• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳載金屬單原子催化劑

    2018-03-15 10:49:21章海霞閆曉麗許并社郭俊杰
    新型炭材料 2018年1期
    關(guān)鍵詞:俊杰理工大學(xué)太原

    李 海, 章海霞, 閆曉麗, 許并社, 郭俊杰

    (新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原理工大學(xué),山西 太原030024)

    1 Introduction

    In heterogeneous catalysis system, supported metal catalysts are widely used in many important industrial catalytic reactions. It has long been recognized that downsizing the metal particles is a key process to improve the performance of the supported metal catalysts (shown in Fig. 1)[1].

    Fig. 1 Specific activity of catalysts as a function of metal loadings and sizes[1].

    Extensive investigations have revealed that sub-nanometer clusters have a better catalytic activity or selectivity than larger particles[2-4]and, in particular, Qiao et al.[5]first prepared a well dispersed Pt single atom catalysts (SACs) supported on iron oxide with an improved catalytic activity and stability in the CO selective oxidation reaction. Isolating metal atoms greatly improved the utilization efficiency of the metal catalyst, and the adsorption/desorption selectivity of the active species on the different molecules can be changed, which affected the reaction kinetics[6]. Accordingly, metal SACs have recently attracted much attention owing to their incredible catalytic behaviors and the potential to explore new catalytic mechanism[7].

    Nevertheless, reducing the size of metal particles to single atom level can result in extremely the high surface free energy[1]. Their high reactivity would lead to serious aggregation and catalyst deactivation in the preparation and catalysis process, which is an enormous challenge in the industrial applications of SACs. Adopting a high-surface-area support material that strongly interacts with the metal atoms could prevent their aggregation, creating finely dispersed stable metal SACs. Till now, in most single atom catalyst systems, the isolated metal atoms are uniformly anchored to supports such as metal surfaces, metal oxides and carbon materials. Recently graphene-based carbon materials have been adopted to disperse nanoparticles or single atoms for novel catalyst[8]owing to their large specific surface area (high catalyst loading), high electrical conductivity (facilitated electron transfer), and potential low manufacturing cost.

    Herein, we introduce recent advances in the selection of carbon substrate, preparation methods, and the anchoring mechanism of metal SACs. Based on the understanding of single atom catalytic activity, we discuss the development trend and application prospect of this research field.

    2 Selection of substrates

    The improvement of catalyst substrate cannot be avoided in designing the catalyst system because the catalytic behavior of the catalyst can be greatly influenced by the properties of the support material. The effects of the substrate on catalysis include decorative effect, electronic effect, new alloy phase formation and generation of new interface sites[6]. When SACs are mentioned, their high mobility would result in serious aggregation and coarsening, interfering with the density of active sites and limiting the catalytic durability and efficiency[9, 10]. Accordingly, it is necessary to screen out suitable carriers to anchor metal single atoms to avoid the catalyst deactivation due to agglomeration.

    Some metals, for example Cu, Au and Pd, have been used as substrates of SACs and exhibit improved catalytic performances[11-15], in which the single atoms interact with the host metal substrate to form monatomic alloys[16]. Various metal oxide, such as iron oxides, hydroxides[17], and oxide of anionic clusters[18], hollandite-type manganese oxide (HMO)[19], aluminum and cluster anions[20], cerium, titanium and zinc oxides, have also been proven to be good substrate candidates for SACs. It is found that surface defects of metal oxide could serve as anchoring sites for metal clusters or even single atoms[21-23]. In addition, molecular sieves[24, 25]have the advantage superior to metal oxides, providing highly homogeneous sites for the attachment of metal active components. Covalent triazine frameworks (CTFs)[26]and CTFs hybridized with carbon nanoparticles[27], silicon oxide[28]and silicate[29]have been used to load SACs. Recently, metal-organic frameworks (MOFs)[30]have also been widely considered as the substrates for SACs, which have great application prospects. However, the above mentioned SAC supports are of disadvantages including low loading density, instability, or poor tolerance, which could be conquered by using carbon materials instead.

    Table 1 Loadings of different metal single atoms on different carriers

    Graphene, a unique structure of two-dimensional (2D) carbon sheet with one-atomic layer thick[47], is considered to be the building block of many carbon materials such as carbon nanotubes, carbon nanoonions[48]and nanoporous carbon[49]. It is expected that graphene-based materials with unique electric and microstructural characteristics will offer a new type of carbon-metal nanocomposite for the next generation of catalysts[50-53]. Sun et al.[54]observed the Pt single atoms and sub-nanometer clusters on graphene nanosheet (GNS) by high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) (Fig. 2). The Pt/GNS sample prepared by atomic layer deposition (ALD) for 50 cycles exhibited a peak current density of 22.9 mA·cm-2, which was 9.5 times higher than Pt/C catalyst (2.41 mA·cm-2). And the CO oxidation peak for 50 ALD Pt/GNS could not be observed until an exposure time of 2 min, indicating the better CO tolerance.

    Fig. 2 (a, b, c) HAADF-STEM images of Pt/GNS samples with 50, 100, and 150 ALD cycles, respectively; (d) CVs of methanol oxidation on Pt/GNS samples; (e) CO stripping voltammogram as a function of CO poisoning time for the sample with 50 ALD cycles[55].

    Yan et al.[56]atomically dispersed Pd on graphene, which showed excellent catalytic performance in selective hydrogenation of 1,3-butadiene (Fig. 3). More importantly, metal atom aggregation was not observed by HAADF-STEM after either 100 h reaction, or annealing at 400 ℃ in Ar for 1 h.

    Fig. 3 HAADF-STEM images of Pd/graphene at (a) low and (b) high magnifications; Catalytic performances of prepared samples in selective hydrogenation of 1,3-butadiene; (c) Butenes selectivity as a function of conversion by changing the reaction temperatures; (d) the distribution of butenes at 95% conversion; (e) Propene conversion and (f) the distribution of butenes at 98% 1,3-butadiene conversion in hydrogenation of 1,3-butadiene in the presence of propene[56].

    Fig. 4 HAADF-STEM images of the Co-N-C: (a)[57], (b)[58], (c)[59]

    On the other hand, a lot of efforts have been focused on searching for the substitutes for noble metal-based catalysts. Cobalt single atoms on nitrogen-doped graphene (Co-NG)[57]was found to work as extraordinary catalysts towards hydrogen evolution reaction (HER) in both acidic and basic water. Yin et al.[58]achieved stable Co single atoms on nitrogen-doped porous carbon, which exhibited a superior oxygen reduction reaction (ORR) performance with a half-wave potential (0.881 V) to commercial Pt/C. Liu et al.[59]proposed the Co-N4structure in graphene, in which the single Co atom was strongly coordinated with four pyridinic nitrogen atoms within graphitic layers. Such a unique structure exhibited an excellent activity, chemoselectivity and stability for the synthesis of aromatic azo compounds through hydrogenative coupling of nitroarenes.

    Single Fe sites confined in a graphene matrix also showed an excellent catalytic performance for the four-electron reduction of dioxygen to water[60]and oxidation of benzene[61]. The similar structure of FeN4with a Fe atom center and four surrounding N atoms was embedded into the graphene matrix. Qiu et al.[62]synthesized single-atom nickel dopants anchored to three-dimensional nanoporous graphene, which could be used as catalysts of HER in acidic solution. They observed by STEM that the Ni atoms were physically adsorbed onto the hollow centers of the graphene lattice.

    Recently Guo et al. reported the one-step synthesis of Nb SACs[63]and W SACs[64]trapped in onion-like carbon shells as catalysts for the ORR. The atomic scale observation by STEM indicated that metal single atoms incorporated in graphite layers were the active sites responsible for high catalytic ORR performance. This structure effectively ensured the electrochemical stability of catalytically active single atom sites. In addition, high density of defects in carbon shells allowed easy O2penetration and reaction at single metal atom sites. The chronoamperometric curves recorded at -0.40V and a rotation rate of 1 600 rpm in an O2-saturated 0.1 mol/L KOH solution have been used to evaluate the durability of the Nb-in-C complex. The residual current after 30 000 s still remained at 92% of the original value, which indicated that the Nb single atoms were stabilized in graphitic layers (Fig. 5b).

    Fig. 5 ADF images of a single atom (a) Nb-in-C[63] and (c) W-in-C[64]; Chronoamperometric response curve of (b) Nb-in-C complex and (d) WC@C complex in 0.1 mol/L KOH solution with and without the addition of 1 mol/L methanol (CH3OH), at a scan rate of 100 mV·s-1.

    MetalSubstrateMethodLoadingReactionPt[54]GrapheneALD1.52wt%MethanoloxidationPd[55]GrapheneALD0.25wt%Selectivehydrogenationof1,3?butadieneCo[56]N?grapheneImpregnationmethod2.48wt%HERCo[57]N?porouscarbonPyrolysisprocess4wt%ORRCo[58]N?graphiticlayersSupport?sacrificedapproach3.6wt%HydrogenativecouplingofnitroarenesCo[59]GraphiticcarbonNitrideImpregnationmethod?OER/ORRFe[65]N?grapheneWetimpregnation0.5wt%ORRFe[61]N?grapheneBallmillingsynthesis2.7wt%OxidationofbenzeneNi[62]NanoporousgrapheneChemicallyexfoliated0.38at.%HydrogenProductionNb[63]Onion?likecarbonshellArc?discharge?ORRW[64]GraphiticlayersArc?discharge?ORR

    3 Preparation methods

    3.1 Mass-selected soft-landing technique

    The mass-selected soft-landing technique is a powerful method to deposit metal single atoms and nanoparticles on supports. In this method, the metal is gasified by a high frequency laser. Abbet et al.[66]studied the cyclotrimerization of acetylene on size-selected Pdncluster (1≤n≤30) supported on thin MgO(100) films, in which the single Pd atom had a very high activity at low temperature (300 K). However, the ultrahigh vacuum and low production yield had limited its industrial application[1].

    3.2 Impregnation method

    The traditional impregnation method is widely used to prepare heterogeneous catalysts, in which the carrier is impregnated in a precursor solution. The active substance is gradually adsorbed on the surface of the substrate. Fei et al[57]. reported the first achievement of Co SACs on graphene oxide (GO) using CoCl2·6H2O as precursor solution. Catalytically active Pt single atoms onθ-alumina[36, 67]or TiN nanoparticles[68]had also been achieved by this method.

    3.3 Co-precipitation method

    Co-precipitation method is widely used to synthesize the nano-metal catalyst[69-71]by mixing the metal precursor and the carrier, followed by filtering and drying processes. After the Pt single atoms were uniformly dispersed on a FeOxsupport by co-precipitation method[5], Zhang et al. achieved precipitation of different precious metals (Ir[34], Au[40]et al.) on iron oxide. Recently, they synthesized highly active, selective, and extremely stable CeO2-supported Au SACs (Au1/CeO2) for preferential oxidation of CO in H2-rich stream.

    3.4 Atomic layer deposition

    Atomic layer deposition (ALD)[72-74], a process that provides atomic level control of thin film growth using sequential, self-limiting surface reactions, has been widely used to prepare nanomaterials. Yan et al[54]. reported a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the ALD technique. The prepared catalyst showed a much higher activity for methanol oxidation and better CO tolerance than the conventional Pt/C catalyst. Lu et al[56]. reported that atomically dispersed Pd on graphene could be fabricated by ALD technique. The single-atom Pd/graphene catalyst showed a selectivity of about 100% for butenes at a 95% conversion under a mild reaction condition.

    3.5 Solid phase melting method

    Guo et al[75]. reported the Fe?SiO2catalyst prepared by solid phase melting method, which showed a good reactivity after a 60 h test. Single iron sites embedded in the silica matrix could directly convert methane to ethylene and aromatics. They had found that the absence of adjacent iron sites activated the first C—H bond of methane and prevented catalytic C—C coupling.

    3.6 Successive reduction method

    The successive reduction method, also known as the seed mediated growth method, is effective in the size-controlled synthesis of transition metal nanoparticles[76-78]. Zhang et al.[14]synthesized colloidal Au/Pd SACs by a facile successive reduction method, which exhibited a significantly improved catalytic activity (up to 17 times) for glucose oxidation over that of Au nanoclusters (NCs).

    3.7 Arc discharge method

    The traditional carbon arc discharge method was originally used by Iijima[79]to produce multi-walled carbon nanotubes. The direct current arc operates between two graphite electrodes installed in a water-cooled chamber filled with helium gas at subatmospheric pressure. It is a very simple technique and is capable of massive production of carbon/metal nanocomposites[80, 81]. Guo et al.[63]prepared carbon nanoonion-supported Nb SACs by arc discharge between a Nb (99.9%) anode and a carbon cathode. The Nb rod was evaporated by arc-discharging and the product deposited on the chamber wall. They found that single Nb atoms were incorporated into onion-like carbon shells and played a key role in improving ORR catalytic performance.

    4 Anchoring mechanism of carbon supported metal SACs

    Although it is found that stabilizing metal SACs onto the surface of the substrate is effective to avoid their agglomeration and inactivation, the anchoring mechanism of metal single atoms remains unclear. The anchoring mechanism differs from the choice of substrate. For example, the metal single atoms interact with metal substrate by forming monatomic alloys[11-13]. The surface defects could serve as anchoring sites when the metal oxide is used as the substrate[5, 34, 82]. As carbon material is mentioned, some mechanisms have been proposed based on atomic resolution microscopy observations. Metal single-atom is confirmed to anchor to graphene lattice by direct bonding or with an intermediate bridge (shown in Fig. 6).

    Fig. 6 Anchoring types of single metal atoms on graphene.

    Atomic-resolution microscopy investigation by Guo et al.[83]on graphene-based nanoporous carbons demonstrated that they comprise isotropic, three-dimensional networks of wrinkled one-atom-thick graphene sheets(shown in Fig. 7). In each graphene plane, topological defects induced localized rippling of graphene sheets, which interfered with their graphitic stacking, forming nanopores to enhance adsorptions of molecules or metal atoms.

    In the Nb SAC sample, single niobium atoms were observed by STEM, uniformly dispersed and stabilized in the highly defective graphitic shells (shown in Fig. 8). Based on the simulation, it was found that the single niobium atoms occupied substitutional sites of the carbon planes (Type I in Fig. 6). It was indicated that the most favorable substitution sites for single niobium atoms were the triple vacancy of graphene, which was consistent with the experimental observation. This Nb-in-carbon onion structure not only enhanced the overall conductivity for accelerating the exchange of ions and electrons in ORR, but also suppressed the agglomeration of metal single atom in the process of chemical/thermal reaction. The same anchored mechanism of metal single atoms was confirmed in the metal single atom tungsten catalysts stabilized in graphitic layers[64].

    Qiu et al.[62]observed that Ni single atoms occupied carbon sites in the graphene lattices (Type II in Fig. 6) by STEM. The partial density of states projected to the Ni atom and the three surrounding C atoms, together with their overlapping, indicating strong C-Ni binding (shown in Fig. 9).

    Fig. 7 Atomic-resolution ADF-STEM images of graphene-based nanoporous carbons[83].

    Fig. 8 Direct observation of single niobium atoms trapped in carbon onion structure. The schematic diagram of the most energetically advantageous configuration of single niobium atoms incorporated into defects of single-layer carbon plane[64].

    Fig. 9 HAADF-STEM image of Ni-doped graphene. Inset: Enlarged HAADF-STEM image (white circle), which shows a substitutional Ni atom (bright orange spot) occupying a carbon site in the graphene lattice (white lines)[62].

    On the other hand, nitrogen-doped graphene has been used to stabilize Co[58]or Fe[61]atoms and a unique structure with a metal atom center and four surrounding N atoms embedded into graphene lattice (Type III in Fig. 6) has been suggested (shown in Fig. 10). Recently, this hypothesized structure was directly observed by Lin[84]using gentle STEM. They suggested that the structure tended to trap a series of transition metal atoms (Mg, Al, Ca, Ti, Cr, Mn, and Fe) as individual atoms.

    In addition, Sun and Lu et al. prepared Pt[55], Pd[56]metal single atom by ALD and suggested that metal single atoms were connected to oxygen containing function groups on the surface of graphene (Type IV in Fig. 6). This hypothesis had been proved by the STEM observation of oxygen atoms in oxidized graphene. Guo et al.[85]found that the oxygen atoms constructed stable crown ether configurations within the graphene lattice. It was indicated that the crown ether in graphene tended to selectively bind various metal atoms depending on their ring size (Fig. 11). So their discovery could introduce a new wave of investigations and applications of chemically functionalized graphene.

    Fig. 10 Scheme of a proposed mechanism for synthesis of FeN4/GN via a facile ball milling method[61].

    Fig. 11 Atomic structures of oxygen atoms incorporated in graphene multivacancies[85].

    5 Conclusions and prospects

    The maximum utilization of metal catalyst can be realized by downsizing the metal particles to isolated single atoms. Nevertheless, practical supported metal SACs are normally inhomogeneous and usually consist of a mixture of different sizes from nanoparticles to subnanometer clusters, which limits the accurate test of catalytic behaviors of SACs. Furthermore, most of the current metal SACs are limited by the extremely low metal loading and density of single active sites. The multi-layer of defective graphitic layers are rich in anchoring sites of single atoms, thus increasing the metal loading and catalytic efficiency[58, 59].

    Now, the synthesis and characterization of well dispersed metal single atoms, as well as the test of reaction on single active site have been achieved. The catalytic mechanism may be significantly changed due to the low-coordination environment, quantum size effect, and the improved metal-support interactions. The better understanding of the metal-substrate reaction and single active site catalytic mechanism is necessary for designing new single-atom catalyst.

    In the near future, we could make a significant progress in understanding the fundamental properties of supported metal SACs and realize the ultimate goal of manipulating individual atoms by innovative synthesis method, advanced characterization and theoretical calculation. It is believed that the superior catalytic performance and potential cost advantages will attract increasing attention in the related research fields.

    [1] Yang X F, Wang A Q, Qiao B T, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2012, 46(8): 1740-1748.

    [2] Turner M, Golovko V B, Vaughan O P, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature, 2008, 454(7207): 981-983.

    [3] Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science, 2010, 328(5975): 224-228.

    [4] Qiao B T, Wang A Q, Li L, et al. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature[J]. ACS Catalysis, 2014, 4(7): 2113-2117.

    [5] Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.

    [6] Poh C K, Lim S H, Lin J Y, et al. Tungsten carbide supports for single-atom platinum-based fuel-cell catalysts: First-principles study on the metal-support interactions and O2dissociation on WxC low-index surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13525-13538.

    [7] Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287): 797-801.

    [8] Tang L, Wang Y, Li Y, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.

    [9] Uzun A, Ortalan V, Hao Y, et al. Nanoclusters of gold on a high-area support: Almost uniform nanoclusters imaged by scanning transmission electron microscopy[J]. ACS Nano, 2009, 3(11): 3691-3695.

    [10] Uzun A, Ortalan V, Browning N D, et al. A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy[J]. Journal of Catalysis, 2010, 269(2): 318-328.

    [11] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [12] Lucci F R, Liu J, Marcinkowski M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6: 8550.

    [13] Zhang L L, Wang A Q, Miller J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water[J]. ACS Catalysis, 2014, 4(5): 1546-1553.

    [14] Zhang H J, Kawashima K, Okumurac M, et al. Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498-13508.

    [15] Ge J, He D S, Chen W, et al. Atomically dispersed Ru on ultrathin Pd nanoribbons[J]. Journal of the American Chemical Society, 2016.

    [16] Wang Z T, Matthew T D, Andrew J T, et al. Preparation, structure, and surface chemistry of Ni-Au single atom alloys[J]. The Journal of Physical Chemistry C, 2016, 120(25): 13574-13580.

    [17] Lin J, Qiao B T, Liu J Y, et al. Design of a highly active Ir/Fe(OH)xcatalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide[J]. Angewandte Chemie, 2012, 51(12): 2920-2924.

    [18] Yuan Z, Li X N, and He S G. CO oxidation promoted by gold atoms loosely attached in AuFeO3- cluster anions[J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1585-1590.

    [19] Hu P P, Amghouz Z, Huang Z W, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(4): 2384-2390.

    [20] Zhao Y X, Li Z Y, Yuan Z, et al. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions[J]. Angewandte Chemie, 2014, 53(36): 9482-9486.

    [21] Chen M S, Goodman D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306(5694): 252-255.

    [22] Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110)[J]. Science, 2007, 315(5819): 1692-1696.

    [23] Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on g-Al2O3[J]. Science, 2009, 325(5948): 1670-1673.

    [24] Lu J, Aydin C, Browning N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY[J]. Angewandte Chemie, 2012, 51(24): 5842-5846.

    [25] Kistler J, Chotigkrai N, Xu P H, et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms[J]. Angewandte Chemie, 2014, 53(34): 8904-8907.

    [26] Kamai R, Kamiya K, Hashimoto K, et al. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction[J]. Angewandte Chemie, 2016, 55(42): 13184-13188.

    [27] Kamiya K, Kamai R, Hashimoto K, et al. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nature Communications, 2014, 5: 5040.

    [28] Pei G X, Liu X Y, Wang A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725.

    [29] Huang W X, Zhang S R, Tang Y, et al. Low-temperature transformation of methane to methanol on Pd1O4single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie, 2016, 55: 1-6.

    [30] Zhang H B, Jing W, Dong J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie, 2016, 55(46): 14310-14314.

    [31] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [32] Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications, 2014, 5: 5634.

    [33] Shi Y T, Zhao C Y, Wei H S, et al. Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization[J]. Advanced Materials, 2014, 26(48): 8147-8153.

    [34] Lin J, Wang A Q, Qiao B T, et al. Remarkable performance of Ir1/FeOxsingle-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317.

    [35] He Q, Freakley S J, Edwards J K, et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 12905.

    [36] Moses-DeBusk M, Yoon M, Allard L F, et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al2O3(010) surface[J]. Journal of the American Chemical Society, 2013, 135(34): 12634-12645.

    [37] Ghosh T K, Nair N N. Rh1/γ-Al2O3single-atom catalysis of O2activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size[J]. ChemCatChem, 2013, 5(7): 1811-1821.

    [38] Li Z Y, Yuan Z, Li X N, et al. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters[J]. Journal of the American Chemical Society, 2014, 136(40): 14307-14313.

    [39] Song W Y, Hensen E J M. Structure sensitivity in CO oxidation by a single Au atom supported on ceria[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7721-7726.

    [40] Qiao B T, Liu J X, Wang Y G, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11): 6249-6254.

    [41] Guo L W, Du P P, Fu X P, et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 13481.

    [42] Gao D W, Zhang X, Yang Y, et al. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols[J]. Nano Research, 2016, 9(4): 985-995.

    [43] Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154.

    [44] Wang L, Zhang S R, Zhu Y, et al. Catalysis and in situ studies of Rh1/Co3O4nanorods in reduction of NO with H2[J]. ACS Catalysis, 2013, 3(5): 1011-1019.

    [45] Li X N, Yuan Z, and He S G. CO oxidation promoted by gold atoms supported on titanium oxide cluster anions[J]. Journal of the American Chemical Society, 2014, 136(9): 3617-3623.

    [46] Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4nanorods[J]. Nature, 2009, 458(7239): 746-749.

    [47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [48] Guo J J, Wang X M, Yao Y L, et al. Structure of nanocarbons prepared by arc discharge in water[J]. Materials Chemistry and Physics, 2007, 105(2-3): 175-178.

    [49] Guo J J, Morris J R, Ihm Y, et al. Topological defects: Origin of nanopores and enhanced adsorption performance in nanoporous carbon[J]. Small, 2012, 8(21): 3283-3288.

    [50] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [51] Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23): 8262-8270

    [52] Yin H J, Tang H J, Wang D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012, 6(9): 8288-8297.

    [53] Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal Sci Technol, 2012, 2(1): 54-75.

    [54] Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [55] Sun S H, Zhang G X, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [56] Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487.

    [57] Fei H L, Dong J C, Arellano-Jime M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6: 8668.

    [58] Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie, 2016, 55(36): 10800-10805.

    [59] Liu W G, Zhang L L, Yan W S, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chem. Sci., 2016, 7(9): 5758-5764.

    [60] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [61] Deng D H, Chen X Q, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11): 1-9.

    [62] Qiu H J, Ito Y, Cong W T, et al. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie, 2015, 54(47): 14031-14035.

    [63] Zhang X F, Guo J J, Guan P F, et al. Catalytically active single-atom niobium in graphitic layers[J]. Nature Communications, 2013, 4: 1924.

    [64] Guo J J, Mao Z, Yan X L, et al. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction[J]. Nano Energy, 2016, 28: 261-268.

    [65] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [66] Abbet S, Sanchez A, Heiz U, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤n≤ 30): one atom is enough![J]. Journal of the American Chemical Society, 2000, 122: 3453-3457.

    [67] Narula C K, Allard L F, Stocks G M, et al. Remarkable NO oxidation on single supported platinum atoms[J]. Scientific Reports, 2014, 4: 7238.

    [68] Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie, 2016, 55(6): 2058-2062.

    [69] Haruta M. Size- and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1): 153-166.

    [70] Akolekar D B, Foranb G, and Bhargava S K. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials[J]. Journal of Synchrotron Radiation, 2004, 11(3): 284-290.

    [71] Akolekar D B, Bhargava S K, Foran G, et al. Studies on gold nanoparticles supported on iron, cobalt, manganese, and cerium oxide catalytic materials[J]. J Mol Catal Chem, 2005, 238(1-2): 78-87.

    [72] Leskela M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45): 5548-5554.

    [73] King J S, Wittstock A, Biener J, et al. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels[J]. Nano Letters, 2008, 8(8): 2405-2409.

    [74] Liu C, Wang C C, Kei C C, et al. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small, 2009, 5(13): 1535-1538.

    [75] Guo X G, Fang G Z, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619.

    [76] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17: 6782-6786.

    [77] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed[J]. Chem Mater, 2004, 16: 3633-3640.

    [78] Zhou W J, Yang L J. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation[J]. Electrochemistry Communications, 2007, 9(7): 1725-1729.

    [79] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.

    [80] Hisn Y L, Hwang K C, Chen F R, et al. Production and insitu metal filling of carbon nanotubes in water[J]. Advanced Materials, 2001, 13: 830-835.

    [81] Alekseyev N I, Dyuzhev G A. Fullerene formation in an arc discharge[J]. Carbon, 2003, 41(7): 1343-1348.

    [82] Liang J X, Lin J, Yang X F, et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOxfor CO oxidation[J]. The Journal of Physical Chemistry C, 2014, 118(38): 21945-21951.

    [83] Guo J, Morris J R, Contescu C I, et al. Atomic-scale imaging of graphene-based nanoporous carbon[J]. Microscopy and Microanalysis, 2012, 18(S2): 1528-1529.

    [84] Lin Y C, Teng P Y, Yeh C H, et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene[J]. Nano Lett, 2015, 15(11): 7408-7413.

    [85] Guo J J, Lee J, Contescu C I, et al. Crown ethers in graphene[J]. Nature Communications, 2014, 5: 5389.

    猜你喜歡
    俊杰理工大學(xué)太原
    昆明理工大學(xué)
    太原清廉地圖
    除夜太原寒甚
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    表演大師
    我的同桌
    我給桌子“洗臉”
    国产亚洲欧美98| 99久久精品国产亚洲精品| 最新中文字幕久久久久 | 久久久精品大字幕| 蜜桃久久精品国产亚洲av| 欧美日韩福利视频一区二区| a级毛片在线看网站| 国内毛片毛片毛片毛片毛片| 热99在线观看视频| 夜夜看夜夜爽夜夜摸| 特级一级黄色大片| 国内精品久久久久精免费| 在线看三级毛片| 亚洲色图 男人天堂 中文字幕| 99国产综合亚洲精品| 变态另类成人亚洲欧美熟女| av黄色大香蕉| 成人鲁丝片一二三区免费| 后天国语完整版免费观看| 久久精品综合一区二区三区| 国产精品久久久av美女十八| 欧美激情久久久久久爽电影| 免费观看的影片在线观看| 国产av在哪里看| 一本精品99久久精品77| 淫秽高清视频在线观看| 在线a可以看的网站| 久久天躁狠狠躁夜夜2o2o| 午夜福利高清视频| 成年免费大片在线观看| avwww免费| 精品国产乱子伦一区二区三区| 天堂√8在线中文| 亚洲av成人一区二区三| 免费大片18禁| 亚洲avbb在线观看| 宅男免费午夜| 成人高潮视频无遮挡免费网站| 青草久久国产| 黄色视频,在线免费观看| 麻豆国产97在线/欧美| 国产成人系列免费观看| 午夜福利在线观看免费完整高清在 | 不卡一级毛片| 免费看光身美女| 中文字幕高清在线视频| 国产aⅴ精品一区二区三区波| 欧美激情在线99| 哪里可以看免费的av片| 亚洲国产精品999在线| 18禁黄网站禁片免费观看直播| 国产精品久久久av美女十八| 女人高潮潮喷娇喘18禁视频| 色哟哟哟哟哟哟| 少妇熟女aⅴ在线视频| 日日摸夜夜添夜夜添小说| 怎么达到女性高潮| 熟女少妇亚洲综合色aaa.| 99久久综合精品五月天人人| 亚洲成av人片免费观看| 午夜精品在线福利| 精品一区二区三区视频在线 | 18禁国产床啪视频网站| 18禁黄网站禁片免费观看直播| 国产三级中文精品| 亚洲 欧美 日韩 在线 免费| 黄色 视频免费看| 一区二区三区高清视频在线| 97碰自拍视频| 亚洲专区中文字幕在线| 99国产精品一区二区三区| 真人做人爱边吃奶动态| 亚洲成av人片在线播放无| 在线国产一区二区在线| 亚洲自偷自拍图片 自拍| 亚洲男人的天堂狠狠| 欧美黑人欧美精品刺激| 亚洲国产精品合色在线| 99久久99久久久精品蜜桃| 日韩大尺度精品在线看网址| 国产精品 欧美亚洲| 一卡2卡三卡四卡精品乱码亚洲| 成年免费大片在线观看| 婷婷丁香在线五月| 久久精品国产99精品国产亚洲性色| 1024手机看黄色片| 男女视频在线观看网站免费| 舔av片在线| 免费看a级黄色片| 一本精品99久久精品77| 中文字幕熟女人妻在线| 黄色成人免费大全| 久久这里只有精品19| 亚洲av美国av| 婷婷亚洲欧美| 少妇的丰满在线观看| 观看美女的网站| 一区福利在线观看| 少妇的逼水好多| 18禁裸乳无遮挡免费网站照片| 国产真人三级小视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 特大巨黑吊av在线直播| 这个男人来自地球电影免费观看| 俄罗斯特黄特色一大片| 久久久精品欧美日韩精品| av在线天堂中文字幕| 精品久久久久久久毛片微露脸| 丰满的人妻完整版| 99re在线观看精品视频| 亚洲专区中文字幕在线| 成人三级黄色视频| 国产精品一及| 床上黄色一级片| 国产私拍福利视频在线观看| 一进一出好大好爽视频| 他把我摸到了高潮在线观看| 日本精品一区二区三区蜜桃| 女生性感内裤真人,穿戴方法视频| 香蕉丝袜av| 嫁个100分男人电影在线观看| 欧美色视频一区免费| 后天国语完整版免费观看| 亚洲人与动物交配视频| 亚洲成人久久爱视频| 午夜精品久久久久久毛片777| 成人性生交大片免费视频hd| 国产亚洲精品久久久com| 成年人黄色毛片网站| 这个男人来自地球电影免费观看| 天堂√8在线中文| 美女高潮喷水抽搐中文字幕| 中文字幕人妻丝袜一区二区| 在线免费观看的www视频| 亚洲国产看品久久| 亚洲国产看品久久| www日本黄色视频网| 又黄又爽又免费观看的视频| 好看av亚洲va欧美ⅴa在| 亚洲午夜理论影院| 久久久久免费精品人妻一区二区| 在线十欧美十亚洲十日本专区| 黄色日韩在线| 国产亚洲av高清不卡| 波多野结衣高清无吗| 久久久国产欧美日韩av| 大型黄色视频在线免费观看| 两个人的视频大全免费| 丁香欧美五月| 草草在线视频免费看| 国产男靠女视频免费网站| 人人妻,人人澡人人爽秒播| 成人国产一区最新在线观看| 好男人电影高清在线观看| www.自偷自拍.com| 人人妻,人人澡人人爽秒播| 国产精品久久久久久亚洲av鲁大| 男人舔女人的私密视频| 此物有八面人人有两片| 久久欧美精品欧美久久欧美| 黄色日韩在线| 国产精品亚洲一级av第二区| 国内精品美女久久久久久| 欧美日本亚洲视频在线播放| 国产欧美日韩一区二区三| 成人特级av手机在线观看| 久久久成人免费电影| 亚洲,欧美精品.| 色综合站精品国产| 午夜亚洲福利在线播放| 日本一二三区视频观看| 久久久久性生活片| 亚洲欧美精品综合久久99| 久久伊人香网站| 久久久精品大字幕| 国内精品一区二区在线观看| 国产一区二区三区视频了| 免费看a级黄色片| 午夜福利在线在线| 欧美+亚洲+日韩+国产| 18禁黄网站禁片免费观看直播| 99热只有精品国产| 中文字幕熟女人妻在线| 麻豆av在线久日| 成人av在线播放网站| 国产麻豆成人av免费视频| 成年女人毛片免费观看观看9| 婷婷丁香在线五月| 国产探花在线观看一区二区| 日韩欧美在线二视频| 日韩大尺度精品在线看网址| 最近最新中文字幕大全电影3| 黑人欧美特级aaaaaa片| 日日夜夜操网爽| 又黄又爽又免费观看的视频| 全区人妻精品视频| 日韩人妻高清精品专区| avwww免费| 最近视频中文字幕2019在线8| 18禁裸乳无遮挡免费网站照片| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 无人区码免费观看不卡| 国产亚洲欧美98| 久久热在线av| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 99久久久亚洲精品蜜臀av| 村上凉子中文字幕在线| 久久婷婷人人爽人人干人人爱| 哪里可以看免费的av片| 性色av乱码一区二区三区2| 一本久久中文字幕| 国内精品久久久久久久电影| 久久久久国产一级毛片高清牌| 美女扒开内裤让男人捅视频| 国产欧美日韩精品一区二区| 成人高潮视频无遮挡免费网站| 亚洲av五月六月丁香网| 亚洲国产高清在线一区二区三| 久久久久久九九精品二区国产| 亚洲精品一区av在线观看| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 国产精品日韩av在线免费观看| 黄频高清免费视频| 99riav亚洲国产免费| 一进一出抽搐动态| www.精华液| 制服人妻中文乱码| 天天一区二区日本电影三级| 国产三级中文精品| 亚洲,欧美精品.| 十八禁人妻一区二区| 黄片大片在线免费观看| 久久这里只有精品19| 久久久久精品国产欧美久久久| 亚洲av中文字字幕乱码综合| 一级黄色大片毛片| 天天躁狠狠躁夜夜躁狠狠躁| 99热只有精品国产| 两个人视频免费观看高清| bbb黄色大片| av中文乱码字幕在线| 村上凉子中文字幕在线| 国产91精品成人一区二区三区| 床上黄色一级片| 亚洲国产精品成人综合色| 老司机午夜福利在线观看视频| 日本一本二区三区精品| 国产精品一区二区精品视频观看| 久久国产乱子伦精品免费另类| 成年女人永久免费观看视频| 精品久久久久久久末码| bbb黄色大片| av黄色大香蕉| 成人永久免费在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 听说在线观看完整版免费高清| 久久久久久久精品吃奶| 精品一区二区三区四区五区乱码| 午夜成年电影在线免费观看| 国产精品99久久久久久久久| 99国产极品粉嫩在线观看| 床上黄色一级片| 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 一本精品99久久精品77| 成人高潮视频无遮挡免费网站| av在线蜜桃| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 久久草成人影院| 国产亚洲精品综合一区在线观看| 亚洲国产高清在线一区二区三| 最好的美女福利视频网| 久久久久久久久久黄片| 久久精品91无色码中文字幕| 精品久久久久久成人av| 欧美激情久久久久久爽电影| 亚洲精品在线观看二区| 最好的美女福利视频网| 哪里可以看免费的av片| 母亲3免费完整高清在线观看| 美女高潮的动态| 国产精品电影一区二区三区| 国产亚洲av高清不卡| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 成人性生交大片免费视频hd| 国产又黄又爽又无遮挡在线| 国产精品99久久99久久久不卡| 婷婷精品国产亚洲av在线| 亚洲18禁久久av| 91在线精品国自产拍蜜月 | 色吧在线观看| 亚洲狠狠婷婷综合久久图片| 青草久久国产| 日本三级黄在线观看| 日韩精品中文字幕看吧| 好男人电影高清在线观看| 久久久久久久久久黄片| 最近最新免费中文字幕在线| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 国产蜜桃级精品一区二区三区| 黄色视频,在线免费观看| 成人av在线播放网站| 免费观看精品视频网站| 成人av一区二区三区在线看| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 日日夜夜操网爽| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 一本一本综合久久| 黑人欧美特级aaaaaa片| 欧美三级亚洲精品| 深夜精品福利| a级毛片在线看网站| 女人被狂操c到高潮| 99精品在免费线老司机午夜| 激情在线观看视频在线高清| avwww免费| 夜夜爽天天搞| 精品99又大又爽又粗少妇毛片 | 亚洲在线自拍视频| 久久精品91蜜桃| 丰满的人妻完整版| 午夜精品在线福利| 少妇裸体淫交视频免费看高清| 18禁美女被吸乳视频| 色视频www国产| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久男人| 欧美色欧美亚洲另类二区| 一级毛片高清免费大全| 美女免费视频网站| 欧美成人一区二区免费高清观看 | 此物有八面人人有两片| 俄罗斯特黄特色一大片| 免费在线观看成人毛片| 99热精品在线国产| 国产精品98久久久久久宅男小说| 黄色女人牲交| 1024手机看黄色片| 国产亚洲精品av在线| 色噜噜av男人的天堂激情| 一本久久中文字幕| 久久久久久久久免费视频了| 少妇熟女aⅴ在线视频| 亚洲欧美日韩无卡精品| 18禁美女被吸乳视频| 夜夜夜夜夜久久久久| 亚洲自偷自拍图片 自拍| 少妇人妻一区二区三区视频| 18禁美女被吸乳视频| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式 | 国产真人三级小视频在线观看| 欧美激情在线99| 欧美另类亚洲清纯唯美| 免费看光身美女| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 国产精品99久久久久久久久| 色在线成人网| 一个人免费在线观看电影 | 欧美+亚洲+日韩+国产| 色综合站精品国产| aaaaa片日本免费| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 国产成人一区二区三区免费视频网站| 国产精品电影一区二区三区| 好男人电影高清在线观看| 欧美性猛交黑人性爽| 免费在线观看亚洲国产| 亚洲国产欧美网| 亚洲美女黄片视频| 制服丝袜大香蕉在线| 91麻豆av在线| 岛国在线观看网站| 国产高清激情床上av| a级毛片在线看网站| 一本精品99久久精品77| 精品国产亚洲在线| www.999成人在线观看| 麻豆国产av国片精品| 国产伦精品一区二区三区四那| 好男人电影高清在线观看| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 国产精品亚洲一级av第二区| 深夜精品福利| 成年免费大片在线观看| av天堂中文字幕网| 国产亚洲欧美在线一区二区| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 日韩 欧美 亚洲 中文字幕| 日本一二三区视频观看| 免费在线观看日本一区| 午夜福利18| 18美女黄网站色大片免费观看| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 亚洲真实伦在线观看| 国模一区二区三区四区视频 | 日韩成人在线观看一区二区三区| 精品免费久久久久久久清纯| 久久伊人香网站| 精品国产亚洲在线| 亚洲无线在线观看| 91麻豆av在线| 日本黄大片高清| 国产精品av久久久久免费| 日本在线视频免费播放| 91字幕亚洲| 久久久久久久精品吃奶| 国产高清三级在线| 久久精品人妻少妇| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 亚洲成人久久性| a级毛片在线看网站| 人人妻人人看人人澡| 宅男免费午夜| 亚洲一区高清亚洲精品| 午夜两性在线视频| 久久中文字幕人妻熟女| 美女扒开内裤让男人捅视频| 我的老师免费观看完整版| 淫秽高清视频在线观看| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 久久久国产精品麻豆| 精品久久久久久成人av| 日本免费a在线| or卡值多少钱| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| svipshipincom国产片| 又粗又爽又猛毛片免费看| 18禁美女被吸乳视频| 一本精品99久久精品77| 又粗又爽又猛毛片免费看| 亚洲欧美日韩卡通动漫| 91老司机精品| 91字幕亚洲| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 桃红色精品国产亚洲av| 国产亚洲精品一区二区www| 在线免费观看的www视频| 性欧美人与动物交配| 黄色 视频免费看| 中亚洲国语对白在线视频| 国产亚洲精品av在线| 美女高潮喷水抽搐中文字幕| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 国产精品 欧美亚洲| 神马国产精品三级电影在线观看| 日韩高清综合在线| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 制服丝袜大香蕉在线| 亚洲 欧美一区二区三区| 久久99热这里只有精品18| 久久久国产成人精品二区| 老汉色∧v一级毛片| cao死你这个sao货| 亚洲国产欧美网| 亚洲18禁久久av| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久亚洲av鲁大| 午夜免费激情av| 色老头精品视频在线观看| 精品一区二区三区视频在线 | 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 后天国语完整版免费观看| 国产亚洲精品一区二区www| 亚洲熟妇熟女久久| 亚洲精品乱码久久久v下载方式 | 女人高潮潮喷娇喘18禁视频| 精品欧美国产一区二区三| 又黄又爽又免费观看的视频| 亚洲精品美女久久av网站| 伦理电影免费视频| 美女大奶头视频| 无人区码免费观看不卡| 日本黄大片高清| 国产亚洲av嫩草精品影院| 麻豆成人av在线观看| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 天堂动漫精品| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 久久这里只有精品19| 三级国产精品欧美在线观看 | 在线观看舔阴道视频| 哪里可以看免费的av片| 男女那种视频在线观看| 国产主播在线观看一区二区| 少妇的丰满在线观看| 久久久久久九九精品二区国产| 中国美女看黄片| 色老头精品视频在线观看| 国产精品av久久久久免费| 看片在线看免费视频| 波多野结衣高清作品| 精品久久久久久久久久免费视频| 精品国产美女av久久久久小说| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| 热99re8久久精品国产| 国内精品美女久久久久久| 麻豆av在线久日| 国产成人av教育| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| 波多野结衣巨乳人妻| 亚洲18禁久久av| 国产精品永久免费网站| 国产成人系列免费观看| 国产日本99.免费观看| 999久久久国产精品视频| 香蕉国产在线看| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 国产精品精品国产色婷婷| 丁香六月欧美| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 在线观看一区二区三区| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 青草久久国产| av在线蜜桃| av女优亚洲男人天堂 | 日日干狠狠操夜夜爽| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 日韩欧美一区二区三区在线观看| 91麻豆av在线| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 波多野结衣高清无吗| 国产美女午夜福利| 欧美一区二区精品小视频在线| 午夜精品在线福利| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 精品福利观看| av视频在线观看入口| 欧美乱色亚洲激情| 舔av片在线| 91九色精品人成在线观看| 久久久久久大精品| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 99热精品在线国产| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 免费在线观看日本一区| 国产高清视频在线观看网站| 日本一本二区三区精品| 五月玫瑰六月丁香| 夜夜躁狠狠躁天天躁| 国产成人福利小说| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 亚洲七黄色美女视频| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| av福利片在线观看| 国产成人影院久久av| 久久久久久人人人人人| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 成人三级做爰电影| 男女下面进入的视频免费午夜| 成人18禁在线播放| 岛国视频午夜一区免费看| 中文字幕久久专区| 九九热线精品视视频播放| 亚洲国产日韩欧美精品在线观看 | 久久天堂一区二区三区四区| 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 人人妻人人看人人澡|