视频,在线免费观看| 美女cb高潮喷水在线观看| 在现免费观看毛片| 非洲黑人性xxxx精品又粗又长| 欧美极品一区二区三区四区| 国产成人a区在线观看| 中文字幕高清在线视频| 熟妇人妻久久中文字幕3abv| .国产精品久久| 国产精品综合久久久久久久免费| 2021天堂中文幕一二区在线观| 精品一区二区免费观看| 国产成人福利小说| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华精| 乱系列少妇在线播放| 免费看日本二区| 亚洲在线观看片| 亚洲无线观看免费| 欧美激情久久久久久爽电影| 国产午夜福利久久久久久| 日本与韩国留学比较| 国产91精品成人一区二区三区| 国产精品爽爽va在线观看网站| 欧美成人性av电影在线观看| 久久久色成人| 老司机福利观看| 一个人看视频在线观看www免费| 永久网站在线| 97人妻精品一区二区三区麻豆| 亚洲av美国av| 天美传媒精品一区二区| 午夜免费激情av| 久久久国产成人精品二区| 精品久久久久久久久久免费视频| 欧美人与善性xxx| 亚洲国产高清在线一区二区三| 亚洲乱码一区二区免费版| 在线免费观看的www视频| 欧美激情在线99| 美女 人体艺术 gogo| 色av中文字幕| 麻豆一二三区av精品| 亚洲成人免费电影在线观看| 亚洲自拍偷在线| 免费高清视频大片| 69av精品久久久久久| 麻豆成人午夜福利视频| 免费黄网站久久成人精品| 日日夜夜操网爽| 国产精品乱码一区二三区的特点| 动漫黄色视频在线观看| 村上凉子中文字幕在线| 亚洲av免费在线观看| 一区二区三区四区激情视频 | av在线蜜桃| 少妇被粗大猛烈的视频| 成人特级av手机在线观看| 亚洲精品久久国产高清桃花| 亚洲一区高清亚洲精品| 啦啦啦观看免费观看视频高清| 亚洲七黄色美女视频| 精品人妻熟女av久视频| 老师上课跳d突然被开到最大视频| 国产精品不卡视频一区二区| 精品一区二区三区人妻视频| 少妇丰满av| a级毛片免费高清观看在线播放| 亚洲精品久久国产高清桃花| 国产精品伦人一区二区| 国产激情偷乱视频一区二区| 亚洲成人免费电影在线观看| 亚洲成人中文字幕在线播放| 国产精品日韩av在线免费观看| 欧美zozozo另类| 久久99热6这里只有精品| 国产人妻一区二区三区在| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品 | АⅤ资源中文在线天堂| 最近视频中文字幕2019在线8| 午夜福利在线观看吧| 亚洲av熟女| 一进一出抽搐动态| 精品久久久噜噜| 三级男女做爰猛烈吃奶摸视频| 国产 一区精品| 亚洲美女视频黄频| 俄罗斯特黄特色一大片| 午夜精品在线福利| 欧美成人免费av一区二区三区| 国产精品人妻久久久久久| 夜夜看夜夜爽夜夜摸| 色在线成人网| 亚州av有码| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 在线播放无遮挡| 亚洲人成网站在线播放欧美日韩| 日韩中字成人| 免费看美女性在线毛片视频| 国产淫片久久久久久久久| 欧美国产日韩亚洲一区| 亚洲最大成人中文| 国产男靠女视频免费网站| 99在线人妻在线中文字幕| 午夜老司机福利剧场| 免费看av在线观看网站| 日韩国内少妇激情av| 男女下面进入的视频免费午夜| 丝袜美腿在线中文| 久久草成人影院| 国产精品99久久久久久久久| 亚洲av中文av极速乱 | 天堂影院成人在线观看| 精品福利观看| 黄片wwwwww| 亚洲七黄色美女视频| 国产亚洲欧美98| 国产精品人妻久久久久久| 午夜福利高清视频| 久久精品影院6| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 亚洲最大成人中文| 日韩欧美精品v在线| 免费大片18禁| 非洲黑人性xxxx精品又粗又长| 免费观看精品视频网站| 久久香蕉精品热| 久久这里只有精品中国| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 老司机深夜福利视频在线观看| 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 99久久精品国产国产毛片| av黄色大香蕉| 国产熟女欧美一区二区| 搡女人真爽免费视频火全软件 | www日本黄色视频网| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9| 欧美+日韩+精品| 婷婷精品国产亚洲av在线| 淫秽高清视频在线观看| aaaaa片日本免费| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 美女xxoo啪啪120秒动态图| 三级毛片av免费| 看黄色毛片网站| 三级国产精品欧美在线观看| 长腿黑丝高跟| 简卡轻食公司| 午夜免费男女啪啪视频观看 | 色哟哟哟哟哟哟| 免费高清视频大片| 国产精品一区www在线观看 | 十八禁网站免费在线| 亚洲欧美日韩高清专用| 日韩大尺度精品在线看网址| 日本成人三级电影网站| 一进一出好大好爽视频| 男人的好看免费观看在线视频| 中文在线观看免费www的网站| 色哟哟哟哟哟哟| 男女边吃奶边做爰视频| 欧美xxxx性猛交bbbb| 亚洲精华国产精华液的使用体验 | 久99久视频精品免费| 国产在线男女| 亚洲精品在线观看二区| 免费大片18禁| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av| 国产精品,欧美在线| 日本欧美国产在线视频| 亚洲在线自拍视频| 日本免费一区二区三区高清不卡| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 国产激情偷乱视频一区二区| 久久久午夜欧美精品| 国产伦人伦偷精品视频| 国产精品久久久久久久久免| 亚洲色图av天堂| 久久中文看片网| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 日日啪夜夜撸| 一区二区三区四区激情视频 | 精品一区二区免费观看| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 国产精品av视频在线免费观看| 日韩高清综合在线| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 亚洲狠狠婷婷综合久久图片| 三级毛片av免费| 韩国av一区二区三区四区| 午夜免费成人在线视频| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 少妇人妻一区二区三区视频| 欧美一区二区亚洲| 干丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 91av网一区二区| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 国产av不卡久久| av女优亚洲男人天堂| 国产精品电影一区二区三区| 99久久久亚洲精品蜜臀av| 精品久久国产蜜桃| 在线看三级毛片| 日本熟妇午夜| 黄片wwwwww| 最近最新免费中文字幕在线| 国产av一区在线观看免费| 一区二区三区激情视频| 五月玫瑰六月丁香| bbb黄色大片| 欧美人与善性xxx| 精品久久久久久久久亚洲 | 99热精品在线国产| 男女啪啪激烈高潮av片| 18禁在线播放成人免费| 欧美中文日本在线观看视频| 国产免费男女视频| 黄片wwwwww| 99riav亚洲国产免费| 九色国产91popny在线| 国产午夜福利久久久久久| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 久久精品国产自在天天线| 最后的刺客免费高清国语| 国产av麻豆久久久久久久| 一区福利在线观看| 成人性生交大片免费视频hd| 99久久九九国产精品国产免费| 亚洲熟妇熟女久久| 色av中文字幕| 亚洲成人久久性| 国产高清有码在线观看视频| 日韩欧美国产在线观看| 22中文网久久字幕| 亚洲国产精品成人综合色| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| 男插女下体视频免费在线播放| 欧美日本视频| 草草在线视频免费看| 狂野欧美白嫩少妇大欣赏| 色综合婷婷激情| 成年免费大片在线观看| 一级黄色大片毛片| 狂野欧美激情性xxxx在线观看| 国产精品久久电影中文字幕| 久久久久久九九精品二区国产| 欧美zozozo另类| a级一级毛片免费在线观看| 午夜a级毛片| 日韩 亚洲 欧美在线| .国产精品久久| 亚洲狠狠婷婷综合久久图片| 老女人水多毛片| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频| 久久久久免费精品人妻一区二区| 亚洲av免费在线观看| 一级av片app| 国产高潮美女av| 天天躁日日操中文字幕| 亚洲精华国产精华液的使用体验 | 欧美国产日韩亚洲一区| 嫩草影视91久久| 精品久久久久久久末码| 中文字幕av在线有码专区| 亚洲av.av天堂| 女人被狂操c到高潮| 免费在线观看影片大全网站| 丝袜美腿在线中文| 日韩欧美在线乱码| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 在线观看av片永久免费下载| 99riav亚洲国产免费| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 亚洲不卡免费看| 春色校园在线视频观看| 免费观看精品视频网站| 国产精品av视频在线免费观看| 久久久久性生活片| 悠悠久久av| 99久久无色码亚洲精品果冻| 在线播放无遮挡| 国产黄a三级三级三级人| 国产精品永久免费网站| 午夜影院日韩av| 可以在线观看的亚洲视频| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 草草在线视频免费看| 欧美3d第一页| 亚洲专区中文字幕在线| 日韩亚洲欧美综合| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 少妇丰满av| 久久人妻av系列| 天堂√8在线中文| 亚洲成av人片在线播放无| 天堂√8在线中文| 如何舔出高潮| 国产男靠女视频免费网站| 久99久视频精品免费| 精品一区二区三区视频在线观看免费| 亚洲七黄色美女视频| 亚洲成av人片在线播放无| 床上黄色一级片| 久久国产精品人妻蜜桃| 99久久精品热视频| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 色哟哟哟哟哟哟| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 欧美性猛交╳xxx乱大交人| 看片在线看免费视频| 在线免费观看的www视频| 亚洲第一电影网av| 少妇丰满av| 中出人妻视频一区二区| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产 | 日本一二三区视频观看| 欧美最新免费一区二区三区| 久久久久久久精品吃奶| 国产精品99久久久久久久久| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 校园人妻丝袜中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添小说| 午夜福利欧美成人| 国产 一区 欧美 日韩| 亚洲内射少妇av| 欧美人与善性xxx| 啪啪无遮挡十八禁网站| 免费观看在线日韩| 一进一出抽搐动态| 少妇人妻一区二区三区视频| 色综合色国产| 国产av在哪里看| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 亚洲男人的天堂狠狠| 深夜精品福利| 日韩在线高清观看一区二区三区 | 午夜免费成人在线视频| 国产亚洲欧美98| 日本 av在线| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站| 亚洲最大成人中文| 亚洲欧美清纯卡通| 我的老师免费观看完整版| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 色吧在线观看| 成人欧美大片| 亚洲av熟女| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区 | 国产成人av教育| 亚洲乱码一区二区免费版| 国产精品久久电影中文字幕| 亚洲自偷自拍三级| 成人永久免费在线观看视频| 日本a在线网址| 麻豆成人av在线观看| 亚洲成人久久爱视频| 亚洲欧美日韩无卡精品| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 看免费成人av毛片| 一本一本综合久久| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app | 国产精品伦人一区二区| 99久久精品热视频| av专区在线播放| 观看美女的网站| 国产免费男女视频| 禁无遮挡网站| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 少妇的逼好多水| 亚洲最大成人中文| 午夜免费激情av| 国产精品久久久久久亚洲av鲁大| 久久精品国产99精品国产亚洲性色| 搡女人真爽免费视频火全软件 |