• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Characterization of Thyroid Hormone Receptors (TRs)and their Responsiveness to T3 in Microhyla fissipes

    2018-03-28 06:20:54LushaLIUXungangWANGMengjieZHANGJianpingJIANG
    Asian Herpetological Research 2018年1期

    Lusha LIU, Xungang WANG, Mengjie ZHANG, Jianping JIANG

    1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3 College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China

    1. Introduction

    Amphibian metamorphosis is a complex process, in which various organs and tissues undergo dramatically remodeling to transform from larva to juvenile(Atkinsonet al., 1998; Brown and Cai, 2007; Duet al.,2017). Although complex, this development process is completely initiated and orchestrated by only one hormone, thyroid hormone (TH) (Buchholzet al., 2006).The TH signaling pathway in amphibians has been well studied: when TH is absent, the unliganded TR/9-cis-retinoic acid receptor (RXR) heterodimers recruit corepressors to repress the transcription of downstream target genes; once liganded with TH, the TR/RXR heterodimers undergo conformational change and thus allow to recruit coactivators to activate the same group of downstream genes (Morvan-Duboiset al., 2008; Grimaldiet al., 2013; Zhaoet al., 2016). Therefore,TRsplay important roles in the metamorphosis by acting as liganddependent transcriptional factors.

    TRs, members of a large superfamily of nuclear receptors (NR), possess a similar domain structure as that found in the other NRs: an N-terminal A/B domain with binding sites for transcriptional coregulators, a central DNA-binding domain C (DBD) containing two“zinc fingers” for target gene recognition, a D domain(hinge region) containing the nuclear localization signal, and a C-terminal ligand-binding domain E/F (LBD) where thyroid hormone binds and activates the receptor (Chenet al., 2014). There are two closely related families ofTRscalledTRαandTRβin vertebrate(Yaoitaet al., 1990; Chenet al., 2014).TRαandTRβare differentially expressed in various tissues of different species (Kawaharaet al., 1991). Particularly, theTRαmRNA increases throughout the premetamorphosis stage of tadpole development, and falls after the climax of metamorphosis to a lower level in frogs (Yaoita and Brown, 1990). TheTRβmRNA is barely detectable during premetamorphosis. In synchrony with the onset of endogenous TH synthesis by the thyroid gland, the level ofTRβmRNA rises in parallel with endogenous TH, reaching a peak at the climax of metamorphosis and drops after metamorphosis (Choiet al., 2015). Although TH signaling pathway has been well studied, functional ofTRαandTRβduring metamorphosis have not been clearly characterized.TRα-deficient tadpoles developed faster with smaller body size than their wild-type siblings suggesting thatTRαplayed important roles in controlling the timing ofXenopus tropicalismetamorphosis (Choiet al., 2015; Wen and Shi, 2015). Furthermore, disruptedTRαhad different effect on the development of larval and juveniles and the metamorphosis of different organs (Choiet al., 2017, Wenet al., 2017). Different fromTRα-knockout tadpoles, significantly delayed tail regression, the reduction in olfactory nerve length and head narrowing by gill absorption were detected inTRβknockout tadpoles (Nakajimaet al., 2017). The different relative abundance levels ofTRαandTRβtranscripts induced by T3 where the general pattern wasTRα≥TRβinR. catesbeiana, whileTRα≤TRβinXenopus laevis(Veldhoenet al., 2014).TRβwas highly expressed during metamorphosis inM. fissipesandX.laevis, butTRαshowed especially low expression inM. fissipes, implying thatTRβis essential for initiating metamorphosis, at least inM. fissipes(Zhaoet al., 2016).

    Microhyla fissipesis a small-sized anuran from the family Microhylidae suborder Neobatrachia (Figure 1). Due to the special expression pattern ofTRsinM.fissipesmentioned above, it is important to cloneTRsand understand the molecular mechanism of them in regulating metamorphosis. Furthermore, because of its characteristics (including wide distribution, fast development, developmentin vitro, strong survivability,biphasic life cycle, small body size, diploid and transparent tadpoles) and being induced to metamorphose by exogenous TH,M. fissipesmay be an ideal model to evaluate the possible effects of environmental compounds on the thyroid system (Liuet al., 2016).

    Figure 1 Photograph of Microhyla fissipes.

    Therefore, it is necessary to characterizeTRsand evaluate responsiveness to TRs agonist (such as 3,3',5-Triiodo-L-thyronine, T3) inM. fissipes.In this study, we have isolated, characterized, and phylogenetically analyzedTRαandTRβgene inM. fissipes, examined their expression pattern after T3 treatment and explored the utility ofM. fissipesas a model species for assaying TH signaling disrupting effects.

    2. Materials and Methods

    2.1. Animals sampling and experimental treatmentsMature female and maleM. fissipeswere collected from Shuangliu, Chengdu, China (30.5825oN, 103.8438oE) in June, 2016. The male and female were injected luteinizing hormone-releasing hormone a (LHRHa) with 0.3 μg/g body weight resolving dosage. Fertilized eggs were obtained from one pair of frogs and incubated in the dechlorinated tap water. Five days later, tadpoles were fed with spirulina powder once daily and subjected to a 12:12 h light:dark cycle at 25 ± 0.6°C. The developmental stage of tadpole was recorded using theM. fissipesdevelopmental table (Wanget al., 2017). Tadpoles at stage 40 (metamorphosis climax) were selected for gene cloning. Tadpoles of stage 33 (premetamorphosis, oarshaped limb bud) were selected to treat with 10 nmol/L 3,3',5-triiodo-l-thyronine sodium (T3, Sigma-Aldrich,USA) for 48 h. The chemicals were renewed after 12 h of exposure when the medium was also refreshed. Tadpoles treated for 0 h, 12 h, 24 h, 36 h, and 48 h were collected for quantitative real-time (RT) PCR (n= 3 for each time point). Tadpoles treated 0 h were set as the control group.After anesthetization by MS222, tadpole sample was frozen immediately in liquid nitrogen, and then stored at–80°C for RNA extraction.

    The care and treatment of animals in this study were performed according to the Guideline for the Care and Use of Laboratory Animals in China. The animal experiments were approved by the Experimental Animal Use Ethics Committee of the Chengdu Institute of Biology (Permit Number: 2016036).

    2.2. Cloning and molecular characterization of TRsTotal RNA was extracted using TransZol (Transgen Biotech, Beijing, China), following the manufacturer’s instructions. Total RNA concentration was calculated using Nanodrop ND-1000 (Nanodrop, DW, USA).Partial cDNA sequence ofTRs(TRα: comp77374_c0 ;TRβ: comp124487_c3) were obtained fromM. fissipestranscriptome (Zhaoet al., 2016). According to the partial cDNA sequence, two specific primers for each gene,GSP3-1 and GSP3-2 (Table 1) were designed to amplify the 3' terminal regions by nested PCR. The 3' DNA ends were obtained using the SMART RACE cDNA Amplification Kit (Clontech, CA, USA) in accordance with the manufacturer’s instructions. Products of rapid amplification of cDNA ends (RACE) were cloned into pMD 18-T vector (TaKaRa, Japan) and sequenced using an automated DNA sequencer ABI3730 (Thermo Fisher Scientific, CA, USA) by Sangon Biotech Co. Ltd.(Shanghai, China).

    The amino acid sequence was deduced from the coding region via DNAStar (version 6.13). The cDNA sequence and the deduced amino acid sequence were analyzed using BLASTN and BLASTP, respectively. Deduced amino acid sequences of amphibian were aligned for analysis of putative conserved functional residues by Clustal X. The relevant amino acid sequences were obtained from the NCBI GenBank database:Rugosa rugoseTRαBAM15695.1,Pelophylax nigromaculatus TRαAGT55994.1,Rana chensinensisTRαAIA98429.1,X. laevisTRαANP_001081595.1,X. laevisTRαBBAL70322.1,X. tropicalis TRαNP_001039261.1,X. tropicalis TRβNP_001039270.1,X. laevis TRβANP_001090182.1,X. laevisTRβBNP_001081250.1,P.nigromaculatusTRβAGT55995.1,R. chensinensisTRβAIA98430.1.

    Multiple cDNA sequences ofTRαandTRβfrom 17 species represented vertebrate (Mammalia, Aves, Reptilia,Amphibia, Pisces) and invertebrate were used in the sequence alignment by Clustal X. A phylogenetic tree was constructed by using the maximum likelihood (ML)method with the MEGA 6 (Tamuraet al., 2013), and the reliability of the tree was assessed by the bootstrap method with 1,000 replications. The gene accession numbers are:Alligator mississippiensisTRαNM_001287278.1,Branchiostoma lanceolatumTRαEF672345.1,Crassostrea gigas TRαKP271450.1,Gallus gallus TRαNM_205313.1,Homo sapiens TRαAB307686.1,Oryzias latipesTRαAB114860.1,Rattus norvegicusTRαM18028.1,P. nigromaculatus TRαKC139354.1,R. catesbeiana TRαL06064.1,R. chensinensis TRαKJ579109.1,R. rugose TRαAB683466.1,Schistosoma mansoni TRαAY395038.1,S. mansoni TRβAY395039.1,X. laevis TRαAM35343.1,X. laevis TRαBAB669465.1,X. tropicalis TRαNM_001045796.1,Nanorana parkeri TRαXM_018569566.1,Oryzias latipesTRαNM_001104705.1,Danio rerio TRαNM_131396.1,R. rugosa TRβAB683467.1,R. chensinensis TRβKJ579110.1,R. catesbeiana TRβL27344.1,P.nigromaculatus TRβKC139355.1,N. parkeri TRβXM_018570223.1,X. laevis TRβANM_001096713.1,X. laevis TRβBNM_001087781.1,X. tropicalis TRβAB244214.1,G. gallus TRβNM_205447.2,A.mississippiensis TRβNM_001287311.2,H. sapiens TRβM26747.1,R. norvegicus TRβJ03933.1,O. latipes TRβAB114861.1,D. rerioTRβNM_131340.1.

    2.3. RNA isolation and gene expression analysisForTRsmRNA expression analysis after exposure of T3,we conducted qRT-PCR. Total RNA was extracted from tadpoles with TranZol reagent and first strand cDNA was synthesized from the same amount of RNA (1 μg) for each sample via TranScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (TransGen, Beijing, China)with oligo (dT) primer. The expression ofTRαandTRβmRNA was analyzed by qRT-PCR with the primerTRαandTRβ(Table 1).Rpl37gene was used as a reference gene to normalize mRNA expression ofTRs. PCR was performed in a reaction volume of 20 μl containing 10 μl ofTransStart? Tip Green qPCR SuperMix (2×), 0.4 μl of Passive Reference Dye (50×), 0.4 μl each of forward and reverse primer (10 μmol/L), 8.2 μl of ddH2O, and 1 μl of cDNA. Amplification was carried out in 7300plus(ABI, CA, USA), including 5 min at 95°C and 45 cycles of 5 s at 95°C and 31 s at 60°C, followed by a melting curve analysis. Each sample was run in triplicates. Each reaction was verified to contain a single product of the correct size by agarose gel electrophoresis. Quantitative data were shown as mean ± SD (n= 3). The fold change ofTRsexpression after T3 treatment was determined by 2?ΔΔCt(cycle threshold, Ct). Data were then subjected to one-way analysis of variance (ANOVA) with SPSS Statistics 13.0 (SPSS Inc., Chicago, IL, USA).P< 0.05 was regarded as statistically significant.

    3. Results

    3.1. Molecular characterization of TRs in M. fissipesThe full-length cDNA sequences ofTRαandTRβwere obtained by RNA-seq and 3'-RACE strategies. The full-length ofTRαcDNA was 1 706 bp in length and contained an open reading frame (ORF) of 1 257 bp, which encoded a peptide of 418 amino acids (Figure 2a). TheTRβcDNA was 1 422 bp with an ORF of 1 122 bp, which encoded a peptide of 373 amino acids (Figure 2b). And the 3'untranslated region ofTRαandTRβwere 449 bp and 300 bp, respectively. Two sequences were submitted to the GenBank (GenBank accession numbers: MG596879 and MG596880). The homologies of nucleotide sequences and deduced amino acid sequences betweenTRαandTRβinM. fissipeswere 61% and 72%, respectively. The calculated molecular weight of TRα polypeptide was 47.7 kDa, and the theoretical isoelectric point (pI) was 7.08,while the calculated molecular weight of TRβ polypeptide was 42.4 kDa with pI 6.76.

    Table 1 Primers used in this study. F and R denote forward and reverse primer, respectively.

    A multiple alignment ofTRsdeduced amino acid sequences was performed in amphibians (Figure 3).The deduced amino acids of both TRα and TRβ were composed of the N-terminal hypervariable region (A/B domain), a conserved DNA-binding domain (DBD domain), a hinge region (D domain), and a ligand-binding domain (LBD domain). TRα and TRβ inM. fissipeshad high similarity in the DBD, D and LBD domains, whereas there was a deletion of 42 amino acids in TRβ compared with TRα in the A/B domain (Figure 3). These deletion between TRα and TRβ inM. fissipescorresponded to the differences found inX. laevis,X. tropicalis,R.chensinensisandP. nigromaculatus. Although there were several different sites in the A/B domain among TRs, the N-terminal signature sequence (NTSS) was well conserved. The conserved cysteine residues that comprise the two zinc fingers and the regulatory elements P-box as well as the T-box and A-box in the DBD were conserved. Furthermore, the consensus motif I (spanning helix 3–6) and motif II (from helix 8 to helix 10) and the putative AF2 activation domain core (helix 12) were also identified. Therefore, this highly-conserved feature is likely to indicate pivotal significance ofTRsin thyroid signaling pathway.

    3.2. Evolutionary relationships of TRsBLASTP and BLASTN in NCBI indicated thatTRαandTRβshared different levels of homology with other species. The amino acid sequences ofM. fissipesTRαhad highest homolgy withR. rugosa,N. parkeri,R. chensinensis(98%, 10 different sites out of 418 amino acids),whileM. fissipesTRβhad highest homolgy withR.catesbeiana(98%, 8 different sites out of 373 amino acids). Nucleotide sequences ofM. fissipesTRαandTRβshared high homology withN. parkeri(92% and 93%),P. nigromaculatus(92% and 92%),R. rugosa(93% and 92%),X. tropicalis(88% and 87%),X. laevis A(88% and 80%),X. laevisB(88% and 78%) and had a lower homology withG. gallus(65% and 74%),A.mississippiensis(63% and 63%),H. sapiens(58% and 47%),D. rerio(57% and 49%),B. lanceolatum(47% and 49%), respectively.

    A phylogenetic tree constructed by the ML method from a multiple alignment of nucleotide sequences ofM.fissipes TRαandTRβand a wide range of counterparts in various species including invertebrate, reptiles,birds, mammals and other amphibian (Figure 4). The phylogenetic tree showed thatTRαandTRβgrouped into two highly consistent and separate clades. In bothTRαandTRβclades,TRsfromM. fissipeshave similar positions in the phylogenetic tree. Furthermore, phylogenetic tree constructed based onTRscDNA sequences was consistent well with the taxonomic positions of these organisms.

    Figure 2 cDNA and deduced amino acid sequences of Microhyla fissipes thyroid hormone receptor gene. (a) TRα; (b) TRβ. The start codon(ATG) and the stop codon (TAG or TGA) are in bold.

    Figure 3 Alignments of TR amino acid sequences from Microhyla fissipes with other amphibian species. Asterisk (*) indicated conserved amino acids and hyphens (?) represented spaces inserted to maximize similarity. Colon (:) indicates conservation between groups of strongly similar properties, and period (.) indicates conservation between groups of weakly similar properties. The black vertical lines indicate the borders of four domains: the N-terminal hypervariable region (A/B domain), DNA-binding domain (DBD domain), hinge region (D domain)and ligand binding domain (LBD domain). Triangle indicated the conserved cysteine residues that comprise the two zinc finger with red box of the DBD. The conserved N-terminal signature sequence (NTSS), DR-box, P-box, T-box, A-box and Helices (H3-H12) are figured out.Motif I and Motif II are boxed by blue while activation domain (AF2-AD) is purple double underlined.

    3.3. Responsiveness of M. fissipesTRs expression to exogenous T3In the presence of exogenous T3,the morphology ofM. fissipestadpoles has changed dramatically, and the characteristic of morphology change trend was similar to that during the natural metamorphosis(data not shown). To determine whether exogenous T3 could potentially regulate the expression pattern ofTRαandTRβ, we exposed the premetamorphic tadpoles to T3 and analyzed by qPCR. These results showed thatM.fissipes TRαandTRβmRNA expression were significantly increased by T3 at 12 h and 24 h, respectively. And thenTRαandTRβexpression decreased to the lower level at 48 h than 0 h (Figure 5). Furthermore, the same gene expression pattern ofTRβhas been detected between exogenous T3 induced and natural metamorphosis (Zhaoet al., 2016). Therefore, different responsiveness ofTRαandTRβto T3 indicated different functions of them in the metamorphosis.

    Figure 4 Phylogenetic tree of nucleotide sequences of TRs genes of different species using the the maximum likelihood method. Numbers at the branches represent the bootstrap support values. Microhyla fissipesTRα and TRβ are highlighted in the box, respectively.

    4. Discussion

    This study was designed to determineTRαandTRβsequences and analyze their expression patterns after T3 exposure to gain further insights as to how these genes may function in metamorphosis. Therefore,TRαandTRβgenes ofM. fissipeswere cloned by RNA-seq and RACE. Phylogenetical analysis showedM. fissipesTRαandTRβgene had high homology with the corresponding genes of other amphibians at both the nucleotide and the amino acid level, respectively, confirming their identities. The expression patterns after T3 treatment indicated the important roles ofTRαandTRβduring the metamorphosis.

    Figure 5 Relative expression levels of TRs genes after exposure to 10 nmol/L T3. Data were expressed as the mean fold difference(mean ± SD, n = 3) from the control group. Significant differences between treatment groups and the controls were indicated by* (P < 0.05).

    Both TRα and TRβ amino acid structure identified inM. fissipespossessed the typically functional domains of the NR superfamily. All of them had a conserved DBD domain with two zinc fingers, which determined the binding specificity of nuclear receptors (Natalia and Thorsten, 2004), and a LBD domain containing the typical 12 helices (Marchandet al., 2001). The P-box determining DNA binding specificity interacted with the specific response element AGGTCA, and the T-box and A-box regions contributed to dimerization and DNA binding stabilization, respectively (Manchadoet al., 2009). The conserved NTSS (GYIPS(Y/H) L(D/N)KDE(P/L)) which was the TR specific motif was also detected in the C-terminus of the variable A/B domain ofM. fissipesTRs (Wuet al., 2007). The deletion of 42 amino acids in the A/B domain of TRβ indicated its different function from TRα. The conserved AF2-AD motif (LFLEVF) played an important role in recruiting a coactivator (Nagyet al., 1999; Nelson and Habibi, 2009).The conservation of structure and functional roles of the above mentioned sites in TRs would be consolidated by their high identity throughout the evolution of vertebrates.

    TRαandTRβhave been demonstrated to have high homology across vertebrates (Okaet al., 2013). In this study, the amino acid and nucleotide sequence homologies ofTRαandTRβbetweenM. fissipesand other amphibians were over 90%, but lower homology with invertebrates. In the phylogenetic tree, vertebrateTRαandTRβwere located in two clearly separated clades, in accordance with the fact thatTRαandTRβmay be the products of an ancient gene duplication event during evolution (Chenet al., 2014). Furthermore, the homologies ofTRαandTRβto the corresponding genes from other species accorded with their evolutionary relationship. Only oneTRαandTRβgene were identified in amphibian except inX. laeviswhich is tetraploid. The homologies of nucleotide sequences and deduced amino acid sequences betweenTRαandTRβinM. fissipeswere 61% and 72%, respectively. The homology ofTRαtoTRβinM. fissipeswas lower thanR. nigromaculata(72%and 86%) andX. laevis(74% and 85%). Low sequence identification ofTRαandTRβmay indicate their different regulated function inM. fissipesmetamorphosis, which is also implied by their different expression pattern during natural metamorphosis (Zhaoet al., 2016).

    Metamorphosis is a critical developmental stage mediated by TH in amphibian (Wanget al., 2008).The function ofTRsas transducers of TH responses has converted NRs in targets to clarify the molecular mechanisms that govern metamorphosis (Manchadoet al., 2009). To understand the potential importance of these two receptors inM. fissipesmetamorphosis and function of exogenous ligand for the receptor systems, we examined their mRNA expression levels by qPCR after T3 exposure. T3 not only inducedM. fissipespremetamorphic tadpoles metamorphosis at the morphology and histology level (data not shown), but also inducedTRαandTRβexpression, which have also been reported inX. laevis,X. troplisandR. catesbeiana(Shi, 1999; Wanget al.,2008). During the natural metamorphosis,TRβexpression increased dramatically and correlated with the endogenous THs, whileTRαexpression slightly increased; and all of them decreased at the end of metamorphosis (Shi,1999; Zhaoet al., 2016). In this study,TRαexpression reached peak at 12 h and then decreased from 12 h to 48 h. While dramatically up-regulatedTRβexpression was observed after exposure of T3 within 24 h, and it was down-regulated from 24 h and with the lowest expression observed at 48 h of T3 treatment. These results suggested thatTRβexpression pattern after T3 treatment is the same as that during natural metamorphosis, and the expression ofTRβin tadpoles treated with T3 for 24h also resembled its expression in the tadpoles at the climax of metamorphosis (Zhaoet al., 2016), which correlated with the morphological and histological results. Therefore,we can use T3 to simulate metamorphosis for further research on metamorphosis which will be high-efficiency and time saving. Moreover,M. fissipescould also serve as the model to assay environmental compounds on TH signaling disruption, while expression ofTRs(in particularTRβ) has been also used as a molecular biomarker for assaying TH signaling disrupting actions inX. laevisandR. nigromaculatabecause of their response to TH (Opitzet al., 2006; Veldhoenet al., 2006; Louet al., 2014). Due to the specific expression level ofTRsduringM. fissipesnatural metamorphosis and dramatically up-regulatedTRβmRNA expression after T3 treatment,we will use genome editing tools such as CRISPR/Cas9 to illustrate the mechanism ofTRαandTRβinM. fissipes.In conclusion,TRαandTRβfromM. fissipeswere cloned and characterized for the first time. Functional site and phylogenetic analysis indicated the conserved function ofTRsfrom invertebrate to vertebrates. Premetamorphic tadpoles treated with T3 for 24 h resembled the climax of metamorphosis tadpoles during natural metamorphosis,andTRβmRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system inM. fissipes.

    AcknowledgementsThis study was funded by the Important Research Project of Chinese Academy of Sciences (KJZG-EW-L13), 2015 Western Light Talent Culture Project of the Chinese Academy of Sciences(Y6C3021) and the Basic Application Project of Sichuan Province (2017JY0339). We thank Lanying ZHAO for the data analysis, and we also thank Liezhen FU and Shouhong WANG for the manuscript revision.

    Atkinson B. G., Warkman A. S., Chen Y.1998. Thyroid hormone induces a reprogramming of gene expression in the liver of premetamorphicRana catesbeianatadpoles. Wound Repair Rege, 6: 323–336

    Brown D. D., Cai L.2007. Amphibian metamorphosis. Dev Biol,306: 20–33

    Buchholz D. R., Paul B. D., Fu L., Shi Y. B.2006. Molecular and developmental analyses of thyroid hormone receptor function inXenopus laevis, the African clawed frog. Gen Comp Endocr,145: 1–19

    Chen Q. L., Luo Z., Tan X. Y., Pan Y. X., Zheng J. L., Zou M.2014. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfishPelteobagrus fulvidracoand Javelin gobySynechogobius hasta. Gene, 536: 232–237

    Choi J., Suzuki K. T., Sakuma T., Shewade L., Yamamoto T.,Buchholz D. R.2015. Unliganded thyroid hormone receptor α regulates developmental timing via gene repression inXenopus tropicalis. Endocrinology, 156: 735–744

    Choi J., Atsuko I., Daniel R. B.2017. Growth, development, and intestinal remodeling occurs in the absence of thyroid hormone receptor α in tadpoles ofXenopus tropicalis. Endocrinology,158: 1623–1633

    Du C. C., Li X. Y., Wang H. X., Liang K., Wang H. Y., Zhang Y. H.2017. Identification of thyroid hormone receptors a and beta genes and their expression profiles during metamorphosis inRana chensinesis. Turk J Zool, 41: 454–463

    Grimaldi A., Buisine N., Miller T., Shi Y. B., Sachs L. M.2013. Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. BBA-Gen Subjects, 1830: 3882–3892

    Kawahara A., Baker B. S., Tata J. R.1991. Developmental and regional expression of thyroid hormone receptor genes duringXenopusmetamorphosis. Development, 112: 933–943

    Liu L. S., Zhao L. Y., Wang S. H., Jiang J. P.2016. Research proceedings on amphibian model organisms. Zool Res, 37:237–245

    Lou Q., Zhang Y., Ren D., Xu H., Zhao Y., Qin Z., Wei W.2014. Molecular characterization and developmental expression patterns of thyroid hormone receptors (TRs) and their responsiveness to TR agonist and antagonist inRana nigromaculata. J Environ Sci, 26: 2084–2094

    Manchado M., Infante C., Rebordinos L., Ca?avate J. P.2009.Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors inSenegalese sole. Gen Comp Endocr, 160: 139–147

    Marchand O., Safi R., Escriva H., Van Rompaey E., Prunet P., Laudet V.2001. Molecular cloning and characterization of thyroid hormone receptors in teleost fish. J Mol Endocrinol, 26:51–65

    Morvan-Dubois G., Demeneix B. A., Sachs L. M.2008.Xenopus laevisas a model for studying thyroid hormone signalling: From development to metamorphosis. Mol Cell Endocrin, 293: 71–79

    Nagy L., Kao H. Y., Love J. D., Li C., Banayo E., Gooch J. T.,Krishna V., Chatterjee K., Evans R. M., Schwabe J. W.1999.Mechanism of corepressor binding and release from nuclear hormone receptors. Gene Dev, 13: 3209–3216

    Nakajima K., Ichiro T., Yoshio Y.2018. Thyroid hormone receptor α-and β-knockoutXenopus tropicalistadpoles reveal subtypespecific roles during development. Endocrinology, 159: 733–743

    Natalia N., Thorsten H.2004. Nuclear receptors: overview and classification. CurrDrug Targets-Inflamm Allergy, 3: 335–346

    Nelson E. R., Habibi H. R.2009. Thyroid receptor subtypes:Structure and function in fish. Gen Comp Endocr 161: 90–96

    Oka T., Mitsui-Watanabe N., Tatarazako N., Onishi Y., Katsu Y., Miyagawa S., Ogino Y., Yatsu R., Kohno S., Takase M.,Kawashima Y., Ohta Y., Aoki Y., Guillette L. J., Iguchi T.2013. Establishment of transactivation assay systems using fish,amphibian, reptilian and human thyroid hormone receptors. J Appl Toxicol, 33: 991–1000

    Opitz R., Lutz I., Nguyen N. H., Scanlan T. S., Kloas W.2006.Analysis of thyroid hormone receptor βA mRNA expression inXenopus laevistadpoles as a means to detect agonism and antagonism of thyroid hormone action. Toxicol Appl Pharm,212: 1–13

    Shi Y. B.1999. Amphibian metamorphosis: from morphology to molecular biology. John Wiley, New York

    Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.2013.MEGA6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

    Veldhoen N., Propper C. R., Helbing C. C.2014. Enabling comparative gene expression studies of thyroid hormone action through the development of a flexible real-time quantitative PCR assay for use across multiple anuran indicator and sentinel species. Aquat Toxicol, 148: 162–173

    Veldhoen N., Skirrow R. C., Osachoff H., Wigmore H., Clapson D. J., Gunderson M. P., Van Aggelen G., Helbing C. C.2006.The bactericidal agent triclosan modulates thyroid hormoneassociated gene expression and disrupts postembryonic anuran development. Aquat Toxicol, 80: 217–227

    Wang S. H., Zhao L. Y., Liu L. S., Yang D. W., Khatiwada J. R., Wang B., Jiang J. P.2017. A complete embryonic developmental table ofMicrohyla fissipes(Amphibia, Anura,Microhylidae). Asian Herpetol Res, 8: 108–117

    Wang X., Matsuda H., Shi Y. B.2008. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors duringXenopus tropicalismetamorphosis.Endocrinology, 149: 5610–5618

    Wen L., Shi Y. B.2015. Unliganded Thyroid hormone receptor α controls developmental timing inXenopus tropicalis.Endocrinology, 156: 721–734

    Wen L., Shibata Y., Su D., Fu L., Luu N., Shi Y. B.2017. Thyroid hormone receptor α controls developmental timing and regulates the rate and coordination of tissue-specific metamorphosis inXenopus tropicalis. Endocrinology 158: 1985–1998

    Wu W., Niles E. G., LoVerde P. T.2007. Thyroid hormone receptor orthologues from invertebrate species with emphasis onSchistosoma mansoni. BMC Evol Biol, 7: 150

    Yaoita Y., Brown D. D.1990. A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Gene Dev, 4: 1917–1924

    Yaoita Y., Shi Y. B., Brown D. D.1990.Xenopus laevisalpha and beta thyroid hormone receptors. PNAS, 87: 8684

    Zhao L. Y., Liu L. S., Wang S. H., Wang H. Y., Jiang J. P.2016.Transcriptome profiles of metamorphosis in the ornamented pygmy frogMicrohyla fissipesclarify the functions of thyroid hormone receptors in metamorphosis. Sci Rep, 6: 27310

    xxx96com| 露出奶头的视频| 国产精品女同一区二区软件 | 欧美在线黄色| 免费观看人在逋| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 国内精品美女久久久久久| 午夜福利欧美成人| 我要搜黄色片| 99久久综合精品五月天人人| 搞女人的毛片| 国产不卡一卡二| 天美传媒精品一区二区| 欧美3d第一页| 在线观看舔阴道视频| 日本免费一区二区三区高清不卡| 十八禁网站免费在线| 国产精品 国内视频| 婷婷丁香在线五月| 岛国在线观看网站| 国产高清激情床上av| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 亚洲美女黄片视频| 亚洲七黄色美女视频| 首页视频小说图片口味搜索| 99久久99久久久精品蜜桃| 久久久久久九九精品二区国产| 国产成年人精品一区二区| a在线观看视频网站| 国产久久久一区二区三区| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 九九热线精品视视频播放| 久99久视频精品免费| 中文字幕久久专区| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 熟女人妻精品中文字幕| netflix在线观看网站| 亚洲 国产 在线| 国产国拍精品亚洲av在线观看 | 日韩精品中文字幕看吧| 国产精品香港三级国产av潘金莲| 亚洲精品久久国产高清桃花| 精品久久久久久久久久免费视频| 国产乱人视频| 欧美性感艳星| 欧美丝袜亚洲另类 | 男女那种视频在线观看| 日本黄色视频三级网站网址| 国产成年人精品一区二区| 午夜免费激情av| 国产av一区在线观看免费| av福利片在线观看| 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 日本熟妇午夜| 丁香欧美五月| 国产精品 国内视频| 亚洲不卡免费看| 久久久久国产精品人妻aⅴ院| 精品久久久久久,| 制服丝袜大香蕉在线| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 久久6这里有精品| 18禁黄网站禁片午夜丰满| 国产激情偷乱视频一区二区| 午夜福利高清视频| 超碰av人人做人人爽久久 | 国产高清视频在线播放一区| 亚洲av日韩精品久久久久久密| 国产成人aa在线观看| 看片在线看免费视频| 日韩免费av在线播放| 国产精品三级大全| 国产精品久久久久久久久免 | 精品国产亚洲在线| 亚洲18禁久久av| 亚洲国产色片| 一级毛片高清免费大全| 亚洲精品日韩av片在线观看 | 免费av观看视频| 99国产极品粉嫩在线观看| 最近视频中文字幕2019在线8| 在线看三级毛片| 中文资源天堂在线| 热99在线观看视频| 一本一本综合久久| 中文字幕精品亚洲无线码一区| 免费观看精品视频网站| 日韩欧美 国产精品| 少妇的逼好多水| 久99久视频精品免费| 中文字幕av在线有码专区| 久久欧美精品欧美久久欧美| 欧美成人性av电影在线观看| 观看免费一级毛片| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 看免费av毛片| 国产成人系列免费观看| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 热99re8久久精品国产| 国产午夜精品论理片| av欧美777| 桃红色精品国产亚洲av| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 国产黄色小视频在线观看| 校园春色视频在线观看| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 看免费av毛片| 国产一区在线观看成人免费| www.www免费av| 看免费av毛片| 国产不卡一卡二| 十八禁人妻一区二区| 免费观看精品视频网站| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 99久久精品一区二区三区| 2021天堂中文幕一二区在线观| av视频在线观看入口| 中文在线观看免费www的网站| 国产99白浆流出| 九九热线精品视视频播放| 国产精品久久久久久久久免 | 欧美+亚洲+日韩+国产| 天美传媒精品一区二区| 天堂影院成人在线观看| 日韩欧美 国产精品| 国产精品女同一区二区软件 | 欧美中文日本在线观看视频| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 手机成人av网站| 丰满人妻一区二区三区视频av | 在线天堂最新版资源| 亚洲精品美女久久久久99蜜臀| xxxwww97欧美| 亚洲av二区三区四区| www.999成人在线观看| 国产成人aa在线观看| 日韩国内少妇激情av| 国产精品av视频在线免费观看| tocl精华| 激情在线观看视频在线高清| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 亚洲无线在线观看| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 欧美激情在线99| 国产高清三级在线| 国产av在哪里看| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| 热99在线观看视频| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 波多野结衣高清作品| 美女高潮的动态| 女同久久另类99精品国产91| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 好男人电影高清在线观看| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| a在线观看视频网站| 99久久99久久久精品蜜桃| 亚洲美女视频黄频| 国产美女午夜福利| 九九在线视频观看精品| 露出奶头的视频| svipshipincom国产片| 天堂网av新在线| 亚洲av成人不卡在线观看播放网| 午夜老司机福利剧场| 一区二区三区国产精品乱码| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 亚洲 欧美 日韩 在线 免费| 两个人视频免费观看高清| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 日本黄色片子视频| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 免费观看精品视频网站| 香蕉av资源在线| e午夜精品久久久久久久| 一级黄色大片毛片| 俄罗斯特黄特色一大片| 99久久精品一区二区三区| 国产高清激情床上av| 一个人观看的视频www高清免费观看| 日本三级黄在线观看| 久久精品国产99精品国产亚洲性色| 色精品久久人妻99蜜桃| 精品99又大又爽又粗少妇毛片 | 亚洲美女黄片视频| 免费观看人在逋| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 九色国产91popny在线| 精品一区二区三区视频在线观看免费| 亚洲av免费在线观看| 男人和女人高潮做爰伦理| 夜夜躁狠狠躁天天躁| 免费在线观看影片大全网站| 亚洲国产欧美人成| 三级毛片av免费| 中文资源天堂在线| 国产真人三级小视频在线观看| 18美女黄网站色大片免费观看| 午夜久久久久精精品| 色哟哟哟哟哟哟| 亚洲av电影在线进入| 国产成人欧美在线观看| 婷婷亚洲欧美| 男女床上黄色一级片免费看| 亚洲国产色片| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 国产探花在线观看一区二区| 国产91精品成人一区二区三区| 欧美中文日本在线观看视频| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 国产精品1区2区在线观看.| av在线天堂中文字幕| 淫妇啪啪啪对白视频| avwww免费| 免费在线观看成人毛片| 一进一出抽搐gif免费好疼| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 丰满乱子伦码专区| 99精品在免费线老司机午夜| 国产精品一区二区三区四区久久| 欧美大码av| 亚洲国产精品999在线| 亚洲国产色片| av在线蜜桃| 精品久久久久久久末码| 成人国产综合亚洲| 最近最新中文字幕大全免费视频| 一本综合久久免费| 亚洲狠狠婷婷综合久久图片| 午夜视频国产福利| 久久香蕉国产精品| 99热精品在线国产| 天堂动漫精品| 国产成人a区在线观看| 精品国产三级普通话版| 91麻豆av在线| 亚洲精品日韩av片在线观看 | 国产99白浆流出| 日本 欧美在线| 亚洲在线自拍视频| 国产av在哪里看| 1024手机看黄色片| 内射极品少妇av片p| 最新中文字幕久久久久| 亚洲欧美精品综合久久99| 国产精品久久久久久亚洲av鲁大| 精品熟女少妇八av免费久了| 身体一侧抽搐| tocl精华| 人妻夜夜爽99麻豆av| 亚洲精品久久国产高清桃花| 白带黄色成豆腐渣| 日韩欧美免费精品| 特级一级黄色大片| 我要搜黄色片| 又黄又粗又硬又大视频| 日韩欧美免费精品| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 18+在线观看网站| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻熟人妻熟丝袜美 | 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 久久久精品大字幕| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 淫妇啪啪啪对白视频| 精品国产美女av久久久久小说| 99久久综合精品五月天人人| 中文字幕人成人乱码亚洲影| 久久草成人影院| 波多野结衣高清无吗| 成人av在线播放网站| 成人特级黄色片久久久久久久| 嫩草影院入口| 免费看光身美女| 极品教师在线免费播放| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 偷拍熟女少妇极品色| 一级毛片高清免费大全| 淫秽高清视频在线观看| 91在线观看av| 黄色视频,在线免费观看| 免费人成在线观看视频色| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 亚洲内射少妇av| 男女那种视频在线观看| 色吧在线观看| 天堂网av新在线| 88av欧美| 中文字幕久久专区| 国产一区二区在线av高清观看| 国产成人av激情在线播放| 香蕉av资源在线| 国产av一区在线观看免费| 草草在线视频免费看| 亚洲av不卡在线观看| 久久国产乱子伦精品免费另类| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 在线免费观看不下载黄p国产 | 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 亚洲专区国产一区二区| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 免费看十八禁软件| 中文亚洲av片在线观看爽| 十八禁人妻一区二区| 熟女电影av网| 好男人在线观看高清免费视频| 国产淫片久久久久久久久 | 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| av国产免费在线观看| 欧美一级毛片孕妇| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 国产亚洲精品综合一区在线观看| 色噜噜av男人的天堂激情| 国产成人影院久久av| 熟妇人妻久久中文字幕3abv| 亚洲七黄色美女视频| 日韩精品中文字幕看吧| 18美女黄网站色大片免费观看| 久久国产精品影院| 禁无遮挡网站| 午夜福利高清视频| av片东京热男人的天堂| 日韩人妻高清精品专区| 99热6这里只有精品| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器| 日韩欧美国产一区二区入口| 亚洲人成伊人成综合网2020| 久久国产乱子伦精品免费另类| www国产在线视频色| 18禁黄网站禁片免费观看直播| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 国产私拍福利视频在线观看| 脱女人内裤的视频| or卡值多少钱| 日本熟妇午夜| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 欧美黄色淫秽网站| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看 | 久久久久久久久久黄片| 窝窝影院91人妻| 久久久久久大精品| 国产免费男女视频| 久久天躁狠狠躁夜夜2o2o| 午夜两性在线视频| 亚洲成人久久爱视频| 日韩欧美国产一区二区入口| 国产精品久久久久久久久免 | 国产精品三级大全| 欧美日韩国产亚洲二区| 91久久精品国产一区二区成人 | 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 亚洲国产色片| 午夜影院日韩av| 国产v大片淫在线免费观看| 国产主播在线观看一区二区| 男女那种视频在线观看| 90打野战视频偷拍视频| 亚洲最大成人中文| 国产成人影院久久av| 老汉色∧v一级毛片| 女警被强在线播放| 一级a爱片免费观看的视频| 日本三级黄在线观看| 99热只有精品国产| 中文字幕高清在线视频| 两个人视频免费观看高清| 变态另类成人亚洲欧美熟女| 精品一区二区三区视频在线 | 高清在线国产一区| 少妇的逼好多水| netflix在线观看网站| 日本a在线网址| 成年版毛片免费区| 久久性视频一级片| 亚洲精品在线观看二区| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 丁香六月欧美| 一夜夜www| 久久国产精品影院| 操出白浆在线播放| 亚洲精品日韩av片在线观看 | 欧美日韩乱码在线| 成人高潮视频无遮挡免费网站| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 97超级碰碰碰精品色视频在线观看| 欧美在线黄色| 男女那种视频在线观看| 国产一区二区三区在线臀色熟女| 99久久九九国产精品国产免费| 成人无遮挡网站| 日本黄大片高清| x7x7x7水蜜桃| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 午夜免费男女啪啪视频观看 | 亚洲精品在线美女| 午夜激情福利司机影院| 一区福利在线观看| 国产色婷婷99| 乱人视频在线观看| 国语自产精品视频在线第100页| 一本一本综合久久| 亚洲成人精品中文字幕电影| 在线播放国产精品三级| 国产一区二区亚洲精品在线观看| 757午夜福利合集在线观看| 男人的好看免费观看在线视频| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 国产高清激情床上av| 脱女人内裤的视频| 18禁美女被吸乳视频| 午夜两性在线视频| 国产视频内射| 婷婷六月久久综合丁香| 日日夜夜操网爽| 日本免费a在线| 在线观看免费视频日本深夜| 中文字幕精品亚洲无线码一区| 少妇丰满av| 人妻丰满熟妇av一区二区三区| 国产精品女同一区二区软件 | 国产精品一区二区三区四区免费观看 | 色综合欧美亚洲国产小说| 99热只有精品国产| 国产精品亚洲美女久久久| www.www免费av| 男人舔奶头视频| 日韩欧美在线二视频| 麻豆国产97在线/欧美| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 亚洲无线在线观看| av天堂中文字幕网| 在线免费观看不下载黄p国产 | 国产真实伦视频高清在线观看 | 久久伊人香网站| АⅤ资源中文在线天堂| 亚洲最大成人中文| 精品一区二区三区视频在线 | 高潮久久久久久久久久久不卡| 制服丝袜大香蕉在线| 亚洲人成网站在线播放欧美日韩| xxxwww97欧美| 亚洲,欧美精品.| 一本综合久久免费| 免费观看的影片在线观看| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩乱码在线| 国产极品精品免费视频能看的| 国产69精品久久久久777片| 免费电影在线观看免费观看| 一本综合久久免费| 亚洲av免费高清在线观看| 少妇人妻一区二区三区视频| 高潮久久久久久久久久久不卡| 一夜夜www| 我的老师免费观看完整版| 婷婷丁香在线五月| 国产黄a三级三级三级人| 国产精品乱码一区二三区的特点| 麻豆国产av国片精品| 欧美在线黄色| 国产伦精品一区二区三区四那| 男女视频在线观看网站免费| 日韩人妻高清精品专区| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三| 一级毛片女人18水好多| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 中文字幕熟女人妻在线| 国产精品国产高清国产av| 可以在线观看的亚洲视频| 男女做爰动态图高潮gif福利片| 国产av麻豆久久久久久久| 母亲3免费完整高清在线观看| 日本免费一区二区三区高清不卡| svipshipincom国产片| 精品久久久久久久毛片微露脸| 欧美区成人在线视频| 欧美最新免费一区二区三区 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品美女久久久久99蜜臀| 欧美激情久久久久久爽电影| 黄色片一级片一级黄色片| www.色视频.com| 99久久99久久久精品蜜桃| 18禁裸乳无遮挡免费网站照片| 欧美一区二区精品小视频在线| 国内精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 欧美中文综合在线视频| 国内揄拍国产精品人妻在线| svipshipincom国产片| 黄片小视频在线播放| 国产av麻豆久久久久久久| 极品教师在线免费播放| 欧美激情久久久久久爽电影| 亚洲精品久久国产高清桃花| 我的老师免费观看完整版| aaaaa片日本免费| 国产成人系列免费观看| 亚洲第一电影网av| 亚洲国产欧洲综合997久久,| 中文字幕高清在线视频| 日本a在线网址| 夜夜看夜夜爽夜夜摸| 亚洲人与动物交配视频| 日韩成人在线观看一区二区三区| 亚洲国产精品久久男人天堂| 中文字幕人妻丝袜一区二区| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久电影 | 欧美+亚洲+日韩+国产| 老司机午夜福利在线观看视频| 91麻豆精品激情在线观看国产| 国产av麻豆久久久久久久| 天美传媒精品一区二区| 小说图片视频综合网站| 成人av在线播放网站| 在线视频色国产色| 国产 一区 欧美 日韩| 国产一区二区激情短视频| 免费看光身美女| 十八禁人妻一区二区| 亚洲国产精品999在线| 麻豆一二三区av精品| 午夜免费激情av| 少妇丰满av| 香蕉久久夜色| 成人av在线播放网站| 国产91精品成人一区二区三区| 欧美激情久久久久久爽电影|