• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Robust Noninvasive Approach to Study Gut Microbiota Structure of Amphibian Tadpoles by Feces

    2018-03-28 06:20:53XiaoweiSONGJinghanSONGHonghongSONGQiZENGandKekeSHI
    Asian Herpetological Research 2018年1期

    Xiaowei SONG, Jinghan SONG, Honghong SONG, Qi ZENG and Keke SHI

    1 College of Life Sciences, Xinyang Normal University, Xinyang 464000, China

    2 Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University,Xinyang 464000, China

    1. Introduction

    Knowledge about the diversity and composition of gut microbiota has accumulated rapidly by cultureindependent methods, especially the 16S rDNA amplicon high-throughput sequencing technique (Suet al., 2012).However, different experimental protocols concerned with material preparation, DNA extraction and PCR primer selection can generate technical biases in drawing the gut microbiota profiles (Larsenet al., 2015; Lozuponeet al., 2013; Wagner Mackenzieet al., 2015).

    Since acquiring high quality genomic DNA is the prerequisite for the downstream analysis of gut microbiota structure, researchers have performed many studies on the effect of material types, sample storage conditions and DNA extraction methods (Chooet al., 2015; Ferrandet al., 2014; Larsenet al., 2015; Songet al., 2016;Wagner Mackenzieet al., 2015). In spite of differences between intestinal and fecal microflora (Eckburget al.,2005; Navaet al., 2011), feces have been utilized as a noninvasive material to measure the intra- and interindividual variation in composition and diversity of intestinal bacterial communities (Arumugamet al., 2011;Dethlefsenet al., 2008; Yatsunenkoet al., 2012). Storage conditions for fecal samples could significantly influence microbiota profiles (Bahlet al., 2012; Chooet al., 2015;Maukonenet al., 2012), though some exceptions exist(Fouhyet al., 2015). DNA extraction protocols can produce technical variations due to different cell lysis and purification methods (Claassenet al., 2013; Maukonenet al., 2012; Wagner Mackenzieet al., 2015; Yuanet al.,2012). However, these technical variations seem not to be large enough to distort the biological variations(Lozuponeet al., 2013; Wagner Mackenzieet al., 2015).

    Recent research on gut microbiota has shed new light on the associations between gut microbiota and vertebrate physiology, development and evolution (Leyet al.,2008; McFall-Ngaiet al., 2013; Nicholsonet al., 2012;Yatsunenkoet al., 2012), while the number of intestinal microflora studies in amphibians remains far smaller than that in mammals (Bletzet al., 2016; Colomboet al., 2015;Jiménez and Sommer, 2017; Kohlet al., 2013; Kohlet al.,2014; Mashoofet al., 2013; Venceset al., 2016; Wenget al., 2016; Wenget al., 2017). Intensive studies of the gut microbiota in different taxa including amphibians are essential prerequisites to elucidate host-gut microbiota symbioses, e.g., phylosymbiosis (Brookset al., 2016; Leyet al., 2008; Liet al., 2017a; Liet al., 2017b; Shapira,2016; Venceset al., 2016). In addition, the understanding of gut microbiota in amphibians could help us to take effective measures for amphibian conservation and cultivation (Jiménez and Sommer, 2017). Since many amphibians have been suffering from severe survival conditions (Hofet al., 2011), noninvasive approaches will always be an optimal choice for the study of symbioses between amphibians and gut microbiota. However, it remains unclear whether the feces can be applied as a noninvasive material to study the gut microbiota of amphibians.

    In this study, we aimed to test the efficacy of a phenolchloroform method and a commercial fecal reagent kit(TIANGEN Biotech Co., Ltd.) in describing intestinal bacterial communities of Asiatic toad (B. gargarizans)tadpoles by feces. Specifically, DNA extraction quality of different methods and sample types was tested in terms of three parameters, i.e., A260/A280, A260/A230 and DNA yield rate. Furthermore, the structural consistency between bacterial communities was evaluated based on 16S rDNA amplicon high-throughput sequencing.

    2. Materials and Methods

    2.1. Transplantation of B. gargarizans eggsIn February-March 2016, we sampled seven broods ofB.gargarizanseggs from Xinyang City of Henan Province in China (Table S1). A ~10 cm-length chalaza was taken from each brood of eggs, and then was hatched in labs using plastic cylinders (1 L) filled with about 0.5 L dechlorinated drinking water. Subsequently, about 15 larvae in each brood were reared together with boiled green vegetable leaves rich in cellulose or fish foods rich in protein. We applied semi-natural conditions for rearing all larvae, i.e., a water change and food feeding per three days without controlling the light, humidity and temperature. All procedures used in this study were approved by the Animal Care and Use Committee of Xinyang Normal University.

    2.2. Preparation of intestinal and stool samplesWhen tadpoles developed into the lower limb stage (Gosner 35–40), we collected intestinal and stool samples. We first collected 10 samples (S1–S10) of mixed fecal sediments from cultivation water by using aseptic injectors (Table S1). These mixed stool samples spin-dried in a centrifuge were applied for comparing DNA extraction quality of the phenol-chloroform method and the TIANamp Stool DNA Kit. In addition to the DNA extraction quality, 23 tadpoles (S11–S33) were further selected to compare the microbiota structure between the phenol-chloroform method and the commercial stool kit (Table S1). Tadpoles(S11–S16 and S22–S27) were individually cultivated for less than 24 hours after a water change. Then we got their spin-dried stool samples through the same approach for mixed stool samples. We sacrificed tadpoles using 75%ethanol solution before the extraction of the gut samples into sterile microcentrifuge tubes. All intestinal and stool samples were stored in a –20°C freezer before the DNA extraction.

    2.3. Protocols of DNA extraction and DNA quality evaluationPhenol-chloroform method. ―The 500 μL SDS (1%) and each weighed sample were mixed in a sterile 1.5 mL microtube and bathed in the water for 10 min at 60°C. During the water bath, microtubes were overturned and blended for three times. Subsequently,30 μL EDTA (0.5 M) and 20 μL protease K (20 mg/mL)were added into each microtube, and the mixture was bathed in the water for 1 hour at the same temperature of the previous step. And then the samples were centrifuged at 12 000 rpm for 5 min at 4°C. The supernatant fraction was transferred to a new 1.5 mL microtube, and blended with an equal volume of phenol-chloroformisoamyl alcohol (25:24:1 in volume). The samples were centrifuged at 12000 rpm for 5 min at 4°C once again.The supernatant fraction was transferred to a new 1.5 mL microtube, and blended with an equal volume of chloroform-isoamyl alcohol (24:1 in volume). The samples were centrifuged at 12000 rpm for 5 min at 4°C once again. The supernatant fraction was transferred to a new 1.5 mL microtube, and blended with twofold absolute ethanol. After cooled at –20°C for 20 min, the samples were centrifuged at 12 000 rpm for 10 min at 4°C. After the removal of the supernatant fractions, the DNA precipitates were washed in 200 μL ethanol (70%)for 5 min, and then the mixtures were centrifuged at 12 000 rpm for 5 min at 4°C. This step was repeated three times. The dry DNA was dissolved in 40 μL TE buffer solution.

    TIANamp stool DNA kit.―TIANamp Stool DNA Kit simplifies the DNA isolation by a fast spincolumn procedure. The protocol recommended by the manufacturer was utilized to extract the metagenomic DNA.

    DNA quality evaluation.―The A260/A280, A260/A230 and DNA yield rate were applied for the DNA quality evaluation. The A260/A280, A260/A230 and concentration of DNA products were determined by using NanoVue Plus Spectrophotometer (GE Healthcare Inc.,Germany). The DNA yield rate was given by the ratio of the DNA concentration to the sample weight. The DNA products extracted from feces or intestines of tadpoles(S11–S16 and S22–S27) were subsequently stored in a–20°C freezer until the high-throughput sequencing of 16S rDNA amplicons.

    2.4. 16S rDNA amplicon high-throughput sequencingThe library construction of 16S rDNA amplicons and high-throughput sequencing on MiSeq (Illumina Inc.,USA) were achieved in a commercial company (Genergy Inc., China). Specifically, the hypervariable regions of V3–V4 in the bacterial 16S rDNA were amplified from the microbiota DNA products using the universal primer pair 341F–CCTACGGGNGGCWGCAG and 785R–GACTACHVGGGTATCTAATCC (Klindworthet al.,2013). The amplicons were generated by a two-step,tailed PCR on the DNA products in terms of the 16S Metagenomic Sequencing Library Preparation protocol with some modifications (http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html). The volume of each PCR solution was 25 μL, which consisted of 10 ng DNA, 2.5 μL 10 ×Takara Ex Taq Buffer, dNTP (2.5 mmol/L each), 5 pmol/L forward primer, 5 pmol/L reverse primer, 0.1 μL Takara Ex Taq, and ddH2O. The 1stPCR condition was 94°C for 3 min, 20 cycles (94°C for 10 s, 55°C for 15 s, 72°C for 30 s) and 72°C for 7 min. The 2ndPCR condition was 94°C for 3 min, 5 cycles (94°C for 10 s, 55°C for 15 s,72°C for 30 s) and 72°C for 7 min. Finally, the 16S rDNA amplicons quantified by Quant-iT? PicoGreen? dsDNA Assay Kit (Life Technologies, USA) were paired-end sequenced on the Illumina MiSeq platform.

    2.5. Bioinformatic analyses of 16S rDNA ampliconsThe raw paired-end reads, after the removal of barcodes,were filtered by Trimmomatic software with three minimum thresholds (Bolgeret al., 2014), i.e., terminal base quality score equal to 25, average quality score equal to 25 in sliding windows of 50 bp with a step of 1 bp, fragment length equal to 100 bp. The paired-end sequences were merged with the flash software for a minimum overlap of 10 bp and a maximum mismatch proportion of 0.2. The merged sequences including ambiguous bases were excluded. Subsequently, the 16S rDNA reference database downloaded from NCBI was utilized for the validation of V3–V4 regions. In this study,16S rDNA amplicons were successfully sequenced in 32 samples excluding S14_S, S17_G and S20_G (Tables 1,S1).

    Table 1 Sequencing results for successfully sequenced 32 samples.

    Operational taxonomic units (OTUs) were assigned to the 16S rDNA amplicons using UPARSE software with the identity threshold of 97% (Edgar, 2013). The annotation of representative OTU sequences was executed through sequence alignments on the RDP database using the RDP classifier (confidence threshold = 0.8) (Wanget al., 2007).

    The mothur program was used to calculate α diversity indexes (Schlosset al., 2009), i.e., richness (OTU observed, ACE and Chao1), diversity and evenness(Shannon, Simpson and Shannoneven), and Good’s coverage. The rarefaction and Shannon curves were drawn to measure whether the sequencing depth was appropriate for the richness and diversity calculation. To statistically analyze the differences in α and β diversity indexes between samples, 16 881 (i.e., minimum number of sequences in all samples) sequences in each sample were subsampled. In addition, we drew stackbars and Venn charts to show the taxonomic composition and abundance of samples. Furthermore, we used Past software (v3.14) to execute principal coordinates analysis(PCoA) based on Bray-Curtis dissimilarity calculated from taxonomic abundances to analyze the β diversity of microbiota structure (Hammeret al., 2001). The transformation exponent was set to the default value (i.e.,2).

    2.6. Statistical analyses of the DNA extraction quality and the microbiota structureTo compare the DNA extraction quality of phenol-chloroform method and the TIANamp Stool DNA Kit, we utilized SPSS software(v20.0, IBM Corporation) to perform Mann-Whitney Rank Sum Test and two-way ANOVA (two factors:experimental material and DNA extraction method) in terms of A260/A280, A260/A230 and DNA yield rate.Pairwise multiple comparisons were performed in twoway ANOVA with Bonferroni correction when overall significance level was less than 0.05. In addition, fitting curves, which sketched the relationship of the DNA yield rate and sample weight, were compared between the phenol-chloroform method and the commercial stool kit.

    To test the effect of experimental material and DNA extraction method on the microbiota structures, we executed two-way ANOVA to compare α diversity indexes of intestinal and fecal microbiota in S11–S33 tadpoles. We hypothesized that the factors, i.e., host genetic background and diet, could bias the comparative analysis of microbiota structure. Therefore, we used pairedt-Test or Wilcoxon Signed Rank Test to compare α diversity indexes of gut microbiota between 10 pairs of littermate tadpoles (S11–S16, S18–S21 and S24–S33),i.e., S11_G–S16_G, S18_G–S21_G versus S24_G–S33_G(Gut_ph vs Gut_kit). Subsequently, the comparisons of α diversity indexes between intestinal and fecal microbiota were performed on 12 tadpoles (S11–S16 and S22–S27),i.e., S11_S–S16_S versus S11_G–S16_G (Stool_ph vs Gut_ph) and S22_S–S27_S versus S22_G–S27_G (Stool_kit vs Gut_kit). The intestinal/fecal metagenomic DNA of S11–S16 and S22–S27 was extracted using the phenolchloroform method and TIANamp Stool DNA Kit,respectively.

    In addition to permutational multivariate ANOVA(PERMANOVA), we also performed a Mantel test on the Bray-Curtis dissimilarities calculated from taxonomic(i.e., OTU, genus and phylum) abundances in the above three cases, i.e.,Gut_ph vs Gut_kit,Stool_ph vs Gut_phandStool_kit vs Gut_kit. The number of permutations was set to 9999 for PERMANOVA and Mantel tests. To test which taxonomies significantly affected the structural divergence of microbiota in these three cases, Lda Effective Size (LEfSe) were executed with recommended options (http://huttenhower.sph.harvard.edu/galaxy/).

    3. Results

    3.1. Efficacy comparison in terms of DNA purity and yield rateAmong the tests of the between-method difference in A260/A280, A260/A230 and DNA yield rate, a significant difference was detected in A260/A230(Mann-Whitney Rank Sum Test:U= 205,n1= 23,n2=27,P= 0.04) and DNA yield rate (U= 66,n1= 15,n2=17,P= 0.02) but not A260/A280 (U= 300.5,n1= 23,n2= 27,P= 0.85) (Table S1; Figures 1, 2). Whereas when the two-way ANOVA was applied (Table 2), a significant between-method difference was detected in A260/A230 and DNA yield rate but not in A260/A280. A significant between-material difference was detected in A260/A280 and A260/A230 but not in DNA yield rate. No significant interaction was detected between these two factors (i.e.,experimental material and DNA extraction method). In the pairwise multiple comparisons, A260/A230 (avg.± std. err.) of stool samples (1.05 ± 0.11,n= 12) was significantly different from that of gut samples (1.51 ±0.08,n= 23) and mixed stool samples (1.51 ± 0.10,n=15). Furthermore, the fitting curves for DNA yield rate and sample weight show that the DNA yield rate in the phenol-chloroform method and the commercial stool kit decreases along with saturated DNA extraction materials in solutions (Figure S1). The phenol-chloroform method has a greater DNA yield rate than the commercial stool kit does at a given sample weight.

    Figure 1 Comparisons of A260/A280 and A260/A230 between TIANamp Stool DNA Kit (n = 23) and phenol-chloroform method (n = 27).*P < 0.05.

    Table 2 Two-way ANOVA on A260/A280, A260/A230 and DNA yield rate.

    3.2 Efficacy comparisons in terms of microbiota structuresInGut_ph vs Gut_kit, total number of OTUs was 121, among which 4 belonged toGut_ph(3.3%), 4 belonged toGut_kit(3.3%) and 113 belonged to between groups (93.4%) (Figure 3). InStool_ph vs Gut_ph, total number of OTUs was 100, among which 6 belonged toStool_ph(6%), 8 belonged toGut_ph(8%) and 86 belonged to between groups (86%). InStool_kit vs Gut_kit, total number of OTUs was 114, among which 9 belonged toStool_ kit(7.9%), 7 belonged toGut_ kit(6.1%) and 98 belonged to between groups (86%). The Venn chart indicates that the majority of OTUs could be extracted by using the phenol-chloroform method or the commercial stool kit from intestines or stools.

    Figure 2 Comparison of DNA yield rate between TIANamp Stool DNA Kit (n = 17) and phenol-chloroform method (n = 15). *P < 0.05.

    No significant differences in α diversity indexes were detected in between- material groups and between-method groups by using two-way ANOVA (Table S2). When host genetic background and diet factors were taken into account, we detected no significant differences in almost all α diversity indices inGut_ph vs Gut_kit,Stool_ph vs Gut_phandStool_kitandGut_kit(Table 3; Figure 4). One exception was that the richness values (i.e., number of observed OTUs) showed a significant difference betweenStool_kitandGut_kit(P= 0.02,n= 6) (Table 3; Figure 4).

    None of the Bray-Curtis dissimilarities calculated from OTU, genus and phylum abundances showed a significant between-group difference inGut_ph vs Gut_kit(Table 4; Figures 5, S2, S3). However, only the Bray-Curtis dissimilarity based on genus abundances gave rise to a weak between-group correlation (R= 0.32,P= 0.04). In the PERMANOVA forStool_ph vs Gut_ph(Table 4; Figures 5, S2, S3), the OTU, genus and phylum abundances also showed an insignificant between-group variation in terms of Bray-Curtis dissimilarity. In addition,both Bray-Curtis dissimilarities calculated from OTU and genus abundances showed a significant between-group correlation, i.e.,R= 0.64 (P= 0.04) andR= 0.58 (P=0.02). As for theStool_kit vs Gut_kit(Table 4; Figures 5,S2, S3), both Bray-Curtis dissimilarities calculated from OTU and genus abundances also showed a significant between-group correlation, i.e.,R= 0.65 (P= 0.01) andR= 0.64 (P= 0.01). Nevertheless, significant betweengroup variations was detected in both Bray-Curtis dissimilarities based on OTU and genus abundances(PERMANOVA:F1,10= 4.33,P= 0.02) andF1,10= 4.37,P= 0.03).

    Table 3 Alpha diversity indexes (avg. ± std. dev.) calculated from OTU tables rarefied to 16 881 sequences per sample in three cases, i.e.,Gut_ph vs Gut_kit (n = 9), Stool_ph vs Gut_ph (n = 5) and Stool_kit vs Gut_kit (n = 6).

    Figure 3 The distribution of OTUs in fecal and intestinal microbiota based on two DNA extraction methods.

    Table 4 PERMANOVA and Mantel test on the Bray-Curtis dissimilarities calculated from taxonomic (i.e., OTU, genus and phylum)abundances in three cases, i.e., Gut_ph vs Gut_kit (n = 9), Stool_ph vs Gut_ph (n = 5) and Stool_kit vs Gut_kit (n = 6).

    Figure 4 Comparisons of α diversity indices in three cases, i.e.,Gut_ph vs Gut_kit, Stool_ph vs Gut_ph and Stool_kit vs Gut_kit. The bars and error bars represent mean values and standard deviations, respectively. *P < 0.05.

    InGut_ph vs Gut_kit, we identified by the LEfSe analysis that three genera of phylum Proteobacteria showed significant between-group divergence, i.e.,Sphingorhabdus biased toGut_ph, and Coxiella biased toGut_kitalong with an unnamed genus in order Rhizobiales (Figure 6). As forStool_ph vs Gut_ph, five genera (i.e., Hydrogenophaga, Rhizobium,Brevundimonas, an unnamed genus in order Rhizobiales,an unnamed genus in family Sphingomonadaceae) in phylum Proteobacteria biased toStool_ph, and genus Clostridium_XlVa in phylum Firmicutes biased toGut_ph(Figure 6). In addition, significant betweengroup divergences of four phyla (i.e., Proteobacteria,Bacteroidetes, Verrucomicrobia, Firmicutes) composed of 15 genera were detected inStool_kit vs Gut_kit, i.e.,12 genera in the phyla of Proteobacteria, Bacteroidetes and Verrucomicrobia biased toStool_kit, and 3 genera in the phyla of Proteobacteria and Firmicutes biased toGut_kit(Figure S4). The shared between-material bias of genera inStool_ph vs Gut_phandStool_kit vs Gut_kitincluded four genera in phylum Proteobacteria biased toStool(i.e., Hydrogenophaga, Rhizobium, Brevundimonas,an unnamed genus in family Sphingomonadaceae) and one genus in phylum Firmicutes biased toGut(i.e.,Clostridium_XlVa).

    4. Discussion

    Figure 5 Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity calculated from OTU abundances in three cases, i.e.,Gut_ph vs Gut_kit, Stool_ph vs Gut_ph and Stool_kit vs Gut_kit..

    Figure 6 LEfSe results in the case of Gut_ph vs Gut_kit and Stool_ph vs Gut_ph.

    The phenol-chloroform method is a classic and costeffective approach to extract eukaryotic or prokaryotic genomic DNA (Ausubel, 2002). The DNA yield rate of the phenol-chloroform method is significantly higher than those of several commercial methods (Wagner Mackenzieet al., 2015). Similarly, this study demonstrated the DNA extraction efficiency of the phenol-chloroform method outweighed that of TIANamp Stool DNA Kit in terms of DNA yield rate. In addition, the phenol-chloroform method produced a better A260/A230 than TIANamp Stool DNA Kit did, which probably resulted from more effective DNA washing in the last step of phenolchloroform method. Due to the poor operationality and technical overlook of mucosal bacteria in separating gut contents from intestines, we extracted the mixture of gut microbiota DNA and host genomic DNA from intestinal samples. Nevertheless, we applied the universal primer pairs to specifically amplify V3–V4 regions of bacterial 16S rDNA (Klindworthet al., 2013). It has been reported that the mechanical treatments (e.g., bead beating) of samples can produce more efficient cell lysis of Grampositive bacteria and yield high amounts of DNA (Ferrandet al., 2014; Guo and Zhang, 2013). However, no method has become a gold standard for 16S rDNA highthroughput sequencing (Yamagishiet al., 2016). Methods with a mechanical treatment face a tradeoff between cell lysis efficiency and DNA disruption level. Due to the easy digestion of tadpole intestines and feces we did not take the mechanical treatments into account.

    The composition and diversity of gut microbiota are undoubtedly affected by multiple factors, e.g., host genetic background, dietary profile and environmental situation(Dabrowska and Witkiewicz, 2016; Davenport, 2016; Jinet al., 2017; Voreadeset al., 2014). The annotation on the gut microbiota structure can be susceptibly biased by the experimental protocols (Chooet al., 2015; Claassenet al., 2013; Yuanet al., 2012). However, many studies have demonstrated that biological variations outweigh technical variations generated by DNA extraction methods (Salonenet al., 2010; Wagner Mackenzieet al., 2015; Wesolowska-Andersenet al., 2014) and sample storage conditions (Blekhmanet al., 2016; Fouhyet al., 2015). Here we homogenized and minimized biological variations in between groups as far as possible.Nevertheless, it is impossible to eliminate each interfering factor. For instance, the littermate tadpole pairs used inGut_ph vs Gut_kitpossess a similar but not an identical genetic background, thereby the between-method heterogeneity is possibly enhanced. From the analyses ofGut_ph vs Gut_kit, the technical variation generated by DNA extraction methods was outweighed by the inter-subject variation. However, the phenol-chloroform method and the commercial stool kit probably resulted in a significant inconsistency in the structural composition of microbiota, e.g., OTU and phylum abundances. To ensure biological differences outweigh systematic biases,we had better use the identical standardized protocols for the comparative analysis of gut microbial consortia.

    Although the microbiota structure shows a significant variation between feces and intestinal contents in the case of the sophisticated intestines (Guet al., 2013), feces has been applied as an effective noninvasive material for the study of gut microbiota in mammals. Larsenet al.(2015) used ribosomal intergenic spacer analysis to reveal that the microbiota structure of fishes was similar but significant different in feces and intestines. However, their preparation procedure of fecal and intestinal samples,i.e., the fecal samples were squeezed from the intestinal samples, probably enhance the between-material variations. In this study, the fecal microbiota based on the phenol-chloroform method can more efficiently reflect the gut microbiota in terms of composition and diversity. On the contrary, the feces and intestines possess more inconsistent microbiota structures deduced from the commercial stool kit. When we applied the PCoA to compare the samples fed with different food types, the experimental material factor seemed to be dominant rather than genetic background and food type factors in the case of commercial stool kit. We will explore and discuss the effects of multi-factors (e.g., genetic background and food type) on the microbiota structure of Asiatic toad tadpoles in a further study. Even though no significant difference between fecal and intestinal microbiota was detected in the phenol-chloroform method, betweenmaterial variations do exist, e.g., four genera in phylum Proteobacteria were more abundant in feces and one genus in phylum Firmicutes in intestines. We argue that the inconsistency possibly resulted from the moderate interference of microorganisms in water and tadpole skin to feces.

    5. Conclusion

    According to the DNA extraction quality and structural comparisons between fecal and intestinal microbiota,the phenol-chloroform method is probably more robust than a commercial fecal reagent kit (TIANGEN Biotech Co., Ltd.) in evaluating the gut microbiota structure of amphibian tadpoles with feces. To the best of our knowledge, this study provides the first evidence that feces of amphibian tadpoles can be applied as an effective noninvasive material for the study of gut microbiota.

    AcknowledgementsWe thank Weizhao YANG(Lund University), Yunfei WANG (MD Anderson Cancer Center), Bruce WALDMAN (Seoul National University) and anonymous referees for their comments and suggestions. This study was supported by the National Natural Science Foundation of China (NSFC 31600104), Key Scientific Research Project of Higher Education in Henan Province (No. 17B180004), National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201610477013), Ph.D. Research Startup Foundation of Xinyang Normal University (No.0201424), and Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

    Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T.,Mende D. R., Fernandes G.R., Tap J., Bruls T., Batto J.M.,Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M.,Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G.,Wang J., Guarner F., Pedersen O., de Vos W. M., Brunak S.,Dore J., Antolin M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O.,Layec S., Le Roux K., Maguin E., Merieux A., Melo Minardi R., M’Rini C., Muller J., Oozeer R., Parkhill J., Renault P.,Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P.2011. Enterotypes of the human gut microbiome. Nature, 473: 174?180

    Ausubel F. M.2002. Short protocols in molecular biology: Wiley

    Bahl M. I., Bergstrom A., Licht T. R.2012. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis.FEMS Microbiol Lett, 329: 193?197

    Blekhman R., Tang K., Archie E. A., Barreiro L. B., Johnson Z. P., Wilson M. E., Kohn J., Yuan M. L., Gesquiere L.,Grieneisen L. E., Tung J.2016. Common methods for fecal sample storage in field studies yield consistent signatures of individual identity in microbiome sequencing data. Sci Rep, 6:31519

    Bletz M. C., Goedbloed D. J., Sanchez E., Reinhardt T., Tebbe C. C.2016. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun, 7: 13699

    Bolger A.M., Lohse M., Usadel B.2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30:2114?2120

    B

    rooks A. W., Kohl K. D., Brucker R. M., van Opstal E.J., Bordenstein S. R.2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol, 14: e2000225

    Choo J. M., Leong L. E., Rogers G. B.2015. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep, 5: 16350

    Claassen S., du Toit E., Kaba M., Moodley C., Zar H. J., Nicol M. P.2013. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods, 94: 103?110

    Colombo B. M., Scalvenzi T., Benlamara S., Pollet N.2015.Microbiota and mucosal immunity in amphibians. Front Immunol, 6: 111

    Dabrowska K., Witkiewicz W.2016. Correlations of Host Genetics and Gut Microbiome Composition. Front Microbiol, 7: 1357

    Davenport E. R.2016. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes, 7: 178?184

    Dethlefsen L., Huse S., Sogin M. L., Relman D. A.2008. The pervasive effects of an antibiotic on the human gut microbiota,as revealed by deep 16S rRNA sequencing. PLoS Biol, 6: e280

    Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E.,Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.2005. Diversity of the human intestinal microbial flora.Science, 308: 1635?1638

    Edgar R. C.2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10: 996?998

    Ferrand J., Patron K., Legrand-Frossi C., Frippiat J. P., Merlin C., Alauzet C., Lozniewski A.2014. Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods, 105: 180?185

    Fouhy F., Deane J., Rea M. C., O’Sullivan O., Ross R. P.,O’Callaghan G., Plant B. J., Stanton C.2015. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One, 10:e0119355

    Gu S., Chen D., Zhang J.N., Lv X., Wang K., Duan L. P., Nie Y., Wu X. L.2013. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 8: e74957

    Guo F., Zhang T.2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol, 97: 4607?4616

    Hammer ?., Harper D. A., Ryan P. D.2001. PAST:Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1?9

    Hof C., Araujo M. B., Jetz W., Rahbek C.2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480: 516?519

    Jiménez R. R., Sommer S.2017. The amphibian microbiome:natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv, 26: 763?786

    Jin Y., Wu S., Zeng Z., Fu Z.2017. Effects of environmental pollutants on gut microbiota. Environ Pollut, 222: 1?9

    Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C.,Horn M., Glockner F.O.2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res, 41: e1

    Kohl K. D., Cary T. L., Karasov W. H., Dearing M. D.2013.Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep, 5: 899?903

    Kohl K. D., Amaya J., Passement C. A., Dearing M. D., McCue M. D.2014. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol, 90: 883?894

    Larsen A. M., Mohammed H. H., Arias C. R.2015. Comparison of DNA extraction protocols for the analysis of gut microbiota in fishes. FEMS Microbiol Lett, 362

    Ley R. E., Lozupone C.A., Hamady M., Knight R., Gordon J.I.2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol, 6: 776?788

    Li H., Qu J., Li T., Yao M., Li J., Li X.2017a. Gut microbiota may predict host divergence time during Glires evolution. FEMS Microbiol Ecol, 93: fix009-fix009

    Li T., Long M., Li H., Gatesoupe F. J., Zhang X., Zhang Q.,Feng D., Li A.2017b. Multi-omics analysis reveals a correlation between the host phylogeny, gut microbiota and metabolite profiles in cyprinid fishes. Front Microbiol, 8

    Lozupone C. A., Stombaugh J., Gonzalez A., Ackermann G.,Wendel D., Vazquez-Baeza Y., Jansson J. K., Gordon J.I., Knight R.2013. Meta-analyses of studies of the human microbiota. Genome Res, 23: 1704?1714

    Mashoof S., Goodroe A., Du C. C., Eubanks J. O., Jacobs N.,Steiner J. M., Tizard I., Suchodolski J. S., Criscitiello M. F.2013. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol, 6: 358?368

    Maukonen J., Simoes C., Saarela M.2012. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol, 79: 697?708

    McFall-Ngai M., Hadfield M. G., Bosch T. C., Carey H. V.,Domazet-Loso T., Douglas A. E., Dubilier N., Eberl G.,Fukami T., Gilbert S. F., Hentschel U., King N., Kjelleberg S., Knoll A. H., Kremer N., Mazmanian S. K., Metcalf J.L., Nealson K., Pierce N. E., Rawls J. F., Reid A., Ruby E.G., Rumpho M., Sanders J. G., Tautz D., Wernegreen J. J.2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A, 110: 3229?3236

    Nava G. M., Friedrichsen H. J., Stappenbeck T. S.2011. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J, 5: 627?638

    Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S.2012. Host-gut microbiota metabolic interactions. Science, 336: 1262?1267

    Salonen A., Nikkila J., Jalanka-Tuovinen J., Immonen O.,Rajilic-Stojanovic M., Kekkonen R. A., Palva A., de Vos W.M.2010. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods,81: 127?134

    Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., Robinson C. J., Sahl J. W., Stres B., Thallinger G. G.,Van Horn D. J., Weber C. F.2009. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75: 7537?7541

    Shapira M.2016. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol, 31: 539?549

    Song S.J., Amir A., Metcalf J. L., Amato K. R., Xu Z. Z.,Humphrey G., Knight R.2016. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies.mSystems, 1

    Su C., Lei L., Duan Y., Zhang K.Q., Yang J.2012. Cultureindependent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol, 93: 993?1003

    Vences M., Lyra M. L., Kueneman J. G., Bletz M. C., Archer H. M., Canitz J., Handreck S., Randrianiaina R. D., Struck U., Bhuju S., Jarek M., Geffers R., McKenzie V. J., Tebbe C. C., Haddad C. F., Glos J.2016. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas.Naturwissenschaften, 103: 25

    Voreades N., Kozil A., Weir T. L.2014. Diet and the development of the human intestinal microbiome. Front Microbiol, 5: 494

    Wagner Mackenzie B., Waite D. W., Taylor M. W.2015.Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol, 6: 130

    Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 73: 5261-5267

    Weng F. C., Yang Y. J., Wang D.2016. Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics, 17: 1024

    Weng F. C. H., Shaw G. T. W., Weng C. Y., Yang Y. J., Wang D.2017. Inferring microbial interactions in the gut of the Hong Kong whipping frog (Polypedates megacephalus) and a validation using probiotics. Front Microbiol, 8

    Wesolowska-Andersen A., Bahl M. I., Carvalho V., Kristiansen K., Sicheritz-Ponten T., Gupta R., Licht T. R.2014. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis.Microbiome, 2: 19

    Yamagishi J., Sato Y., Shinozaki N., Ye B., Tsuboi A., Nagasaki M., Yamashita R.2016. Comparison of boiling and robotics automation method in DNA extraction for metagenomic sequencing of human oral microbes. PLoS One, 11: e0154389

    Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G.,Baldassano R. N., Anokhin A. P., Heath A. C., Warner B.,Reeder J., Kuczynski J., Caporaso J. G., Lozupone C. A.,Lauber C., Clemente J. C., Knights D., Knight R., Gordon J. I.2012. Human gut microbiome viewed across age and geography. Nature, 486: 222?227

    Yuan S., Cohen D. B., Ravel J., Abdo Z., Forney L. J.2012.Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One, 7: e33865

    亚洲国产色片| 久久久欧美国产精品| 国产成人freesex在线| 母亲3免费完整高清在线观看 | 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 中文天堂在线官网| 日韩大片免费观看网站| 精品少妇久久久久久888优播| 久久人人爽人人片av| 久久狼人影院| 永久免费av网站大全| 十分钟在线观看高清视频www| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 少妇精品久久久久久久| 色网站视频免费| 国产欧美日韩综合在线一区二区| 成人漫画全彩无遮挡| 曰老女人黄片| 在线观看免费视频网站a站| 精品熟女少妇av免费看| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 精品亚洲成国产av| av.在线天堂| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 水蜜桃什么品种好| 亚洲精华国产精华液的使用体验| av播播在线观看一区| 午夜久久久在线观看| 日本欧美国产在线视频| av视频免费观看在线观看| 两个人的视频大全免费| 搡老乐熟女国产| 亚洲人与动物交配视频| 人人妻人人爽人人添夜夜欢视频| 制服诱惑二区| xxxhd国产人妻xxx| 老熟女久久久| 高清午夜精品一区二区三区| 一级片'在线观看视频| 毛片一级片免费看久久久久| 亚洲精品成人av观看孕妇| 丰满饥渴人妻一区二区三| 18在线观看网站| 久久久久视频综合| 久久影院123| 成人无遮挡网站| 妹子高潮喷水视频| 十八禁高潮呻吟视频| 在线观看一区二区三区激情| 国产一级毛片在线| 婷婷色综合www| 一本一本综合久久| 日韩欧美精品免费久久| 国产成人av激情在线播放 | av女优亚洲男人天堂| 热99国产精品久久久久久7| 高清欧美精品videossex| 久久午夜福利片| 我要看黄色一级片免费的| 亚洲av免费高清在线观看| 亚洲国产精品成人久久小说| 男人爽女人下面视频在线观看| 日日爽夜夜爽网站| videossex国产| 国产成人a∨麻豆精品| 亚洲情色 制服丝袜| 国语对白做爰xxxⅹ性视频网站| 黄色毛片三级朝国网站| 免费大片18禁| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| 国产在线免费精品| 日本vs欧美在线观看视频| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 一边摸一边做爽爽视频免费| 日韩成人伦理影院| 日韩精品有码人妻一区| 热99国产精品久久久久久7| 一级毛片aaaaaa免费看小| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 精品亚洲成a人片在线观看| 人体艺术视频欧美日本| 有码 亚洲区| 最近2019中文字幕mv第一页| 久久久久国产网址| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 国产免费又黄又爽又色| 中文天堂在线官网| 欧美性感艳星| 飞空精品影院首页| 国产av精品麻豆| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 国产午夜精品一二区理论片| 午夜日本视频在线| 久久人人爽av亚洲精品天堂| 中文字幕亚洲精品专区| 久久久国产精品麻豆| 久久久久精品久久久久真实原创| 欧美日韩国产mv在线观看视频| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 多毛熟女@视频| 人妻少妇偷人精品九色| 日日摸夜夜添夜夜添av毛片| 中文欧美无线码| 又粗又硬又长又爽又黄的视频| 91久久精品国产一区二区成人| 久久人人爽人人片av| 久久这里有精品视频免费| 成人亚洲欧美一区二区av| 69精品国产乱码久久久| 最黄视频免费看| 久久精品久久精品一区二区三区| 天堂俺去俺来也www色官网| 91精品一卡2卡3卡4卡| 成人手机av| 天美传媒精品一区二区| 91精品国产九色| 久久久久国产网址| 久久精品久久久久久噜噜老黄| 国产高清国产精品国产三级| 亚洲国产色片| 午夜免费男女啪啪视频观看| 日本免费在线观看一区| av免费观看日本| 在线观看国产h片| 国模一区二区三区四区视频| 简卡轻食公司| 婷婷色av中文字幕| a级毛色黄片| 亚洲精品乱码久久久v下载方式| 中文字幕免费在线视频6| 精品一区二区三卡| 欧美精品高潮呻吟av久久| 国产毛片在线视频| 91精品三级在线观看| 亚洲欧美成人精品一区二区| 成人免费观看视频高清| 国产熟女欧美一区二区| 欧美三级亚洲精品| 午夜av观看不卡| 高清av免费在线| 亚洲精品日本国产第一区| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 简卡轻食公司| 免费高清在线观看日韩| 久久影院123| 乱人伦中国视频| 成人毛片a级毛片在线播放| 免费大片18禁| 国产色婷婷99| 午夜av观看不卡| 春色校园在线视频观看| 午夜福利,免费看| 桃花免费在线播放| 婷婷色av中文字幕| av网站免费在线观看视频| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片| 九色亚洲精品在线播放| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 午夜影院在线不卡| 69精品国产乱码久久久| 午夜激情福利司机影院| 制服丝袜香蕉在线| 精品一区二区免费观看| 久久人人爽人人片av| 岛国毛片在线播放| 最近最新中文字幕免费大全7| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 人人妻人人澡人人看| 亚洲情色 制服丝袜| 最近2019中文字幕mv第一页| 97在线人人人人妻| 久久久国产欧美日韩av| 五月开心婷婷网| 天堂中文最新版在线下载| 国产伦精品一区二区三区视频9| 久久综合国产亚洲精品| 免费观看的影片在线观看| 日本黄色片子视频| 亚洲国产成人一精品久久久| 国产精品人妻久久久久久| 久久女婷五月综合色啪小说| 3wmmmm亚洲av在线观看| 精品久久久久久久久av| 日日啪夜夜爽| 这个男人来自地球电影免费观看 | 免费看光身美女| av又黄又爽大尺度在线免费看| 久久久精品区二区三区| 久久免费观看电影| 99久久精品国产国产毛片| 国产探花极品一区二区| 国产视频首页在线观看| 丁香六月天网| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 亚洲欧美日韩卡通动漫| 91精品一卡2卡3卡4卡| 18禁裸乳无遮挡动漫免费视频| 免费看av在线观看网站| 久久99一区二区三区| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 久久精品国产自在天天线| 国产精品久久久久久精品电影小说| 大香蕉久久网| 黄色怎么调成土黄色| 亚洲精品乱久久久久久| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 2021少妇久久久久久久久久久| 伊人久久精品亚洲午夜| 搡老乐熟女国产| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| 国产一区二区三区综合在线观看 | 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 男女边吃奶边做爰视频| 欧美成人午夜免费资源| av福利片在线| 另类精品久久| 汤姆久久久久久久影院中文字幕| 99久国产av精品国产电影| 女人久久www免费人成看片| 国产视频首页在线观看| 久久这里有精品视频免费| 久久久久久久久大av| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 国语对白做爰xxxⅹ性视频网站| 精品人妻熟女毛片av久久网站| 精品久久国产蜜桃| 精品久久久噜噜| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 国产永久视频网站| 日韩亚洲欧美综合| 欧美xxⅹ黑人| 免费观看的影片在线观看| 五月开心婷婷网| 亚洲情色 制服丝袜| 国产淫语在线视频| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 久久久午夜欧美精品| 国产亚洲精品久久久com| 久久精品人人爽人人爽视色| av在线播放精品| 热99久久久久精品小说推荐| 欧美少妇被猛烈插入视频| 国产成人精品一,二区| 日韩精品有码人妻一区| 18禁观看日本| 国产欧美日韩综合在线一区二区| 中文字幕亚洲精品专区| 日韩中字成人| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 在现免费观看毛片| 成年美女黄网站色视频大全免费 | 中文天堂在线官网| av不卡在线播放| 色网站视频免费| 卡戴珊不雅视频在线播放| 午夜福利,免费看| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲 | 最近手机中文字幕大全| 国产成人精品在线电影| 91久久精品国产一区二区成人| 人人妻人人爽人人添夜夜欢视频| 99九九线精品视频在线观看视频| 欧美激情 高清一区二区三区| 一级a做视频免费观看| tube8黄色片| 国产伦精品一区二区三区视频9| 国产精品久久久久久久久免| 国产精品一国产av| 999精品在线视频| 久久99精品国语久久久| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 精品久久久精品久久久| 国产熟女欧美一区二区| 大香蕉97超碰在线| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 久久久久国产网址| 卡戴珊不雅视频在线播放| 成年人免费黄色播放视频| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 久久久久久久精品精品| 看免费成人av毛片| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 日韩成人伦理影院| 天美传媒精品一区二区| 岛国毛片在线播放| 亚洲婷婷狠狠爱综合网| 美女脱内裤让男人舔精品视频| 精品国产国语对白av| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| 欧美激情极品国产一区二区三区 | 亚洲av不卡在线观看| 成人黄色视频免费在线看| 麻豆精品久久久久久蜜桃| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 天天操日日干夜夜撸| a级毛片黄视频| 国产成人精品无人区| 亚洲婷婷狠狠爱综合网| 全区人妻精品视频| 中文字幕精品免费在线观看视频 | 久久久久视频综合| 亚洲三级黄色毛片| 一级毛片电影观看| 在线播放无遮挡| 日韩强制内射视频| 国产毛片在线视频| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 男男h啪啪无遮挡| 国产免费现黄频在线看| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 成人亚洲精品一区在线观看| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 日韩亚洲欧美综合| 亚洲精品自拍成人| 天堂俺去俺来也www色官网| 久久99蜜桃精品久久| 成人二区视频| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 视频区图区小说| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 97在线人人人人妻| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 国产亚洲午夜精品一区二区久久| 午夜免费男女啪啪视频观看| 人人妻人人添人人爽欧美一区卜| 成人免费观看视频高清| 婷婷色综合www| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| 国产在线免费精品| 免费av中文字幕在线| 欧美日韩综合久久久久久| 美女大奶头黄色视频| 午夜激情久久久久久久| 国产爽快片一区二区三区| 久久精品人人爽人人爽视色| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 国产精品三级大全| 免费看不卡的av| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看 | 丝袜脚勾引网站| a级毛片在线看网站| 国产日韩欧美视频二区| 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 我的女老师完整版在线观看| av专区在线播放| 久久久久人妻精品一区果冻| 有码 亚洲区| 欧美97在线视频| 欧美另类一区| 免费看光身美女| 亚洲成人手机| 插逼视频在线观看| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 亚洲天堂av无毛| 亚洲av综合色区一区| 国产一区二区三区av在线| 成年av动漫网址| 国产极品粉嫩免费观看在线 | 午夜av观看不卡| 纯流量卡能插随身wifi吗| 搡女人真爽免费视频火全软件| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 日韩欧美一区视频在线观看| 久久影院123| 亚洲无线观看免费| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 蜜桃国产av成人99| 国产伦精品一区二区三区视频9| 少妇精品久久久久久久| 成人影院久久| 黄色一级大片看看| 亚洲国产最新在线播放| 亚洲第一区二区三区不卡| 简卡轻食公司| 街头女战士在线观看网站| 晚上一个人看的免费电影| 亚洲av.av天堂| 国产色婷婷99| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| 亚洲国产最新在线播放| 国产精品秋霞免费鲁丝片| 999精品在线视频| 极品人妻少妇av视频| 男女无遮挡免费网站观看| 久久久久人妻精品一区果冻| 久久精品人人爽人人爽视色| 国产精品久久久久久精品电影小说| 久久99精品国语久久久| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 国产精品不卡视频一区二区| 99久久综合免费| 成人毛片60女人毛片免费| 日本黄色片子视频| 久久久久久久久大av| 久热这里只有精品99| 久久99热这里只频精品6学生| 国产精品一区二区在线观看99| 日韩亚洲欧美综合| 日本av免费视频播放| 亚洲图色成人| 97在线视频观看| 日本黄色日本黄色录像| 国内精品宾馆在线| 黄片无遮挡物在线观看| 国产日韩欧美亚洲二区| 亚洲欧洲精品一区二区精品久久久 | 国产淫语在线视频| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| 久久久久人妻精品一区果冻| 赤兔流量卡办理| √禁漫天堂资源中文www| 日日啪夜夜爽| 少妇被粗大猛烈的视频| 国产 精品1| av网站免费在线观看视频| 亚洲欧美清纯卡通| 九草在线视频观看| 亚洲色图综合在线观看| 久久毛片免费看一区二区三区| 精品久久久久久久久av| 日韩视频在线欧美| 久久久国产一区二区| 精品一区二区三卡| 大片电影免费在线观看免费| 精品一区二区三卡| 2018国产大陆天天弄谢| 中文字幕久久专区| www.精华液| 午夜福利一区二区在线看| 成人18禁在线播放| 国产一卡二卡三卡精品| 亚洲欧洲精品一区二区精品久久久| 国产精品国产av在线观看| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看 | 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| 亚洲av成人不卡在线观看播放网| 国产一区二区在线观看av| 丝袜喷水一区| 久久久久国产一级毛片高清牌| 日韩视频在线欧美| 美女扒开内裤让男人捅视频| 免费看a级黄色片| 国产成人av教育| 婷婷成人精品国产| 久久九九热精品免费| 中文亚洲av片在线观看爽 | 日韩大码丰满熟妇| 成人特级黄色片久久久久久久 | 精品国内亚洲2022精品成人 | 欧美黑人精品巨大| 成人18禁在线播放| 欧美黄色片欧美黄色片| 91老司机精品| 大香蕉久久网| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 久久免费观看电影| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 乱人伦中国视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久人人做人人爽| 大片免费播放器 马上看| 1024视频免费在线观看| 免费看a级黄色片| 黑人欧美特级aaaaaa片| 亚洲七黄色美女视频| 中文字幕制服av| 多毛熟女@视频| 久久国产精品大桥未久av| 日韩中文字幕欧美一区二区| 老司机午夜福利在线观看视频 | 91大片在线观看| 免费观看人在逋| 久久婷婷成人综合色麻豆| 欧美日韩亚洲国产一区二区在线观看 | av在线播放免费不卡| 日日夜夜操网爽| 最近最新免费中文字幕在线| av线在线观看网站| 制服人妻中文乱码| 免费女性裸体啪啪无遮挡网站| 亚洲国产欧美日韩在线播放| 法律面前人人平等表现在哪些方面| 国产精品一区二区在线观看99| 亚洲熟女毛片儿| 亚洲第一欧美日韩一区二区三区 | 中文字幕最新亚洲高清| 日韩欧美免费精品| 欧美 日韩 精品 国产| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女 | 九色亚洲精品在线播放| av片东京热男人的天堂| 99国产精品免费福利视频| www日本在线高清视频| 视频区图区小说| a级片在线免费高清观看视频| 夜夜骑夜夜射夜夜干| 亚洲色图 男人天堂 中文字幕| 男女无遮挡免费网站观看| 亚洲国产欧美网| 香蕉国产在线看| h视频一区二区三区| 丝袜美足系列| 成年人黄色毛片网站| av欧美777| 丰满少妇做爰视频| 麻豆国产av国片精品| 久久精品国产亚洲av香蕉五月 | 视频区欧美日本亚洲| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色 | 亚洲天堂av无毛| 久久久精品免费免费高清| 精品久久久精品久久久| 久久久国产成人免费| 国产精品国产av在线观看| 超碰成人久久| 精品国产一区二区久久| 欧美黑人欧美精品刺激| 欧美日韩精品网址| 欧美黄色淫秽网站| 黄色视频不卡| 一级黄色大片毛片| 777米奇影视久久| 国产男女超爽视频在线观看| 亚洲精品在线美女|