• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Mitochondrial Genome of Pseudocalotes microlepis(Squamata: Agamidae) and its Phylogenetic Position in Agamids

    2018-03-28 06:20:56XiuliYUYuDUMengchaoFANGHongLIandLonghuiLIN
    Asian Herpetological Research 2018年1期

    Xiuli YU, Yu DU, Mengchao FANG, Hong LI and Longhui LIN*

    1Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences,Hangzhou Normal University, Hangzhou 310036, China

    2Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University,Nanjing 210023, China

    3 Hainan Key Laboratory of Herpetology, College of Tropical Biology and Agronomy, Hainan Tropical Ocean University, Sanya 572022, China

    1. Introduction

    The genusPseudocalotes(Draconinae; Agamidae;Squamata) areCalotes-like lizards which inhabit mountain regions of Indo-China and the Sunda region,and are found mostly on trees or bushes in tropical mountain forests (Hallermann and B?hme, 2000; Ziegleret al., 2006). To date, the complete mitochondrial genomes (mitogenomes) of 5.8% of Agamidae species(25/480) were available in GenBank, including 14 species in Agaminae, 4 species in Leiolepidinae, 3 species in Draconinae, 2 species in Amphibolurinae, 1 species in Hydrosaurinae and 1 species in Uromastycinae. However,the phylogenetic position and inter-relationships of the subfamilies have yet to be determined. Some researchers proposed that the group (Agaminae + Draconinae) +Hydrosaurinae was the sister group of Amphibolurinae,and Uromastycinae was the outermost subfamily of agamids (Maceyet al., 2000; Okajima and Kumazawa,2010). However, Pyronet al. (2013) proposed that the group of (Agaminae + Draconinae) was the sister group of(Amphibolurinae + Hydrosaurinae) with the study using 5 nuclear loci (BDNF, c-mos, NT3, R35 and RAG-1) and 5 mitochondrial loci (12S, 16S, Cytb, ND2 and ND4),and Uromastycinae was also the outermost subfamily of agamids, but the relationship Amphibolurinae +Hydrosaurinae was weakly supported.

    In this study, we sequenced the complete mitogenome of a small-scaled forest agamid (Pseudocalotes microlepis). This lizard occurs in the mountain forests of Hainan and Guizhou in China, Thailand, Laos, Myanmar and Vietnam (Ananjevaet al., 2011; Uetz, 2016; Zhao and Adler, 1993). We analyzed the gene content, base composition, codon usage, tRNAs (transfer RNAs)structure and control region of this species. We then conducted a partitioned Bayesian phylogenetic analysis of related species based upon concatenated 2rRNAs(ribosomal RNAs) and 13 PCGs (protein-coding genes)in sequence (12S rRNA, 16S rRNA, ND1, ND2, COI,COII, ATP8, ATP6, COIII, ND3, ND4L, ND4, ND5, ND6 and Cytb). We analysed the hitherto longest molecular data (14 024 bp) in Agamidae, and compared to the 25 agamids with mitogenomes sequenced, in order to explore the phylogenetic relationships among the subfamilies.

    2. Materials and Methods

    2.1. Sample collection and DNA extractionThe sample(voucher number XLHZ601) was collected from Hainan,China, and stored at –80°C in laboratory at Hangzhou Normal University. Total genomic DNA was extracted using the Genomic DNA kit (TransGen, China), according to the manufacturer-supplied protocols.

    2.2. Primer design, amplification and sequencingThe species-specific primers were designed based on highly conserved sequences (Kumazawa and Endo, 2004), which were designed with software Primer Premier 5 and were identified using multiple alignments of the agamids (Table 1). PCR was performed using a final reaction volume of 25 μL, of 2.5 μL 10 × TransTaq HIFI Buffer, 2 μL dNTPs,1 μL forward and reverse primers for each, 0.5–2 μL DNA Template, 0.25–5 μL HIFI DNA Polymerase, and addition of double distilled water to a final volume of 25 uL. The PCR procedure was conducted on a Mastercycler(Eppendorf, Germany) using the following program: predenaturation at 94°C for 5 min; 35 cycles of denaturation at 94°C for 30 s, annealing at 42°C–56°C for 30 s and extension at 72°C for 30 s; followed by a final elongation step of 72°C for 10 min. The PCR reaction products were electrophoresed in a 1.2% agarose gel and purified with PCR purification Kit (OMEGA, China). Then, each fragment of PCR was cloned into the pEASY-T5 Zero Cloning vector (TransGen, China) and sequenced with M13 primers from both directions by a primer-walking strategy. Each sequence overlapped the next contig between 150–300 bp.

    2.3. Sequence analysisWe analyzed DNA sequences and performed contig assembly with the software Seqman(DNASTAR). We identified 13 PCGs using ORF Finder implemented at the NCBI website (https://www.ncbi.nlm.nih.gov/orffinder/). We used tRNAscan-SE search server(Lowe and Eddy, 1997) and MITOS web servers (Berntet al., 2013) to predict the secondary structure and anticodon sequences of tRNAs. We determined the boundaries of 2 rRNAs based on alignments of rRNA sequences of other species, as withCalotes versicolor(Amer and Kumazawa, 2007). We then compared our sequences with the available agamid mitogenomes using Clustal X 2.0 (Larkinet al., 2007; Thompsonet al., 1997), and searched the tandem repeat sequences of control region using Tandem Repeats Finder 4.0 (Benson, 1999). Then we calculated the GC and AT skew respectively following Perna and Kocher (1995) formula: AT skew = (A-T) /(A+T) and GC skew = (G-C) / (G+C) (Perna and Kocher,1995). We analyzed the nucleotide composition and relative synonymous codon usage (RSCU) values with Mega 6.0 (Tamuraet al., 2013). The complete mtDNA sequence ofP. microlepiswas deposited to GenBank under accession number (KX898132).

    2.4. Phylogenetic analysesTo construct a phylogenetic tree, we used all 25 available mitogenomes in Agamidae,and usedChamaeleo calyptratus(Chamaeleonidae) as the outgroup. Accession number and the whole size for all mitogenomes were presented in Appendix 1. We used the nucleotide sequences consisted of 15 mitochondrial genes, and deleted the start and end codons of PCGs from analyses. Phylogenetic analyses were conducted using Bayesian uncorrelated lognormal approach in BEAST 2.0 (Bouckaertet al., 2014). Prior to estimating BEAST, we carried out the best partition schemes and corresponding nucleotide substitution models for each partition, using PartitionFinder 1.1.1 (Lanfearet al.,2012). The best-fitting model was determined using the Bayesian Information Criterion (BIC). The partitions and models were listed in Table 2. We used one fossil calibration point, the estimated age of the split between oviparous and viviparous species ofPhrynocephalus:9.73 (95% interval: 7.21–13.04) Ma (million years ago)(Jin and Brown, 2013). We used the relaxed lognormal clock model, and specified the standard Yule speciation process for the tree. Two independent runs of four heated MCMC chains (three hot chains and one cold chain)were simultaneously run for 200 million generations,with sampling conducted every 10,000 generations(Fitzeet al., 2011; Jinet al., 2015; Kyriaziet al., 2008).We compared the results of two independent runs with Tracer 2.2.1 (Rambaut and Drummond, 2007). Then we discarded the first one million trees as “burn-in”. All four chains achieved the recommended adequate effective sample size of 200 for likelihood (Drummondet al.,2006; Lin and Wiens, 2017).

    Table 1 Primers designed to amplify and sequence in this study. L and H refer to forward primer and reverse primer, respectively; Tm refers to annealing temperature.

    Table 2 The best partition schemes and nucleotide substitution models for mitochondrial data based on BEAST carried out using partitionFinder.

    In order to estimate the substitution rate of each gene,along with their confidence intervals, we performed an additional BEAST analysis with clock models linked by ‘gene’ and nucleotide substitution models unlinked.Models of nucleotide evolution of each gene partition were calculated in jModelTest 2.1.7 (Darribaet al.,2012), under the Akaike Information Criterion (AICc).Phylograms were drawn with Figtree 1.4.

    3. Results and Discussion

    3.1. Genome organization and structureThe mitogenome ofP. microlepisis a typical circular DNA molecule of 17 873 bp in length, similar in size to the other available mitogenomes of species in the Agamidae.In comparison with the other agamids, the mitogenome ofP. microlepisis longer than all species (Appendix 1)exceptPhrynocealus axillaris(17 937 bp). The difference in size is mainly due to the variable number of tandem repeats (VNTRs) in the control region. It contains a typical set of gene content: 13 PCGs, 2 rRNAs, 22 tRNAs and non-coding regions. Among these, 29 genes (12 PCGs, 15 tRNAs and two rRNAs) are located on heavy(H) strand, and other genes (ND6 and seven tRNAs) are located on light (L) strand (Table 3). Gene overlaps of 42 bp have been found at 10 gene junctions, the longest overlap (10 bp) exists between ATP8 and ATP6. The gene order of theP. microlepismitogenome is identical to that of most squamates (Maceyet al., 2006; Ujvariet al.,2007).

    Table 3 Mitochondrial genome organization of Pseudocalotes microlepis. L and H refer to forward primer and reverse primer, respectively.

    3.2. Nucleotide compositionSimilar to most other mitogenomes in Agamidae, the nucleotide composition ofP. microlepismtDNA is biased toward A and T. The overall A + T content of mitogenome is 59.2% (35.3%A, 23.9% T, 27.6% C and 13.2% G). The AT skew and GC skew is 0.1943 and –0.3541, respectively. TheP.microlepismitogenome has a distinct bias against G at first codon position (A: 37.0%, T: 22.5%, C: 27.2% and G: 13.3%). The percentage of purines (48.8%) is slightly lower than pyrimidines (51.2%) at the second position and the third position.

    3.3. Protein-coding genes and relative synonymous codon usageThe total length of the 13 PCGs inP. microlepismitogenome is 11 283 bp, accounting for 63.13% of the entire mitogenome sequence. All the PCGs initiated with a typical start codon (ATG), except ND5 which starts with ATA. Among stop codons, TAA is the most common. ND2, ATP8, ND3 and ND4L end with TAA; ND1, COI and ND5 end with TAG; COII and ND6 end with AGG; ND4 ends with AGA; ATP6, COIII and Cytb end with an incomplete end codon (T-). The posttranscriptional polyadenylation can produce a standard TAA stop codon (Han and Zhou, 2005).

    The relative synonymous codon usage (RSCU) for the mitochondrial PCGs inP. microlepisexhibited 62 amino-acid encoding codons as well as an over-usage of A and T at the third codon positions (Table 4). Among them, CUA-Leu1 (7.12), ACA-Thr (6.02) and AUA-Met(5.19) are the most frequently used codons. The leastfrequent codons are CGG-Arg (0.03), CGU-Arg (0.05)and UCG-Ser2 (0.13). These codons are composed of A and U nucleotides, indicating a high usage of A and T inP. microlepisPCGs.

    3.4. Ribosomal and transfer RNA genesThe 2 rRNAs(12S and 16S) ofP. microlepisare located between tRNAPheand tRNALeu(UUR), and separated by tRNAVal(Table 3). The lengths of 12S rRNA and 16S rRNA are determined to be 846 bp and 1 519 bp, and it varies from 830 bp inA. lepidogasterto 930 bp inA. armata. 16S rRNA varies from 1 479 bp in genusPhrynocealusto 1 567 bp inLeiolepis boehmei, respectively. The size is similar to that of other metazoan mtDNA (Zhanget al., 2009). The typical set of 22 tRNA ofP. microlepisis ranging in size from 53 bp for tRNACysto 73 bp for tRNATrp, as similar to other metazoan mitogenomes(Yoonet al., 2015). The 22 tRNAs possess a canonical cloverleaf secondary structure composed of four arms(dihydorouridine arm, anticodon arm, TΨC arm and aminoacyl acceptor arm) with conserved size (Figure 1).

    Table 4 Codon usage in Pseudocalotes microlepis mitochondrial protein-coding genes. A total of 3 737 codons for analyzed,excluding the start and stop codons. AA, amino acid; RSCU,relative synonymous codon usage; n = frequency of each codon;% = n/3737.

    Figure 1 Putative 22 tRNAs secondary structures of Pseudocalotes microlepis. The minus (-) indicates Watson-Crick base pairing, and dots indicate G-U base pairing. It is composed of Aminoacyl acceptor (AA) arm, Dihydorouridine (DHU) arm, Anticodon (AC) arm, TΨC (T)arm and Variable loop.

    Whereas two tRNAs (tRNACysand tRNASer(AGY)) appear to lack the dihydorouridine (DHU) arm. The loss of the DHU arm in tRNASer(AGY)has been considered a common condition of metazoan mitogenomes (Wolstenholme,1992). However, the loss of the DHU arm in tRNACysis an unusual phenomenon, which has also been observed inGekko gecko(Han and Zhou, 2005). Further research is needed to determine the molecular mechanisms responsible for keeping such defective tRNAs functional.3.5. Non-coding regionsThe small non-coding region includes several intergenic spacers, ranging from 1 to 29 bp (Table 3), most of which are shorter than ten nucleotides. The longest intergenic spacer sequence we found is located between COI and tRNASer(UCN). The large non-coding region (control region) is 2 687 bp in size and located between tRNAProand tRNAPhe. The size is remarkably longer than other species in Draconinae because of the VNTRs. The nucleotide composition is 42.3% A, 28.3% T, 18.2% C and 11.2% G, with a strong bias use of G. The structure is typical including Termination-Associated Sequence (TAS) and Conserved Sequence Blocks (CSB) (Jinet al., 2015; Shiet al., 2013;Xionget al., 2010). VNTRs contain four distinct tandem repeat units (15 950–16 014, 16 018–16 086, 16 138–16 671 and 16 707–17 857). They are 65 bp, 43 bp, 534 bp,and 1151 bp in length, respectively. The small tandem repeats units as 5'-AACA-3' and 5'-A/G (G) CAA-3'have 16.3 copies and 10.8 copies, respectively. One large tandem repeats (74 bp) have 7.2 copies, another one (75 bp) have 15.4 copies. VNTRs have also been regarded as a common feature for the mitogenomes of reptiles (Xu and Fang, 2006), and could provide reliable phylogenetic and genetic information for closely related species(Zardoya and Meyer, 1998).

    3.6. Phylogenetic analysisThe phylogenetic relationships were constructed using BEAST based on 15 mitochondrial genes. The final alignment resulted in 14 024 nucleotide sites for 26 ingroup and one outgroup taxa. The number of sequences and substitution rates,multiple sequence alignments length, and models of genes were reported for each gene in Table 5. The topology of phylogenetic tree was shown in Figure 2. Most nodes were well supported by high posterior probabilities. The divergence between Chamaeleonidae and Agamidae was estimated at 64.87 Ma; within Agamidae, the basal branching split was estimated at 60.02 Ma. The divergence between oviparous and viviparous species ofPhrynocephaluswas 9.20 Ma.

    Figure 2 Time calibrated Bayesian Phylogenetic tree of amagids and one outgroup estimated using BEAST based on mitochondrial genes(concatenated 2 rRNAs and 13 PCGs) for Markov chains. Numbers on nodes are posterior probability values. Hatched rectangles indicate 95% credibility range for divergence times.

    Table 5 Number of sequences and substitution rates, length of the gene fragments, models of genes for each gene as selected by jModelTest according to the AICc.

    Our results revealed that the newly sequencedP.microlepisand the genusAcanthosaurawere aggregated, and together withC. versicolorthey constitute the subfamily Draconinae. However, the usage of mitogeneome did not allow us to resolve with support the position of Hydrosaurinae which was instable across previous studies. For example, some previous studies (Blankerset al., 2013; Townsendet al., 2011;Wienset al., 2012) placed Hydrosaurinae as sister to Amphibolurinae + (Agaminae + Draconinae), other studies (Maceyet al., 2000; Okajima and Kumazawa,2010) placed Hydrosaurinae as sister to (Agaminae +Draconinae), whereas we and Pyronet al. (2013) placed Hydrosaurinae as the sister-group to Amphibolurinae with weak support. Further studies were required to resolve the position of Hydrosaurinae.

    4. Conclusions

    In this study, we sequenced and annotated the complete mitogenome ofP. microlepis. Our results present the gene content, base composition, codon usage, tRNAs structure,VNTRs in the control region and phylogenetic analysis of related species. This is the first complete mitogonome of the genusPseudocalotes. The research is intended to be helpful for the exploration on the phylogenetic position and interrelationships of the subfamilies in Agamidae.

    Amer S. A. M., Kumazawa Y.2005. Mitochondrial genome ofPogona vitticepes, (Reptilia; Agamidae): control region duplication and the origin of Australasian agamids. Gene, 346:249–256

    Amer S. A. M., Kumazawa Y.2007. The mitochondrial genome of the lizardCalotes versicolorand a novel gene inversion in South Asian Draconine agamids. Mol Biol Evol, 24: 1330–1339

    Ananjeva N. B., Guo X. G., Wang Y. Z.2011. Taxonomic diversity of agamid lizards (Reptilia, Sauria, Acrodonta, Agamidae) from China: a comparative analysis. Asian Herpetol Res, 2: 117–128

    Benson G.1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 27: 573–580

    Bernt M., Donath A., Jühling F., Externbrink F., Florentz C.,Fritzsch G., Pütz J., Middendorf M., Stadler P. F.2013.MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Biol Evol, 69: 313–319

    Blankers T., Townsend T. M., Pepe K., Reeder T. W., Wiens J. J.2013. Contrasting global-scale evolutionary radiations:phylogeny, diversification, and morphological evolution in the major clades of guanian lizards. Biol J Linn Soc, 108: 127–143

    Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H.,Xie D., Suchard M. A., Rambaut A., Drummond A. J.2014.BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol, 10: e1003537

    Chen D. L., Guo X. G., Li J.2014. The complete mitochondrial genome of secret toad-headed agama,Phrynocephalus mystaceus(Reptilia, Squamata, Agamidae). Mitochondr DNA, 25: 19–20

    Darriba D., Taboada G. L., Doallo R., Posada D.2012.jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 9: 772

    Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A.2006.Relaxed phylogenetics and dating with confidence. PLoS Biol,4: e88

    Fitze P. S., Gonzalez-Jimena V., San-Jose L. M., Mauro D. S.,Aragón P., Suarez T., Zardoya R.2011. Integrative analyses of speciation and divergence inPsammodromus hispanicus(Squamata: Lacertidae). BMC Evol Biol, 11: 1–21

    Fu C. Y., Chen W., Jin Y. T.2016. The complete mitochondrial genome ofPhrynocephalus guinanensis(Reptilia, Squamata,Agamidae). Mitochondr DNA, 27: 1103–1104

    Hallermann J., B?hme W.2000. A review of the genusPseudocalotes(Squamata: Agamidae), with description of a new species from West Malaysia. Amphibia-Reptilia, 21: 193–210

    Han D. M., Zhou K. Y.2005. Complete sequence and gene organization of the mitochondrial genome of tokay (Gekko gecko). Zool Res, 26:123–128

    Jin X. X., Wang R. X., Wei T., Xu T. J.2015. Complete mitochondrial genome sequence ofTridentiger bifasciatusandTridentiger barbatus(Perciformes, Gobiidae): a mitogenomic perspective on the phylogenetic relationships of Gobiidae. Mol Biol Rep, 42: 253–265

    Jin Y. T., Brown R. P.2013. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 68: 259–268

    Kumazawa Y., Endo H.2004. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptileoriented primers and novel gene rearrangements. DNA Res, 11:115–125

    Kyriazi P., Poulakakis N., Parmakelis A., Crochet P. A.,Moravec J., Rastegar-Pouyani N., Tsigenopoulos C. S.,Magoulas A., Mylonas M., Lymberakis P.2008. Mitochondrial DNA reveals the genealogical history of the snake-eyed lizards(Ophisops elegansandO. occidentalis) (Sauria: Lacertidae).Mol Phylogenet Evol, 49: 795–805

    Lanfear R., Calcott B., Ho S. Y. W., Guindon S.2012.PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol,29: 1695–1701

    Larkin M. A., Blackshields G., Brown N. P., Chenna R.,McGettigan P. A., McWilliam H., Valentin F., Wallace I. M.,Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D.G.2007. Clustal W and Clustal X version 2.0. Bioinformatics,23: 2947–2948

    Li D. H., Guo J., Zhou X. M., Chang C., Zhang S. X.2016. The complete mitochondrial genome ofPhrynocephalus helioscopus(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1846–1847

    Li D. H., Song S., Chen T., Chang C.2015. Complete mitochondrial genome of the desert toad-headed agama,Phrynocephalus przewalskii(Reptilia, Squamata, Agamidae),a novel gene organization in vertebrate mtDNA. Mitochondr DNA, 26: 4675–467

    Li J., Guo X. G., Chen D. L., Wang Y. Z.2013. The complete mitochondrial genome of the Yarkand toad-headed agama,Phrynocephalus axillaris(Reptilia, Squamata, Agamidae).Mitochondr DNA, 24: 234–236

    Liao P. H., Jin Y. T.2016. The complete mitochondrial genome of the toad-headed lizard subspecies,Phrynocephalus theobaldi orientalis(Reptilia, Squamata, Agamidae). Mitochondr DNA,27: 559–560

    Lin L. H., Wiens J. J.2017. Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography, 40: 960–970

    Lowe T. M., Eddy S. R.1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Res, 25: 955–964

    Macey J. R., Kuehl J. V., Larson A., Robinson M. D., Ugurtas I.H., Ananjeva N. B., Rahman H., Javed H. I., Osman R. M.,Doumma A., Papenfuss T. J.2008. Socotra Island the forgotten fragment of Gondwana: unmasking chameleon lizard history with complete mitochondrial genomic data. Mol Phylogenet Evol, 49: 1015–1018

    Macey J. R., Schulte J. A., Fong J. J., Das I., Papenfuss T. J.2006.The complete mitochondrial genome of an agamid lizard from the Afro-Asian subfamily Agaminae and the phylogenetic position ofBufoniceps, andXenagama. Mol Phylogenet Evol,39: 881–886

    Macey J. R., Schulte J. A., Larson A., Ananjeva N. B., Wang Y. Z., Pethiyagoda R., Rastegar-Pouyani N., Papenfuss T.J.2000. Evaluating trans-tethys migration: an example using acrodont lizard phylogenetics. Syst Biol, 49: 233–256

    Okajima Y., Kumazawa Y.2010. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol,10: 1–15

    Perna N. T., Kocher T. D.1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol, 41: 353–358

    Pyron R. A., Burbrink F. T., Wiens J. J.2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13: 635–653

    Rambaut A. J., Drummond A. J.2007. Tracer v1.4. Institute of Evolutionary Biology, Univ. of Edinburgh, Edinburgh (United Kingdom). http://beast.bio.ed.ac.uk/software/tracer

    Shao M., Ma L., Wang Z.2016. The complete mitochondrial genome of the toad-headed lizard,Phrynocephalus forsythii(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 3147–3148

    Shao M., Ma L., Zhang G. Z. Wang Z.2015. The complete mitochondrial genome of the toad-headed lizard,Phrynocephalus albolineatus(Reptilia, Squamata, Agamidae). Mitochondr DNA,doi: 10.3109/19401736.2015.1111359

    Shi W., Dong X. L., Wang Z. M., Miao X. G., Wang S. Y., Kong X. Y.2013. Complete mitogenome sequences of four flatfishes(Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol Biol, 13: 1–9

    Shuang L., Liu L. J., Song S.2016. The complete mitochondrial genome of Grumgzimailo’s toad-headed agama,Phrynocephalus grumgrizimailoi(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1581–1582

    Song S., Li D. H., Zhang C. H., Jiang K. J., Zhang D. D., Chang C.2016. The complete mitochondrial genome of the color changeable toad-headed agama,Phrynocephalus versicolor(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1121–1122

    Srikulnath K., Nishida C., Matsubara K., Uno Y., Thongpan A.,Suputtitada S., Matsuda Y., Apisitwanich S.2009. Complete mitochondrial genome analysis and comparative fish mapping of three butterfly lizards. < www.ncbi.nlm.nih.gov/nuccore/AB537555>, submitted 10 December, 2009

    Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.2013.MEGA6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

    Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F.,Higgins D. G.1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876–4882

    Tong H. J., Jin Y. T.2016. The complete mitochondrial genome of an agama,Phrynocephalus putjatia(Reptilia, Squamata,Agamidae). Mitochondr DNA, 27: 1028–1029

    Tong Q. L., Du Y., Lin L. H., Ji X.2016. The complete mitochondrial genome ofLeiolepis reevesii(Sauria, Agamidae).Mitochondr DNA, 27: 541–542

    Townsend T. M., Mulcahy D. G., Noonan B. P., Sites J. W.,Kuczynski C. A., Wiens J. J., Reeder T. W.2011. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol, 61: 363–380

    Uetz P.2016. The Reptile Database, http://www.reptile-database.org, accessed October 10, 2016

    Ujvari B., Dowton M., Madsen T.2007. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol Letters,3: 189–192

    Wiens J. J., Hutter C. R., Mulcahy D. G., Noonan B. P.,Townsend T. M., Sites J. W., Reeder T. W.2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett, 8: 1043–1046

    Wolstenholme D. R.1992. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol, 141: 173–216

    Xiong L., Nie L. W., Li X. S., Liu X.2010. Comparison research and phylogenetic implications of mitochondrial control regions in four soft-shelled turtles of Trionychia (Reptilia, Testudinata).Genes Genom, 32: 291–298

    Xu Q. H., Fang S. G.2006. Variable number tandem repeats in the mitochondrial DNA Control region of the Chinese alligator,Alligator sinensis. Amphibia-Reptilia, 27: 93–101

    Yoon K. B., Cho C. U., Park Y. C.2015. The mitochondrial genome of the Saunders’s gullChroicocephalus saundersi,(Charadriiformes: Laridae) and a higher phylogeny of shorebirds(Charadriiformes). Gene, 572: 227–236

    Yu X. L., Du Y., Yao Y. T., Lin C. X., Lin L. H.2015.The complete mitochondrial genome ofAcanthosaura lepidogaster(Squamata: Agamidae). Mitochondr DNA, 2: 182–184

    Zardoya R., Meyer A.1998. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtles,Pelomedusa subrufa. Gene, 216: 149–153

    Zhang J. F., Nie L. W., Wang Y., Hu L. L.2009. The complete mitochondrial genome of the large-headed frog,Limnonectes bannaensis(Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene, 442: 119–127

    Zhao E. M., Adler K.1993. Herpetology of China. Ithaca, NY:Society for the study of Amphibians and Reptiles

    Zhu L. F., Liao P. H., Tong H. J., Jin Y. T.2016. The complete mitochondrial genome of the subspecies,Phrynocephalus erythrurus parva(Reptilia, Squamata, Agamidae), a toad-headed lizard dwell at highest elevations of any reptile in the world.Mitochondr DNA, 27: 703–704

    Ziegler T., Thanh V. N., Quyet L. K., Truong N. Q., Hallermann J., Khoi L. V., Hoang T. M.2006. Neue Verbreitungsnachweise einiger wenig bekannter vietnamesischer Amphibien und Reptilien. Sauria, 28: 29–40

    成人av在线播放网站| 亚洲天堂国产精品一区在线| 中文字幕av在线有码专区| 日本成人三级电影网站| 欧美bdsm另类| 91久久精品国产一区二区成人| 欧美色欧美亚洲另类二区| 又爽又黄a免费视频| 国产亚洲av片在线观看秒播厂 | 在线观看午夜福利视频| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 日韩欧美精品v在线| 国产一区二区在线av高清观看| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| 欧美日韩在线观看h| 中国国产av一级| 午夜激情福利司机影院| 国产亚洲精品av在线| 久久精品人妻少妇| 成人漫画全彩无遮挡| 三级毛片av免费| 久久这里有精品视频免费| 国内精品美女久久久久久| 精品国产三级普通话版| 美女内射精品一级片tv| av在线老鸭窝| 日本黄色视频三级网站网址| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 久久久久免费精品人妻一区二区| 日本色播在线视频| 男女视频在线观看网站免费| av黄色大香蕉| 人体艺术视频欧美日本| 国产精品免费一区二区三区在线| 麻豆国产av国片精品| 亚洲在线观看片| 日本-黄色视频高清免费观看| 久久久久久久久大av| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 看非洲黑人一级黄片| 狠狠狠狠99中文字幕| 蜜桃亚洲精品一区二区三区| 夫妻性生交免费视频一级片| 国产男人的电影天堂91| 久久精品夜色国产| 波多野结衣巨乳人妻| 久久热精品热| 欧美性猛交黑人性爽| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 欧美一区二区精品小视频在线| 国产私拍福利视频在线观看| 国产一区二区亚洲精品在线观看| 久久人人爽人人片av| 成熟少妇高潮喷水视频| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 久久精品综合一区二区三区| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 麻豆一二三区av精品| 日韩人妻高清精品专区| 观看美女的网站| 国产v大片淫在线免费观看| 日韩,欧美,国产一区二区三区 | 亚洲七黄色美女视频| 久久草成人影院| 看免费成人av毛片| 久久九九热精品免费| 一本精品99久久精品77| 日韩人妻高清精品专区| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区| 国内精品美女久久久久久| 国产黄a三级三级三级人| 久99久视频精品免费| 少妇的逼水好多| 亚洲av中文av极速乱| 中国国产av一级| 一级av片app| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 国产成人aa在线观看| 人人妻人人看人人澡| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 中文亚洲av片在线观看爽| 亚州av有码| 麻豆国产av国片精品| 国产在线男女| 男女下面进入的视频免费午夜| videossex国产| 国产成人a区在线观看| 一区二区三区高清视频在线| 欧美性感艳星| 亚洲第一电影网av| 久久热精品热| 少妇猛男粗大的猛烈进出视频 | 九九热线精品视视频播放| 国产视频内射| 变态另类成人亚洲欧美熟女| 国产一区二区亚洲精品在线观看| 如何舔出高潮| 国产一级毛片七仙女欲春2| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 97超碰精品成人国产| 成人三级黄色视频| 给我免费播放毛片高清在线观看| 欧美变态另类bdsm刘玥| av国产免费在线观看| 嫩草影院入口| 亚洲三级黄色毛片| 欧美+亚洲+日韩+国产| 青青草视频在线视频观看| 校园春色视频在线观看| 三级国产精品欧美在线观看| 一级二级三级毛片免费看| 中文字幕制服av| 在线天堂最新版资源| 国产黄a三级三级三级人| 麻豆精品久久久久久蜜桃| 日本熟妇午夜| 五月玫瑰六月丁香| a级毛色黄片| 欧美激情久久久久久爽电影| 欧美精品国产亚洲| 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 极品教师在线视频| 12—13女人毛片做爰片一| 青春草亚洲视频在线观看| 99久国产av精品| 成人亚洲欧美一区二区av| 天堂√8在线中文| 秋霞在线观看毛片| 日本成人三级电影网站| 乱人视频在线观看| 国产大屁股一区二区在线视频| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 国产又黄又爽又无遮挡在线| 91aial.com中文字幕在线观看| 夜夜爽天天搞| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 久久精品夜色国产| 美女脱内裤让男人舔精品视频 | 国产大屁股一区二区在线视频| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 男女那种视频在线观看| 国产一区二区三区av在线 | 亚洲精品乱码久久久久久按摩| 综合色丁香网| 国产色婷婷99| 成人国产麻豆网| 好男人在线观看高清免费视频| 国产午夜精品论理片| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 国产免费男女视频| 热99在线观看视频| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜 | 在线观看av片永久免费下载| 国产精品久久久久久av不卡| 国产精品人妻久久久久久| 国产爱豆传媒在线观看| 色吧在线观看| 欧美成人一区二区免费高清观看| 尾随美女入室| 中文精品一卡2卡3卡4更新| 亚洲成a人片在线一区二区| 一个人看的www免费观看视频| 长腿黑丝高跟| 色尼玛亚洲综合影院| 91久久精品电影网| 18禁在线无遮挡免费观看视频| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 亚洲成人久久爱视频| 伦理电影大哥的女人| АⅤ资源中文在线天堂| 午夜福利成人在线免费观看| 亚洲精品久久久久久婷婷小说 | 精品人妻熟女av久视频| 在线观看免费视频日本深夜| 观看美女的网站| 国产精品麻豆人妻色哟哟久久 | 亚洲成人久久性| 91在线精品国自产拍蜜月| 国产日韩欧美在线精品| 成人国产麻豆网| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 青春草亚洲视频在线观看| av黄色大香蕉| 国产不卡一卡二| 亚洲欧美中文字幕日韩二区| 三级男女做爰猛烈吃奶摸视频| 日韩强制内射视频| 成人综合一区亚洲| 久久婷婷人人爽人人干人人爱| 国产精品一区www在线观看| 黄色配什么色好看| 18禁在线播放成人免费| 国产探花在线观看一区二区| 91麻豆精品激情在线观看国产| a级毛色黄片| 亚洲电影在线观看av| 国产视频内射| 亚洲成人av在线免费| 舔av片在线| 国产大屁股一区二区在线视频| 久久欧美精品欧美久久欧美| 欧美性感艳星| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 麻豆av噜噜一区二区三区| 日韩欧美在线乱码| 日韩欧美 国产精品| 色综合亚洲欧美另类图片| 嫩草影院精品99| 美女 人体艺术 gogo| 在线播放国产精品三级| 国产成人午夜福利电影在线观看| 欧美区成人在线视频| 一区福利在线观看| 美女xxoo啪啪120秒动态图| 天天躁日日操中文字幕| 蜜桃久久精品国产亚洲av| 一级黄色大片毛片| 免费电影在线观看免费观看| 亚洲av熟女| 免费在线观看成人毛片| 青春草视频在线免费观看| 夜夜看夜夜爽夜夜摸| 国产精品,欧美在线| 日韩成人av中文字幕在线观看| 国产人妻一区二区三区在| 中文字幕久久专区| 日本黄色视频三级网站网址| 丰满的人妻完整版| 久久韩国三级中文字幕| 蜜桃亚洲精品一区二区三区| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 青春草视频在线免费观看| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 欧美三级亚洲精品| 能在线免费看毛片的网站| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆| 亚洲欧洲国产日韩| 又爽又黄无遮挡网站| 日韩欧美 国产精品| 最后的刺客免费高清国语| 国产成人freesex在线| 久久久精品94久久精品| 99久久精品一区二区三区| 久久精品国产清高在天天线| 久久精品国产亚洲av天美| 黄片无遮挡物在线观看| 午夜激情福利司机影院| 国产乱人视频| 成人性生交大片免费视频hd| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看| 色哟哟·www| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 国产日本99.免费观看| 亚洲一区二区三区色噜噜| 国产精品久久视频播放| 免费无遮挡裸体视频| 综合色丁香网| 欧美激情国产日韩精品一区| 免费大片18禁| 色5月婷婷丁香| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 国产成人福利小说| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 老司机福利观看| av天堂在线播放| 午夜爱爱视频在线播放| 22中文网久久字幕| 国产片特级美女逼逼视频| 你懂的网址亚洲精品在线观看 | 成人亚洲精品av一区二区| 国产精品无大码| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 一本久久中文字幕| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 九草在线视频观看| 丝袜美腿在线中文| 伦理电影大哥的女人| 亚洲av第一区精品v没综合| 97超碰精品成人国产| 亚洲国产欧美人成| 看黄色毛片网站| 九色成人免费人妻av| 天堂网av新在线| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 黑人高潮一二区| 国产大屁股一区二区在线视频| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 精品国产三级普通话版| 日本三级黄在线观看| 少妇丰满av| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 在线播放国产精品三级| 久久中文看片网| 直男gayav资源| 看非洲黑人一级黄片| 国产精品久久久久久久久免| eeuss影院久久| 免费看av在线观看网站| 亚洲精品成人久久久久久| 成人鲁丝片一二三区免费| 欧美又色又爽又黄视频| 美女高潮的动态| 亚洲乱码一区二区免费版| 99热6这里只有精品| 午夜福利高清视频| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 亚洲激情五月婷婷啪啪| 99热这里只有是精品在线观看| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| 久久热精品热| 国产视频内射| 18禁黄网站禁片免费观看直播| 免费看av在线观看网站| 国产不卡一卡二| 中文字幕免费在线视频6| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 久久亚洲精品不卡| 老师上课跳d突然被开到最大视频| 精品一区二区免费观看| 国产高清三级在线| 亚洲精品粉嫩美女一区| 国产成人午夜福利电影在线观看| 超碰av人人做人人爽久久| 久久久久免费精品人妻一区二区| 91在线精品国自产拍蜜月| 黄色配什么色好看| 97热精品久久久久久| 亚洲av二区三区四区| 亚洲高清免费不卡视频| 久久精品91蜜桃| 99久国产av精品国产电影| 日本黄大片高清| 在线免费十八禁| ponron亚洲| 少妇人妻精品综合一区二区 | 欧美色视频一区免费| 成人毛片60女人毛片免费| 乱系列少妇在线播放| 国产乱人视频| 女人被狂操c到高潮| 日本色播在线视频| 色尼玛亚洲综合影院| 欧美极品一区二区三区四区| 国产三级在线视频| 精品日产1卡2卡| 精品国产三级普通话版| 真实男女啪啪啪动态图| 国产一区二区在线av高清观看| 小蜜桃在线观看免费完整版高清| 免费观看人在逋| www.av在线官网国产| 嫩草影院入口| 亚洲一区二区三区色噜噜| 国产真实乱freesex| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 国产一区二区三区av在线 | 国产男人的电影天堂91| 亚洲人成网站在线观看播放| 国产精品女同一区二区软件| 少妇熟女aⅴ在线视频| 久久6这里有精品| 网址你懂的国产日韩在线| 97热精品久久久久久| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 天天躁夜夜躁狠狠久久av| 精品无人区乱码1区二区| 黄片无遮挡物在线观看| 亚洲国产精品久久男人天堂| 日韩三级伦理在线观看| 麻豆一二三区av精品| 99九九线精品视频在线观看视频| 色综合色国产| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 日韩精品有码人妻一区| 男女那种视频在线观看| 九九热线精品视视频播放| 亚洲,欧美,日韩| 91久久精品国产一区二区成人| 女同久久另类99精品国产91| 人妻少妇偷人精品九色| 亚洲自拍偷在线| 精品久久久久久成人av| 五月玫瑰六月丁香| 欧美日本视频| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 久久久久性生活片| 黄片wwwwww| 亚洲第一电影网av| 色哟哟·www| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频| 亚洲国产精品成人久久小说 | 高清在线视频一区二区三区 | 嫩草影院新地址| 亚洲色图av天堂| 毛片女人毛片| 此物有八面人人有两片| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| 成年女人看的毛片在线观看| 日韩一区二区三区影片| 草草在线视频免费看| 十八禁国产超污无遮挡网站| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 亚洲内射少妇av| 99热精品在线国产| 哪里可以看免费的av片| 小蜜桃在线观看免费完整版高清| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 秋霞在线观看毛片| 搡女人真爽免费视频火全软件| 国产日韩欧美在线精品| 一级二级三级毛片免费看| 久久久久久久久久久免费av| 免费观看的影片在线观看| 男女啪啪激烈高潮av片| 一卡2卡三卡四卡精品乱码亚洲| 在线免费观看的www视频| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 国产亚洲欧美98| 久久精品国产亚洲av香蕉五月| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 一个人看的www免费观看视频| 日韩亚洲欧美综合| 日本与韩国留学比较| 久久久久久久久久久丰满| 哪里可以看免费的av片| 亚洲在久久综合| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 亚洲av不卡在线观看| 亚洲一级一片aⅴ在线观看| 免费一级毛片在线播放高清视频| av视频在线观看入口| 国产一级毛片七仙女欲春2| 亚洲成a人片在线一区二区| 日韩制服骚丝袜av| 国产午夜精品一二区理论片| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠久久av| 成熟少妇高潮喷水视频| 99在线人妻在线中文字幕| 国产探花极品一区二区| 一本一本综合久久| 亚洲精品日韩av片在线观看| 国产在线精品亚洲第一网站| 国产精品精品国产色婷婷| 国产精品一区二区在线观看99 | 丰满乱子伦码专区| 国产黄片美女视频| 最近的中文字幕免费完整| 日韩精品有码人妻一区| a级一级毛片免费在线观看| 欧美zozozo另类| 国产精品一区二区性色av| 女人被狂操c到高潮| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人舔女人下体高潮全视频| 青春草视频在线免费观看| 91在线精品国自产拍蜜月| 亚洲一区二区三区色噜噜| 免费看日本二区| 亚洲自偷自拍三级| 日韩国内少妇激情av| 国产精华一区二区三区| 中文欧美无线码| 国产色爽女视频免费观看| 偷拍熟女少妇极品色| 国产亚洲精品久久久久久毛片| 在线免费观看不下载黄p国产| 国产伦精品一区二区三区视频9| 精品久久久久久久人妻蜜臀av| av视频在线观看入口| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 此物有八面人人有两片| 久久人人爽人人片av| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说 | 国产淫片久久久久久久久| 欧美三级亚洲精品| 日本欧美国产在线视频| 午夜福利高清视频| 免费在线观看成人毛片| 三级国产精品欧美在线观看| 成人av在线播放网站| 日韩精品青青久久久久久| 麻豆乱淫一区二区| 人人妻人人澡欧美一区二区| 国产单亲对白刺激| 亚洲欧美成人综合另类久久久 | 亚洲三级黄色毛片| 亚洲无线在线观看| 麻豆成人av视频| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 我的老师免费观看完整版| 三级毛片av免费| 亚洲成人精品中文字幕电影| 人妻久久中文字幕网| 久久亚洲精品不卡| 男女那种视频在线观看| 国国产精品蜜臀av免费| 特级一级黄色大片| 夜夜爽天天搞| 日本黄大片高清| 99热全是精品| www日本黄色视频网| 色尼玛亚洲综合影院| 综合色av麻豆| 女同久久另类99精品国产91| 成人二区视频| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 成年免费大片在线观看| 国产精品一区二区三区四区久久| 伦理电影大哥的女人| 韩国av在线不卡| 亚洲自偷自拍三级| 伦理电影大哥的女人| 韩国av在线不卡| 国产高清视频在线观看网站| 看十八女毛片水多多多| 国产精品一二三区在线看| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 麻豆精品久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| a级毛色黄片| 天堂√8在线中文| 欧美最新免费一区二区三区| 久久精品久久久久久久性| 国产国拍精品亚洲av在线观看| 国产精品一区二区在线观看99 | 一区二区三区四区激情视频 | 国产精品精品国产色婷婷| 不卡一级毛片| 亚洲精品乱码久久久v下载方式| 欧美性猛交╳xxx乱大交人| 三级国产精品欧美在线观看| 直男gayav资源| 一个人免费在线观看电影| 成人毛片a级毛片在线播放| 级片在线观看| 狠狠狠狠99中文字幕| 欧美又色又爽又黄视频| 亚洲欧美日韩高清在线视频|