• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design of LaB6 Composite Field Emission Array Cathode

    2018-03-26 02:30:27DENGJiangGEYanbinYUYouandWANGXiaoju
    電子科技大學(xué)學(xué)報 2018年2期

    DENG Jiang, GE Yan-bin , YU You, and WANG Xiao-ju

    (1.College of Optoelectronic Technology, Chengdu University of Information Technology Chengdu 610225;2.Fuzhou BOE Optoelectronics Technology Co.Ltd. Fuzhou 350000;3.School of Optoelectronic Science and Engineering, Universityof Electronic Science and Technology of China Chengdu 610054)

    Compared with traditional thermionic cathode,field emission array cathode (FEAs)has several advantages, such as low operating temperature, strong controllability, large emission current, and short response time.It has attracted extensive attention in the applications of high-frequency devices, flat panel displays, x-ray tube, and so on[1-4].Take the field emission traveling wave tubes (TWTs)as an example.Firstly, it can work at room temperature without any heating equipment, resulting in low power consumption.Secondly, it is very easy to adjust emission current by changing the gate voltage,showing excellent switching characteristics and extremely high response speed.Reference [5]have reported the experimental results of implementation of Mo-FEA as the electron source for a moderate power traveling wave tube operating in the C-band frequency regime.The cold cathode TWT has operated for over 150 h at duty factors up to 10% and beam currents up to 121 mA.Although field emission cathode has made great progress in recent years, there are also some problems in the practical applications, mainly including its emission instability[6-9].The possible reason for the emission instability is that it is very difficult to prepare millions of microtips with the same shape on a silicon substrate.Thus, searching new materials and developing novel structures for field emission arrays are urgently needed.

    A few novel structures of FEAs have been fabricated and shown enhanced performance in some papers.References [10-11]fabricated mesh shaped resistor layers in a FEA, and Ref.[12]manufactured Spindt FEA with distributed series resistors.Both of them confirmed that the resistor grid layers may favorably improve the performance of an FEA.In addition, Ref.[13]reported a Spindt-type FEA with lanthanum hexaboride (LaB6)as the emitting material.It exhibited an average emission current as high as about 0.23 A/tip, implying that LaB6emitter was a promising candidate for high current density vacuum electronic device.

    In this work, a novel structure of Spindt-FEA was proposed.It included three layers: amorphous silicon(a-Si)film as a resistance layer, molybdenum (Mo)film as a transition layer, and LaB6film as an emission layer.The amorphous silicon film could effectively limit the abnormal emission of some microtips, which played a role in protecting the entire field emission cathode array.Molybdenum film connected amorphous silicon and LaB6film through its suitable thermal expansion coefficient, improving the working stability of FEAs.LaB6emitter was introduced to enhance the emission performance of cathodes, owing to its low work function and excellent mechanical stability against ion bombardment.Considering the thermal stress caused by the above three layers stacking, the finite element analysis software ANSYS14.0 was used to simulate the influence of each layer thicknesses on the distribution of thermal stress field of the cathode.The optimal structural parameters were obtained, and the accuracy of the simulation results was verified by a DTI-500 thermal stress meter.

    1 Finite Element Model Establishment

    Figure 1 shows the two-dimensional plane mathematical model of the cathode used in our simulation.Firstly, the thickness of the resistive layer was studied, which seriously affected the emission current of the cathode.According to the literature[13],the emission current of LaB6-FEA single tip was about 0.24 μA at gate voltage of 165 V.Thus, assuming that with the addition of the resistive layer, the gate voltage was reduced by 25%, 30%, 35%, and 40%, and the thickness of the resistive layer could be calculated as 45, 54, 63 and 72 nm respectively on the basis of Ohm’s law and resistance formula.In addition, the thickness of the transition layer was set to 0, 0.1, 0.2,0.3 and 0.4 μm, respectively.The height of silicon substrate and the whole tip were both fixed at 1 μm.

    Fig.1 Simulation model of LaB6 composite field emission array cathode

    Next, the working temperature of LaB6composite field emission array was needed to be confirmed and turned into mathematical language for ANSYS simulation.Because the bottom size and height of the cathode were both in the micron level, the operating temperature was set to steady-state temperature field,that is, the temperature of any point in the cathode did not change with time.In addition, only heat conduction was considered in the heat transferring process,ignoring the thermal convection and thermal radiation.

    During the simulation, it was assumed that the material parameters of cathode (lanthanum hexaboride,molybdenum, amorphous silicon and silicon substrate)did not change with the temperature, so there was no need to define the function of material properties and temperature.Four material parameters associated with thermal analysis were defined: thermal conductivity,elastic modulus, coefficient of thermal expansion, and Poisson’s ratio, as shown in Table 1[14].

    Tab.1 Material parameters of Spindt cathode

    2 Simulation Results and Discussions

    Figure 2 compares the results of the stress simulation of the cathodes at loading temperatures of 80 ℃ and 400 ℃, respectively.It is found that the loading temperature variation has little effect on the thermal field distribution of the model.The maximum stress of both cathodes appear at the center of the molybdenum layer, with the value of 1.54×108Pa and 9.8×108Pa, respectively.In our experiment, the thermal field distribution is the focus.Thus, the loading temperature of the cathode is set to 80 in the next simulation.

    Fig.2 Thermal stress distribution of the cathode at different loading temperatures

    Figure 3 shows the thermal stress distribution of the cathode without a resistive layer and transition layer.The maximum stress up to 8.2×107Pa appears at the emission layer, which is harmful to the working stability of the emitter.

    Fig.3 Thermal stress distribution of the cathode without a resistive layer and transition layer

    Figure 4 shows the thermal stress field of the model without a transition layer (h2=0 nm).The thickness of the resistive layer (h1)is 45 nm and the height of the emitter is 0.955 μm.The equivalent stress distribution of the cathodes with different thickness of resistive layer is similar.It indicates that, when there is no transition layer, the maximum value of the thermal stress appears at the interface between the emission layer and the resistance layer.

    Figure 5 shows the corresponding thermal stress values of the model without a transition layer.The abscissa (h)represents the distance between the points on the center axis of the model and the center of substrate bottom, as shown in Figure 4.It is found that no matter how thick the resistive layer is, the maximum thermal stress always appears at the interface between the emissive layer and the resistive layer.However, with the increase of the thickness of resistive layer, the maximum thermal stress is obviously reduced.In addition, the thermal stress of the emissive layer always keeps at a high value(8.0×107~9.1×107Pa).

    Fig.4 Thermal stress distribution of the cathode without a transition layer (h1=45 nm)

    Fig.5 Thermal stress of the cathode at h2=0 nm

    Figure 6 shows the thermal stress in the model when the thickness of transition layer is 0.1 μm.Compared with Figure 5, the simulation results show obvious changes with the addition of the transition layer.Firstly, the position of the maximum stress in the model changes to the interface between the transition layer and the emission layer.Secondly, the thermal stress value of emission layer is obviously lower than that ofh2=0 μm, which is about 6.5×107~7.8×107Pa.It indicates that, the molybdenum transition layer indeed has an effect on alleviating the thermal stress of the emission layer, acting as a gradient role in the model.However, unfortunately the large stress at the interface leads to the deformation of the transition layer or/and the emission layer, which is bad for the operation stability of the cathode.Thus we can conclude that the parameter ofh2=0.1 μm does not meet the expected design requirements.

    Fig.6 Thermal stress of the cathode at h2=0.1 μm

    Fig.7 Thermal stress of the cathode at h2=0.2 μm

    Figure 7 shows the thermal stress in the model when the thickness of transition layer is 0.2 μm.Regardless of the thickness of the resistive layer, the maximum thermal stress appears inside the transition layer.Compared with the results ofh2=0.1 μm, the thermal stress of the emission layer decreases slightly,which is about 6.4×107~7.7×107Pa.The above two features are beneficial to the cathode stability.Moreover, as the thickness of the resistive layer increases, the maximum value of the thermal stress is smaller.For example, when the thickness of the resistance layer increases from 45~72 nm, the maximum thermal stress decreases by 0.6×107Pa.It is known that, the smaller the thermal stress is, the more stably the cathodes work.Thus, we can conclude that when the transition layer is 0.2 μm and the resistance layer is 72 nm, the simulation results are ideal and the thermal stress distribution of the cathode is shown in Figure 8.

    Fig.8 Thermal stress distribution of the cathode at h1=0.072 μm, h2=0.2 μm

    Figure 9 and Figure 10 show the thermal stress in the model when the thickness of transition layer is 0.3 μm and 0.4 μm, respectively.Compared with the results ofh2=0.2 μm model, the thermal stress of the emission layers in Fig.9 and Fig.10 both increases slightly.All the maximum stress values appear at the interface between the a-Si film and Mo film, which may cause the resistance layer to deform or fall off,and result in operation instability of the cathode.

    Fig.10 Thermal stress of the cathode at h2=0.4 μm

    3 Experimental Results and Discussions

    According to the simulation results, the optimum parameters are as follows: a-Si layer thickness is 72 nm, Mo layer thickness is 200 nm, and LaB6layer thickness is 728 nm.The above parameters were experimentally verified in our paper.Firstly, a-Si film with thickness of ~75 nm was deposited on n-Si substrate, and followed by LaB6film with thickness of ~750 nm.Then another three-layer structure was also prepared, which included a-Si layer (~75 nm thickness), Mo layer (~205 nm thickness)and LaB6layer (~750 nm thickness)in turn.The thermal stress of the above two structures were tested by a thermal stress meter.

    Tab.2 Thermal stress test results of a-Si-LaB6 double films

    Tab.3 Thermal stress test results of a-Si-Mo-LaB6 triple films

    Table 2 and Table 3 show the results of thermal stress analysis of the double and triple films,respectively.When there is no molybdenum transition layer (Tab.2), the thermal stress of amorphous silicon layer is much larger than that of lanthanum hexaboride layer, which is consistent with the simulation results in Fig.5 (h1=72 nm).The average thermal stress of the amorphous silicon layer and the lanthanum hexaboride layer in Fig.5 (h1=72 nm)are calculated to be 8.5×107Pa and 8.3×107Pa, respectively, which are slightly lower than the test results.

    On the other hand, when the molybdenum transition layer is added (Tab.3), the maximum thermal stress value appears in the molybdenum film layer,which is consistent with the simulation curve in Fig.7(h1=72 nm).Compared with the data in Tab.2, the thermal stress of the lanthanum hexaboride layer is greatly reduced, confirming that the molybdenum transition layer does have an effect on alleviating the thermal stress of the emission layer.In addition, the average thermal stresses of the amorphous silicon layer,molybdenum layer, and lanthanum hexaboride layer in Fig.7 (h1=72 nm)are 8.0×107, 8.5×107and 6.6×107Pa,respectively.The possible reason for the thermal stress difference between the measurement and simulation results is that, the simulation result is the average stress under the ideal parameters of each layer, while the test value is the single experimental result.However, it should be noted that, the experimental value of thermal stress is less than 10% compared with the simulation result, which is within the allowable range.

    4 Conclusions

    In conclusion, the influence of the thickness of each layer of LaB6composite field emission array on the thermal stress has been simulated based on the ANSYS platform.The optimal structural parameters are determined and verified by experiments, and the following conclusions are obtained:

    1)The thickness of resistive layer does not affect the distribution of the thermal stress field, but the maximum value of the thermal stress decreases with the increase of resistive layer thickness.

    2)The introduction of the transition layer has a significant effect on reducing the thermal stress of the emission layer.

    3)The simulation results show that the optimum structural parameters of the cathode are as follows: the thickness of the resistive layer is 72 nm, the thickness of the transition layer is 200 nm, and the thickness of the emitter layer is 728 nm.

    4)The thermal stress test results are consistent with the simulation results, which confirm the importance of molybdenum film for improving the stability of the cathode.

    [1]CHEN J T, YANG B Q, LIU X H, et al.Field electron emission from pencil-drawn cold cathodes[J].Applied Physics Letters, 2016, 108(19): 193112.

    [2]XU J Z, XU P, OU-YANG W, et al.Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices[J].Applied Physics Letters, 2015, 106(7): 073501.

    [3]KIM H S, CASTRO E J D, LEE C H.Optimum design for the carbon nanotube based micro-focus x-ray tube[J].Vacuum, 2015, 111: 142-149.

    [4]QIN F, WANG D, XU S, et al.Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode[J].Review of Scientific Instruments, 2016, 87: 044101.

    [5]WHALEY D R, BELLEW C L, SPINDT C A.100 W operation of a cold cathode TWT[J].IEEE Transactions on Electron Devices, 2009, 56(5): 896-905.

    [6]SCHEOEBEL P R, BRODIE I.Surface-science aspect of vacuum microelectronics[J].Journal of Vacuum Science and Technology, 1995, B13(4): 1391-1410.

    [7]CHALAMALA B R, REUSS R H.Studies on the interaction between thin film materials and Mo field emitter arrays[J].Journal of Vacuum Science and Technology, 2000, B18(4):1825-1832.

    [8]FENG J J.Stability of field emitter array in microwave tubes[J].Journal of Vacuum Science and Technology, 2005,25: 16-19.

    [9]YUAN J, DU B C, LI D J.Analysis on degradation mechanism in emission current of field-emitter array[J].Microfabrication Technology, 2002, 3: 70.

    [10]QU X S, LI D J, YAO B L.Influence of mesh shaped resistive layers on field emission arrays[J].Journal of Vacuum Science and Technology, 2000, 20(4): 229-231.

    [11]QU X S, LI D J, YAO B L.The distribution resistor layer on FEA[J].Semiconductor Optoelectronics, 2000, 21(3):196-202.

    [12]WANG W, LI D J, YAO B L, et al.Research on Spindt FEA with distributed series lateral resistor layer[J].Microfabrication Technology, 2000(2): 13-18.

    [13]QI K C, LIN Z L, CHEN W B, et al.Formation of extremely high current density LaB6field emission arrays via e-beam deposition[J].Applied Physics Letters, 2008, 93:093503.

    [14]CHO J R, TINSLEY O J.Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme[J].Comput Methods Appl Mech Engrg, 2000, 188: 17-38.

    久久99热这里只有精品18| 成人美女网站在线观看视频| 校园春色视频在线观看| 国产一级毛片在线| 高清毛片免费看| 国产亚洲av片在线观看秒播厂 | 欧美xxxx黑人xx丫x性爽| 能在线免费看毛片的网站| 1024手机看黄色片| 1024手机看黄色片| 18禁裸乳无遮挡免费网站照片| 丰满乱子伦码专区| 在线观看一区二区三区| 天天躁夜夜躁狠狠久久av| 久久99精品国语久久久| 国产成人精品久久久久久| 国产精品.久久久| 成人欧美大片| 青春草视频在线免费观看| 国产成人午夜福利电影在线观看| 天天一区二区日本电影三级| 亚洲成人av在线免费| 国产老妇伦熟女老妇高清| 1024手机看黄色片| 免费人成在线观看视频色| 成人特级黄色片久久久久久久| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 亚洲精华国产精华液的使用体验 | 国产真实乱freesex| 久久久a久久爽久久v久久| 一个人看的www免费观看视频| 18禁黄网站禁片免费观看直播| 最近视频中文字幕2019在线8| 久久久色成人| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕 | 欧美高清成人免费视频www| 91久久精品电影网| 国产成人福利小说| 久久九九热精品免费| 亚洲av免费高清在线观看| 男人和女人高潮做爰伦理| 久久99热6这里只有精品| 免费一级毛片在线播放高清视频| 国产爱豆传媒在线观看| 色哟哟·www| 好男人在线观看高清免费视频| 国产又黄又爽又无遮挡在线| av天堂中文字幕网| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 国产在视频线在精品| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 免费看日本二区| 亚洲,欧美,日韩| av天堂在线播放| 国产精品爽爽va在线观看网站| 国产精品美女特级片免费视频播放器| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 综合色丁香网| 欧洲精品卡2卡3卡4卡5卡区| 你懂的网址亚洲精品在线观看 | 日韩欧美精品免费久久| 亚洲在线观看片| 免费观看在线日韩| 国国产精品蜜臀av免费| 成年免费大片在线观看| 日韩,欧美,国产一区二区三区 | 久久久精品欧美日韩精品| 日韩成人av中文字幕在线观看| 床上黄色一级片| 国产精品一区二区三区四区久久| 我的女老师完整版在线观看| 亚洲一级一片aⅴ在线观看| 国产一区二区三区在线臀色熟女| 免费人成视频x8x8入口观看| 国产精品嫩草影院av在线观看| 色视频www国产| 亚洲精品乱码久久久v下载方式| 日本一本二区三区精品| 亚洲无线观看免费| 插逼视频在线观看| 人人妻人人澡欧美一区二区| 国产精品,欧美在线| 国产精品女同一区二区软件| 春色校园在线视频观看| 干丝袜人妻中文字幕| 91狼人影院| 亚洲自拍偷在线| 日韩成人av中文字幕在线观看| 如何舔出高潮| 中文亚洲av片在线观看爽| av免费在线看不卡| 国产亚洲精品久久久com| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 免费人成在线观看视频色| 日韩av不卡免费在线播放| 噜噜噜噜噜久久久久久91| 日韩 亚洲 欧美在线| 18+在线观看网站| 国产亚洲5aaaaa淫片| 精品免费久久久久久久清纯| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 精品午夜福利在线看| 国产精品久久久久久精品电影小说 | 天天躁日日操中文字幕| 高清毛片免费看| 夫妻性生交免费视频一级片| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 国产 一区精品| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 高清日韩中文字幕在线| 亚洲人与动物交配视频| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 国产精品.久久久| 久久中文看片网| 日韩亚洲欧美综合| 亚洲性久久影院| 看非洲黑人一级黄片| 天天躁日日操中文字幕| 99久久精品一区二区三区| 一进一出抽搐gif免费好疼| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 日韩大尺度精品在线看网址| 91av网一区二区| 日日干狠狠操夜夜爽| 欧美色欧美亚洲另类二区| 美女大奶头视频| 日韩一本色道免费dvd| 亚洲欧美精品自产自拍| eeuss影院久久| 中文字幕熟女人妻在线| 亚洲国产精品成人久久小说 | 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| a级毛片a级免费在线| 毛片女人毛片| 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频 | 欧美性猛交黑人性爽| 色视频www国产| 白带黄色成豆腐渣| 国产一区二区激情短视频| 成年免费大片在线观看| 夫妻性生交免费视频一级片| 我要看日韩黄色一级片| 成人亚洲精品av一区二区| 欧美区成人在线视频| 九色成人免费人妻av| 99热这里只有是精品在线观看| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 特大巨黑吊av在线直播| 天天躁夜夜躁狠狠久久av| 欧美性感艳星| 丝袜喷水一区| 国产 一区精品| 黄色视频,在线免费观看| 简卡轻食公司| 国产高清不卡午夜福利| 免费大片18禁| 成人欧美大片| 久久久久久久久大av| 热99re8久久精品国产| 久久久久国产网址| a级毛片a级免费在线| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 久久久精品欧美日韩精品| 亚洲精品乱码久久久v下载方式| 成人毛片60女人毛片免费| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 村上凉子中文字幕在线| 麻豆国产av国片精品| 麻豆成人av视频| av免费在线看不卡| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 有码 亚洲区| 欧美成人精品欧美一级黄| 亚洲中文字幕一区二区三区有码在线看| 激情 狠狠 欧美| 少妇熟女欧美另类| 国产 一区 欧美 日韩| 久久久精品94久久精品| 日日干狠狠操夜夜爽| 男人的好看免费观看在线视频| 内地一区二区视频在线| 久久鲁丝午夜福利片| 精品人妻视频免费看| 我要看日韩黄色一级片| 国产日本99.免费观看| 免费av观看视频| 亚洲精品自拍成人| 国产视频首页在线观看| 韩国av在线不卡| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 国产男人的电影天堂91| 免费观看的影片在线观看| 内地一区二区视频在线| 老熟妇乱子伦视频在线观看| 国产极品天堂在线| 成年av动漫网址| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 人妻久久中文字幕网| 看免费成人av毛片| 久久亚洲精品不卡| 亚洲精品国产av成人精品| 国产精品野战在线观看| 村上凉子中文字幕在线| 亚洲精品影视一区二区三区av| 乱码一卡2卡4卡精品| 永久网站在线| 久久久精品94久久精品| 亚洲人与动物交配视频| 国产亚洲精品av在线| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 三级国产精品欧美在线观看| 日韩强制内射视频| 成人鲁丝片一二三区免费| 精品少妇黑人巨大在线播放 | av.在线天堂| 草草在线视频免费看| 毛片女人毛片| 亚洲图色成人| 亚洲色图av天堂| 精品熟女少妇av免费看| 久久久久久伊人网av| 有码 亚洲区| 欧美成人一区二区免费高清观看| 成人综合一区亚洲| 日本黄色视频三级网站网址| 只有这里有精品99| 亚洲自偷自拍三级| 亚洲欧美清纯卡通| 亚洲丝袜综合中文字幕| 2022亚洲国产成人精品| 我的女老师完整版在线观看| 免费搜索国产男女视频| 国产成年人精品一区二区| 97热精品久久久久久| 十八禁国产超污无遮挡网站| 三级国产精品欧美在线观看| 久久久精品94久久精品| 久久99热6这里只有精品| 国产精品国产高清国产av| 一区福利在线观看| 亚洲av成人精品一区久久| 国产高清激情床上av| 卡戴珊不雅视频在线播放| 亚洲国产精品久久男人天堂| 高清午夜精品一区二区三区 | 欧美色欧美亚洲另类二区| 日本熟妇午夜| 国产高清激情床上av| 免费观看的影片在线观看| 久久久欧美国产精品| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app| 男女啪啪激烈高潮av片| 久久久久网色| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 精品久久久噜噜| 成人国产麻豆网| 啦啦啦啦在线视频资源| 只有这里有精品99| 麻豆乱淫一区二区| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 三级经典国产精品| 国产高清有码在线观看视频| 特级一级黄色大片| 亚洲精品国产成人久久av| 亚洲在线自拍视频| 亚洲自偷自拍三级| 国产成人精品一,二区 | 国产伦精品一区二区三区四那| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| 日日干狠狠操夜夜爽| 中文字幕制服av| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器| 99久久久亚洲精品蜜臀av| 97热精品久久久久久| 欧美人与善性xxx| 日韩中字成人| 国产精品女同一区二区软件| 免费av毛片视频| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 欧美+日韩+精品| 黄片无遮挡物在线观看| 免费大片18禁| 少妇熟女欧美另类| 大香蕉久久网| 国产精品一区二区三区四区久久| 免费在线观看成人毛片| 不卡视频在线观看欧美| 高清日韩中文字幕在线| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 亚洲成人中文字幕在线播放| 老司机影院成人| 欧美成人一区二区免费高清观看| 丝袜喷水一区| 国产 一区精品| 男人和女人高潮做爰伦理| 黄色一级大片看看| 99热只有精品国产| 最后的刺客免费高清国语| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 69av精品久久久久久| 麻豆一二三区av精品| 日韩中字成人| 午夜激情欧美在线| 亚洲最大成人中文| 亚洲精品国产成人久久av| 国产精品永久免费网站| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 国产 一区精品| 简卡轻食公司| 亚洲成人av在线免费| 色综合站精品国产| 亚洲国产精品国产精品| 我的老师免费观看完整版| 国产黄色小视频在线观看| av在线老鸭窝| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 日韩,欧美,国产一区二区三区 | 自拍偷自拍亚洲精品老妇| 亚洲精品国产av成人精品| 国产又黄又爽又无遮挡在线| 久久99蜜桃精品久久| 男插女下体视频免费在线播放| 色5月婷婷丁香| 国产一区亚洲一区在线观看| 亚洲精品456在线播放app| 国产精品一区二区性色av| 亚洲欧美日韩卡通动漫| 看片在线看免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看午夜福利视频| 中文资源天堂在线| 美女黄网站色视频| 国产亚洲av片在线观看秒播厂 | 免费观看精品视频网站| 你懂的网址亚洲精品在线观看 | 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 在线免费十八禁| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 麻豆国产av国片精品| 免费无遮挡裸体视频| 亚洲欧洲日产国产| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 在线观看午夜福利视频| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂 | 国产成人aa在线观看| 亚洲精品亚洲一区二区| 久久精品国产99精品国产亚洲性色| av免费观看日本| 亚洲av不卡在线观看| 亚洲美女视频黄频| 又黄又爽又刺激的免费视频.| 欧美精品国产亚洲| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 18+在线观看网站| 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 嫩草影院入口| 久久精品91蜜桃| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| av女优亚洲男人天堂| 亚洲av中文av极速乱| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 精品久久国产蜜桃| 内射极品少妇av片p| 欧美在线一区亚洲| 变态另类成人亚洲欧美熟女| 国产片特级美女逼逼视频| 亚洲av中文av极速乱| 男人狂女人下面高潮的视频| 搡女人真爽免费视频火全软件| 国产又黄又爽又无遮挡在线| 色哟哟·www| 国产伦理片在线播放av一区 | 直男gayav资源| 深夜精品福利| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 欧美性猛交黑人性爽| 久久久久久久久久成人| 在线观看午夜福利视频| 久久久久久九九精品二区国产| 青春草国产在线视频 | 国产人妻一区二区三区在| 国产亚洲5aaaaa淫片| 中文字幕制服av| 成人国产麻豆网| 日本一本二区三区精品| 嫩草影院精品99| 人妻制服诱惑在线中文字幕| 男人的好看免费观看在线视频| 一进一出抽搐gif免费好疼| 国产亚洲欧美98| 亚洲欧美成人综合另类久久久 | 两个人的视频大全免费| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 欧美一区二区国产精品久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址| 看免费成人av毛片| 中文欧美无线码| 久久久国产成人免费| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 免费观看在线日韩| 青春草国产在线视频 | 日韩高清综合在线| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲网站| 午夜a级毛片| 黄色欧美视频在线观看| 少妇裸体淫交视频免费看高清| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看 | av在线播放精品| 国产熟女欧美一区二区| 午夜激情福利司机影院| 成人国产麻豆网| 国产探花在线观看一区二区| 超碰av人人做人人爽久久| 在线a可以看的网站| 久99久视频精品免费| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全电影3| 淫秽高清视频在线观看| .国产精品久久| 可以在线观看的亚洲视频| 哪个播放器可以免费观看大片| 观看免费一级毛片| 国产一区二区三区在线臀色熟女| .国产精品久久| 亚洲成人久久爱视频| 3wmmmm亚洲av在线观看| 免费观看精品视频网站| 狠狠狠狠99中文字幕| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 精品一区二区免费观看| 免费av观看视频| 欧美xxxx黑人xx丫x性爽| 日韩一本色道免费dvd| 特大巨黑吊av在线直播| 天堂√8在线中文| 亚洲欧美日韩东京热| 男人的好看免费观看在线视频| 国产极品天堂在线| 国产精品永久免费网站| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲人与动物交配视频| 99久久精品热视频| 97超碰精品成人国产| 欧美成人一区二区免费高清观看| 日韩精品青青久久久久久| 久久精品国产亚洲av天美| 国产精品日韩av在线免费观看| 伦理电影大哥的女人| 人妻少妇偷人精品九色| 国产不卡一卡二| 亚洲丝袜综合中文字幕| 一个人观看的视频www高清免费观看| 国产高潮美女av| 中文字幕制服av| 精品久久久久久久久av| 岛国毛片在线播放| 国产人妻一区二区三区在| 在线观看一区二区三区| 麻豆一二三区av精品| 嫩草影院入口| 国产av在哪里看| 中文在线观看免费www的网站| 乱人视频在线观看| 日本黄色视频三级网站网址| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久影院| 搞女人的毛片| 亚洲欧美日韩高清专用| 少妇被粗大猛烈的视频| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 天天躁夜夜躁狠狠久久av| 亚洲图色成人| 黄色视频,在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 欧美潮喷喷水| 免费搜索国产男女视频| 国产三级中文精品| 国产大屁股一区二区在线视频| 一级毛片久久久久久久久女| 身体一侧抽搐| 99热这里只有精品一区| or卡值多少钱| 欧美三级亚洲精品| 女的被弄到高潮叫床怎么办| 成年女人永久免费观看视频| 亚洲成人av在线免费| 国产69精品久久久久777片| 在线免费观看的www视频| 国产伦在线观看视频一区| 亚洲四区av| 国产一区二区在线观看日韩| 亚洲av中文字字幕乱码综合| 最后的刺客免费高清国语| 欧美日韩在线观看h| 精品国内亚洲2022精品成人| 美女xxoo啪啪120秒动态图| 国产午夜精品论理片| 亚洲欧洲国产日韩| 欧美zozozo另类| 黄色日韩在线| 99riav亚洲国产免费| 日本黄大片高清| 国产亚洲欧美98| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久 | 夫妻性生交免费视频一级片| 国产成人a∨麻豆精品| 成人特级黄色片久久久久久久| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 晚上一个人看的免费电影| 久久久久久久久大av| 免费人成在线观看视频色| 99九九线精品视频在线观看视频| 亚洲国产精品合色在线| 中国美女看黄片| 亚洲成人久久性| 日本撒尿小便嘘嘘汇集6| 少妇被粗大猛烈的视频| 日本一本二区三区精品| 久久久精品94久久精品| 少妇熟女aⅴ在线视频| 一本久久中文字幕| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本熟妇午夜| 三级毛片av免费| 黑人高潮一二区| 人人妻人人澡人人爽人人夜夜 | 一区二区三区四区激情视频 | 国内久久婷婷六月综合欲色啪|