• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Remarks on Korn Inequalities

    2018-03-13 09:28:26AlainDAMLAMIAN

    Alain DAMLAMIAN

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    In the joint paper with Doina Cioranescu and Julia Orlik[2],the homogenization of static linearized elasticity problems in the presence of cracks and inclusions was studied.This can be reduced to minimizing a convex functional but its coerciveness is not straightforward,mainly because of the presence of(infinitesimal)rigid motions.In the homogenization process,thefirst difficulty is to obtain uniform estimates.These are intimately connected with the uniform coerciveness of the convex functionals involved.

    There are multiple “classical”results on unilateral contact.Many works of Gaetano Fichera[5—8]are the first concerning the existence of solutions for such problems.More recently,the following books consider this problem:Hlav′aˇcek,I.,Haslinger,J.,Neˇcas,J.and Lov′?ˇcek,J.[11](1982),Kikuchi,N.and Oden,J.T.[12](1988),Eck,C.,Jaruˇsek,J.and Krbec,M.[4](2005).

    All these results give conditions under which a solution exists,but none give explicit estimates which,in the case of homogenization,would be uniform with respect to the homogenization parameter.Furthermore,none seem to treat the case of Tresca friction for inclusions or cracks.In[2],the problem was solved byfirst proving a unilateral Korn inequality adapted to inclusions.

    Section 2 of this paper presents some definitions related to the classical Korn inequalities.In Section 3,we give a procedure to construct Korn inequalities starting from“semi-norm-like functions”on the space of rigid motions.Section 4 gives examples.For simplicity,they are set in the natural space R3but extensions to higher dimensions are straightforward.

    NotationsLet v be a vectorfield on a domain of R3and S an orientable surface therein1All surfaces in this paper are assumed to be orientable.;

    ? a choice of unit normal vector to the surface S is denoted ν (the other would be ?ν),the scalar normal component of v on S is v·ν,denoted vν,its tangential component v?vνν is denoted vτ;

    ? ?v is the gradient of v,defined as the matrix field:

    ?e(v)is the strain tensor(symmetric gradient)of v,defined as the symmetric matrix field:

    ? R is the kernel of e in connected domains,i.e.,the space of infinitesimal rigid motions:

    In the case of R3(or an open connected subdomain in R3),this is also

    where∧indicates the vector product(i.e.,cross product or wedge product)in R3;

    ?in estimates,C is a generic constant(function of the domain only);

    ? for a given domain O of R3,the spaces of scalarfields,vectorfields and matrix fields L2(O;R),L2(O;R3)and L2(O;R9),will all be referred to as L2(O)(there will be no ambiguity from the context).Similarly,the spaces of scalarfields and vectorfields H1(O;R)and H1(O;R3)will often be denoted simply H1(O).The latter is endowed with the norm

    2 Korn Domains and Korn-Wirtinger Domains

    Korn inequalities are inequalities bounding the L2-norm of the gradient of a vectorfield in a domain(or its H1-norm)by that of its symmetric gradient together with some extra terms,if necessary.

    Thefirst Korn inequality is classical for the spaceof any domain.

    Proposition 2.1LetObe an open set inR3.Then for everyuin(O),

    Consequently

    and if the Poincar′e inequality holds inOwith the constantCP(O)(e.g.,Ois bounded in one direction)

    ProofUsing the summation convention and the Stokes formula(for the cross terms)

    Definition 2.1A domainOis a Korn domain if the second Korn inequality holds forH1(O),i.e.,there exists a constantCK(=CK(O))such that

    In 1962,Gobert[9]gave thefirst proof that a bounded domain with Lipschitz boundary is a Korn domain.More recent proofs(none of them straightforward)can be found in the book[13]of Oleinik,Shamaev and Yosifian and the paper[1]of P.Ciarlet and P.G.Ciarlet.

    It is obvious that the union of afinite number of Korn domains is a Korn domain.This is the case of domains with afinite number of Lipschitz cracks provided the cracks which touch the boundary are not tangent to it.

    The following is the analogue for vectorfields of the Poincar?-Wirtinger inequality for scalar functions.

    Definition 2.2A bounded connected open domainOis a Korn-Wirtinger domain if there exists a constantCKW(=CKW(O))such that for everyvinH1(O)there is anr(v)inRwith

    Obviously,r(v)can be chosen as the orthonormal projection ofvonRin the Hilbert spaceH1(O)so thatris linear andv?r(v)is orthogonal toR.

    Remark 2.1It is straightforward to check that the Poincar?-Wirtinger for scalar functions holds in H1(O)when O is a Korn-Wirtinger domain(it suffices to consider vectorfields with only one non-zero component).The converse seems open.2The converse for certain weighted norms is a consequence of Theorem 2.3 of[10].

    The following proposition gives examples of Korn-Wirtinger domains.

    Proposition 2.2Suppose thatOis a connected and bounded Korn domain.If the natural injection fromH1(O)toL2(O)is compact,then,Ois a Korn-Wirtinger domain.This is true in particular as soon as the boundary ofOis Lipschitz.

    The proof is classical but we give it for the sake of completeness.

    ProofBy contradiction,if(2.4)holds for no constant CKW,then one can construct a sequence{un}n∈Nin the orthogonal complement of R in H1(O)such that

    By scaling,one can assume that‖un‖L2(O)≡ 1.

    Remark 2.2As is expected in a proof by contradiction,the constant C is not explicit.The same is true for every statement below.

    Here is a way to obtain more Korn-Wirtinger domains.

    Proposition 2.3The union of two Korn-Wirtinger domains whose intersection is not empty is a Korn-Wirtinger domain.The same holds true for two Korn-Wirtinger domains whose boundaries intersect along a subset which contains a portion of a Lipschitz hypersurface with non-zero superficial measure.This can be generalized to afinite union of Korn-Wirtinger domains.

    ProofLet u be in H1(O)with O=O1∪O2.The hypotheses imply that there exist two rigid motions r1and r2such that

    In particular,

    and consequently,

    Since all the norms are equivalent on thefinite dimensional space R,it is also true that

    Consequently,

    and

    In the second case denoting Σ a part of the common boundary which is included in a Lipschitz hypersurface and withfinite measure,the proof is the same but makes use of the trace theorem from H1(Oi),i=1,2,to L2(Σ)(instead of the restriction from H1(Oi))to H1(O1∩O2)).

    3 Construction of Korn Inequalities

    The point of Korn inequalities is that there is no single one which can be applied in every problem.Each problem requires an adapted Korn inequality.Here is a method to generate Korn inequalities on Korn-Wirtinger domains.The constants exist but are not very easy to track.Sharper estimates of the constant in each case may be of interest but is out of the scope of this paper.

    Theorem 3.1LetObe a Korn-Wirtinger domain.IfF:H1(O))→Ris a Lipschitz map whose restriction to the subspaceRof rigid motions is bounded below by a norm onR.Then there exists a constantCsuch that

    ProofLet u be in H1(O)and r(u)be an element in R such that(2.4)holds.By the hypothesis on F,it follows that

    Since all norms are equivalent on R,this implies

    and going back to(2.4)completes the proof.

    4 Some Examples

    4.1 Some standard Korn inequalities

    Proposition 4.1LetObe a Korn-Wirtinger domain.Letωbe a non-empty open subset ofOor an open subset of the boundary of a Lipschitz subdomain ofO.Then,there is a constantCsuch that

    In particular,

    then

    Proof Set

    Clearly,F is Lipschitz on H1(O)by injection into L2(O)(resp.by a trace theorem into L2(ω))and F|Ris a semi-norm on R.Furthermore,F(r)=0 implies that r vanishes at every point of ω.Since ω is open(resp.is open in a Lipschitz surface),it contains at least three non-aligned points where r vanishes.One concludes that r vanishes everywhere in R3(one easy argument is to use the equi-projectivity of every rigid motion).

    This Korn inequality applies for example when the vector field u satisfies a homogeneous or non-homogeneous Dirichlet condition on a non-empty open subset of the boundary?O.

    Remark 4.1The previous result can be extended to the case where the norm on ω is taken in L2(ω;μ)where μ is a non zero-measure offinite energy(i.e.,in the dual space of H1(O)).

    4.2 Some non-standard Korn inequalities

    This section starts with a trivial remark concerning rigid motions:Every rigid motion is divergence-free.

    Proposition 4.2Letωbe a bounded open set with Lipschitz boundary inR3.Then theis a semi-norm onR.Its kernel consists of all the rigid motions whichare tangent to?ω.

    ProofBy the Stokes theorem applied in ω,and since divr=0,it follows thatR?ωrνdσ =0.Consequently,

    The conclusions follow.

    We discuss now under which conditions this map is a norm on R.

    Definition 4.1(Locked Domains)Letωbe a bounded open domain with Lipschitz boundary inR3.It is said to be locked if the mapr → ‖(rν)+‖L1(?ω)is a norm onR.Because of(4.1),a domain is locked if and only if the only rigid motion tangent to its boundary is0.Making use of the exponential map one can see that a domain is locked if and only if its isometry group is discrete.

    Consequently,the only domains which are not locked in R3are euclidean balls,zones between two concentric euclidean spheres(the isometry group is SO3),and domains of revolution around an axis(the isometry group is isomorphic to S1).For a domain ω,Rωwill denote the set of rigid motions which are tangent to?ω.It is reduced to zero for locked domains.

    Since the boundary of a domain ω can have several connected components,for ω to be locked,it is enough that one of these components not be of revolution.This component then locks the domain(e.g.,the complement of a small ball in a larger cube).It may also be that several components are needed to lock the domain(e.g.,the zone between two non intersecting spheres is not locked if the spheres are concentric,but is locked if they are not).

    We now introduce notations for the classical moments of a vectorfield.

    Definition 4.2(Moments)Letωbe a bounded open subset ofR3(resp.of a Lipschitz surface inR3).Letzbe a point inR3andda unit vector inR3.For a vectorfield?inL1(ω)its(vector)moment(?)at the pointzand its(scalar)moment(?)with respect to the axis with directiondgoing throughzare

    whereμis the Lebesgue measure onω (resp.the superficial measure onω).Whenzis the origin,it will be omitted in the notation of the moments.

    These functions are clearly linear continuous on the space L1(ω),hence on the space H1(O)as soon as O contains ω as a subdomain(resp.when ω is an open subset of the boundary of a Lipschitz subdomain of O).

    One can also use a measure different from the Lebesgue measure in ω (resp.the superficial measure on ω)provided it is also offinite energy(i.e.,in the dual space of H1(?))so that the moments are continuous on H1(O).In particular,one can use a density measure ρ(x)dx with ρ non-negative and in L2(O).

    Note that if ω is an open subset of a sphere of center z and radius R,(?)is bounded in norm by R‖?τ‖L1(ω)(recall that ?τis the tangential component of ?),and if it is an open subset of a surface of revolution of radius R around the axis going through z with direction d,the absolute value of(?)is bounded by R‖d∧ ?τ‖L1(ω)(d ∧ ?τis the podal component of ?).

    Moments are a source of semi-norms on R.

    Lemma 4.1(Norms and Semi-norms onR)

    Locked domainsLetObe a locked domain andΣ(O)a union of connected components of?Owhich locksO.Then,

    For non-locked domains this map is only a semi-norm onR.

    Domains with spherical symmetryLetΣbe an euclidean sphere centered at the origin(i.e.,a connected component of the boundary of a domain with spherical symmetry with respect to the origin).Then,there is a constantCand a linear mapbfromRtoR3such that

    Furthermore,ifωis a bounded open subset ofR3(resp.of a Lipschitz surface inR3),then

    Domains of cylindrical revolutionLetObe an open domain of revolution around an axis going through the origin and with directiond.LetΣbe a Lipschitz connected component of its boundary.Then,there is a constantCand a linear map?fromRtoRsuch that

    Furthermore,ifωis a bounded open subset ofR3(resp.of a Lipschitz surface inR3),then

    Proof Locked domainsFirst remark that every connected component of the boundary of(any domain)O is the boundary of a bounded domain(its “interior”).Therefore Proposition 4.2 applies for each component and ‖ ·‖lis a semi-norm on R.If‖r‖l=0,it implies that r|Σ(O)is tangent on every component of Σ(O).Since the latter is not globally of revolution,this implies that r=0,so that‖·‖lis a norm.

    Domains with spherical symmetryLet Σ be a sphere centered at the origin.Here also,the map ‖ ·‖lis a semi-norm on R whose kernel consists of all the rigid motions which are tangent to Σ,namely RΣ{b∧Id|b∈ R3}.Therefore,it is a norm on an orthogonal of RΣin R(for this,any scalar product on thefinite dimensional space R will do),and b∧Id is simply the orthogonal projection on RΣ.

    The map ‖ ·‖Sof formula(4.4)is also a semi norm.But if r is in its kernel,it is both tangent to Σ,hence of the form b ∧ Id and with vanishing moment on ω.This condition reads

    hence

    Now b·(x∧(b∧x))=|x|2|b|2?(b·x)2which is non-negative and can only vanish for x collinear with b if the latter is not zero.But this cannot hold for every x in ω(because it is of dimension at least 2).Therefore,b has to be 0 and the kernel is reduced to 0.

    Domains with cylindrical symmetryThe reasoning is the same here.The elements of ROare the rigid motions of the form{kd∧Id|k∈R}.Imposing further that the moment with respect to d at the origin vanish reads

    but,as above,the last integral vanishing implies d=0.

    The maps ‖·‖l,‖ ·‖Sand ‖·‖Cextends in the obvious way(and with the same notations)to the space H1(O)as Lipschitz functions,leading to simple corollaries of Theorem 3.1 which give some unilateral Korn inequalities.

    Corollary 4.1LetObe a Korn-Wirtinger domain which is locked by a subsetΣof its boundary.Letνbe a choice of unit normal toΣ.Then,there exists a constantCsuch that the following generalized Korn inequality holds3Since there are 2kchoices of ν (where k is the number of distinct connected components making up Σ)there are as many distinct inequalities!:

    Corollary 4.2LetObe a Korn-Wirtinger domain andΣa spherical connected component of its boundary(for simplicity,centered at the origin).Then,there exists a constantCand a continuous linear mapb:H1(O)→R3such that

    Moreover,ifωis a bounded open subset ofO(resp.of the boundary of a Lipschitz subdomain ofO),then there exists a constantC′such that

    Corollary 4.3LetObe a Korn-Wirtinger domain andΣa connected component of its boundary invariant under the rotations around the axis with unit vectord(for simplicity,through the origin).Then,there exists a constantCand a continuous linear map?:H1(O)→ Rsuch that

    Moreover,ifωis a bounded open subset ofO(resp.of a Lipschitz surface in,then there exists a constantC′such that

    Proof of Corollary 4.1Theorem 3.1 applies with F(u)‖u‖lwhich is Lipschitz continuous on H1(O).

    Proof of Corollary 4.2The second part follows in the same way as above from the fact that the map F(u)‖u‖Sextends the map defined in(4.4)and is Lipschitz continuous on H1(O).

    The proof of the first part goes as follows.Given u in H1(O)and using the definition of a Korn-Wirtinger domain,there is a r(u)in R with inequality(2.4).Applying the map b given in(4.3)to r(u)then gives(recall that all norms are equivalent on R)

    From(2.4)again,and using the trace theorem on Σ,

    Combining these two inequalities gives inequality(4.8).

    The proof of Corollary 4.3 is similar.

    AcknowledgementThe author expresses his thanks to the(anonymous)referee who found many typos and made several suggestions to improve the manuscript.

    [1]Ciarlet,P.and Ciarlet,P.G.,Another approach to linearized elasticity and a new proof of Korn’s inequality,Mathematical Models and Methods in Applied Sciences,15(2),2005,259–271.

    [2]Cioranescu,D.,Damlamian,A.and Orlik,J.,Homogenization via unfolding in periodic elasticity with contact on closed and open cracks,Asymptotic Analysis,82,2013,201–232.

    [3]Damlamian,A.,Some unilateral Korn inequalities with application to a contact problem with inclusions,C.R.Acad.Sci.Paris,Ser.I,350,2012,861–865.

    [4]Eck,C.,Jaruˇsek,J.and Krbec,M.,Unilateral Contact Problems:Variational Methods and Existence Theorems,CRC Press,Boca Raton,2005.

    [5]Fichera,G.,Sul problema elastostatico di Signorini con ambigue condizioni al contorno,Atti Accad.Naz.Lincei Rend.Cl.Sci.Fis.Mat.Natur.,34(8),1963,138–142(in Italian).

    [6]Fichera,G.,Problemi elastostatici con vincoli unilaterali:Il problema di Signorini con ambigue condizioni al contorno,Atti Accad.Naz.Lincei Mem.Cl.Sci.Fis.Mat.Natur.Sez.I,7(8),1963/1964,91–140(in Italian).

    [7]Fichera,G.,Elastostatics problems with unilateral constraints,S′eminaire Jean Leray,3,1966–1967,64–68,http://www.numdam.org/item?id=SJL 1966-1967 3 64 0.

    [8]Fichera,G.,Unilateral constraints in elasticity,Actes,Congr`es Intern.Math.Nice,3,1970,p.7.

    [9]Gobert,J.,Une in′egalit′e fondamentale de la th′eorie de l’′elasticit′e,Bull.Soc.Roy.Sci.Li`ege,31,1962,182–191.

    [10]Griso,G.,Decompositions of displacements of thin structures,J.Math.Pures Appl.,89,2008,199–223.

    [11]Hlav′aˇcek,I.,Haslinger,J.,Neˇcas J.and Lov′?ˇcek,J.,Solution of Variational Inequalities in Mechanics,Springer-Verlag,New York,Berlin,Heidelberg,London Paris,Tokyo,1988.

    [12]Kikuchi,N.and Oden,J.T.,Contact problems in elasticity,SIAM Studies in Applied Mathematics,SIAM,Philadelphia,1988.

    [13]Oleinik,O.A.,Shamaev,A.S.and Yosifian,G.A.,Mathematical Problems in Elasticity and Homogenization,North-Holland,Amsterdam,1992.

    国产精品一二三区在线看| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 欧美日韩视频精品一区| 九草在线视频观看| 国产一级毛片在线| 久久久久网色| 久久久久久久精品精品| 99热网站在线观看| av在线观看视频网站免费| 夫妻性生交免费视频一级片| 久久女婷五月综合色啪小说| 夜夜看夜夜爽夜夜摸| 男女边摸边吃奶| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 色吧在线观看| 久久久久久人妻| 99九九在线精品视频 | 桃花免费在线播放| 日韩不卡一区二区三区视频在线| 成人国产麻豆网| 精品一区二区免费观看| 亚洲av男天堂| 在线观看三级黄色| 国产亚洲午夜精品一区二区久久| 9色porny在线观看| 久久韩国三级中文字幕| 日日摸夜夜添夜夜爱| 丰满少妇做爰视频| 日本欧美国产在线视频| 亚洲精品成人av观看孕妇| 丝袜在线中文字幕| 在线免费观看不下载黄p国产| 51国产日韩欧美| 国产亚洲最大av| 欧美一级a爱片免费观看看| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| av有码第一页| av天堂中文字幕网| 不卡视频在线观看欧美| 日韩在线高清观看一区二区三区| 80岁老熟妇乱子伦牲交| 成人美女网站在线观看视频| 日本欧美视频一区| 丁香六月天网| 少妇精品久久久久久久| 亚洲第一av免费看| 另类亚洲欧美激情| 亚洲经典国产精华液单| 高清午夜精品一区二区三区| 久久久国产一区二区| 日本欧美国产在线视频| 欧美高清成人免费视频www| 男人舔奶头视频| 亚洲精品国产成人久久av| 亚洲精品成人av观看孕妇| 国产成人午夜福利电影在线观看| 精华霜和精华液先用哪个| 啦啦啦中文免费视频观看日本| 亚洲精品456在线播放app| 免费看光身美女| 街头女战士在线观看网站| 人人澡人人妻人| 国产精品一二三区在线看| 国产毛片在线视频| 少妇人妻 视频| 精品少妇内射三级| 亚洲第一av免费看| 蜜臀久久99精品久久宅男| 成人影院久久| 人妻一区二区av| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 三级国产精品片| 熟女av电影| 国产精品成人在线| 嫩草影院新地址| 亚洲精品中文字幕在线视频 | 在线观看www视频免费| 欧美日韩视频精品一区| 免费av不卡在线播放| 成人亚洲精品一区在线观看| 国产精品99久久久久久久久| 欧美xxⅹ黑人| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| av一本久久久久| 亚洲国产最新在线播放| 欧美xxxx性猛交bbbb| 十八禁高潮呻吟视频 | 七月丁香在线播放| av在线播放精品| 久久精品夜色国产| 在线观看一区二区三区激情| 免费看光身美女| 大香蕉久久网| 久久青草综合色| 精品国产乱码久久久久久小说| 我的老师免费观看完整版| 国产成人精品久久久久久| 大话2 男鬼变身卡| 如日韩欧美国产精品一区二区三区 | 美女大奶头黄色视频| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 久久综合国产亚洲精品| 最近手机中文字幕大全| 又爽又黄a免费视频| 99re6热这里在线精品视频| 欧美日韩在线观看h| av在线播放精品| 久久精品国产鲁丝片午夜精品| 国产高清不卡午夜福利| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 草草在线视频免费看| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 人人澡人人妻人| 蜜桃久久精品国产亚洲av| av天堂中文字幕网| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 亚洲欧美精品专区久久| 国产在视频线精品| 秋霞伦理黄片| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| h视频一区二区三区| 只有这里有精品99| 一级毛片我不卡| 亚洲三级黄色毛片| 国产熟女午夜一区二区三区 | 热re99久久精品国产66热6| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 日韩精品有码人妻一区| 国产 精品1| 麻豆成人av视频| 99热国产这里只有精品6| 婷婷色综合www| 精品99又大又爽又粗少妇毛片| 国产乱来视频区| 亚洲国产av新网站| 最近最新中文字幕免费大全7| 亚洲av福利一区| 免费观看无遮挡的男女| 人妻系列 视频| 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 黄色日韩在线| 男女边摸边吃奶| 免费人妻精品一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美成人午夜免费资源| av有码第一页| 国产午夜精品久久久久久一区二区三区| 国产精品三级大全| 国产男人的电影天堂91| 黑人巨大精品欧美一区二区蜜桃 | 夫妻性生交免费视频一级片| 这个男人来自地球电影免费观看 | 不卡视频在线观看欧美| 国产av码专区亚洲av| 日本与韩国留学比较| 多毛熟女@视频| 老司机影院成人| 又爽又黄a免费视频| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 99久久人妻综合| 亚洲精品aⅴ在线观看| 人人澡人人妻人| videos熟女内射| 亚洲成色77777| 日本vs欧美在线观看视频 | 亚洲精品日韩av片在线观看| av卡一久久| 在线观看免费视频网站a站| 免费高清在线观看视频在线观看| 亚洲四区av| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 18+在线观看网站| 欧美最新免费一区二区三区| 欧美精品一区二区免费开放| 久久综合国产亚洲精品| 超碰97精品在线观看| a级一级毛片免费在线观看| 亚洲国产精品一区二区三区在线| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 国产精品蜜桃在线观看| av女优亚洲男人天堂| 高清av免费在线| 久久综合国产亚洲精品| 久久99热这里只频精品6学生| 精品少妇久久久久久888优播| 日日摸夜夜添夜夜爱| 少妇高潮的动态图| 国产精品.久久久| 国产精品成人在线| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 久久精品国产亚洲av涩爱| 亚洲精品色激情综合| 国产一级毛片在线| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 少妇精品久久久久久久| 日韩不卡一区二区三区视频在线| 人妻系列 视频| 国产熟女欧美一区二区| 在线观看免费高清a一片| 日韩精品免费视频一区二区三区 | 高清在线视频一区二区三区| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 女人精品久久久久毛片| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 精品一区二区三卡| 免费播放大片免费观看视频在线观看| 三级国产精品片| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 99精国产麻豆久久婷婷| 色视频在线一区二区三区| 黄色欧美视频在线观看| 99久久中文字幕三级久久日本| 免费看av在线观看网站| 天天操日日干夜夜撸| 久久97久久精品| 国产在线男女| 自拍欧美九色日韩亚洲蝌蚪91 | 高清av免费在线| 丝瓜视频免费看黄片| 日产精品乱码卡一卡2卡三| 高清欧美精品videossex| 久久久久国产网址| 久久影院123| 在线观看一区二区三区激情| 久久久久久久久大av| 婷婷色av中文字幕| 一区二区三区精品91| 大香蕉97超碰在线| 99视频精品全部免费 在线| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 新久久久久国产一级毛片| 国产 一区精品| 黄色视频在线播放观看不卡| 永久网站在线| 插阴视频在线观看视频| av天堂中文字幕网| av卡一久久| 亚洲久久久国产精品| √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| av免费观看日本| 午夜激情福利司机影院| 国产永久视频网站| 亚洲欧美中文字幕日韩二区| 我的老师免费观看完整版| 亚洲自偷自拍三级| 午夜激情久久久久久久| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av成人精品| 18禁动态无遮挡网站| 五月开心婷婷网| 国产黄频视频在线观看| 午夜免费观看性视频| 国产av精品麻豆| 国产精品国产三级专区第一集| 国产极品粉嫩免费观看在线 | 国产精品一区二区在线不卡| 亚洲av男天堂| 免费看光身美女| 日本-黄色视频高清免费观看| 亚洲精品色激情综合| 韩国av在线不卡| 看十八女毛片水多多多| 99热国产这里只有精品6| av在线播放精品| 欧美精品高潮呻吟av久久| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 国产成人精品一,二区| 亚洲精品久久久久久婷婷小说| 亚洲精品久久午夜乱码| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 18禁动态无遮挡网站| 人人妻人人澡人人爽人人夜夜| 自线自在国产av| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 在线 av 中文字幕| 日韩欧美一区视频在线观看 | 91久久精品国产一区二区三区| 老司机亚洲免费影院| 日韩在线高清观看一区二区三区| 99热国产这里只有精品6| 欧美 亚洲 国产 日韩一| 人人妻人人看人人澡| 草草在线视频免费看| 在线 av 中文字幕| 国产成人精品福利久久| 综合色丁香网| 国产精品99久久久久久久久| 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 欧美国产精品一级二级三级 | 一级二级三级毛片免费看| 亚洲成人一二三区av| 看免费成人av毛片| 2022亚洲国产成人精品| 我要看日韩黄色一级片| 亚洲不卡免费看| 22中文网久久字幕| 国精品久久久久久国模美| 91成人精品电影| 国产黄频视频在线观看| 一级毛片电影观看| 在现免费观看毛片| 夜夜爽夜夜爽视频| .国产精品久久| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| h日本视频在线播放| 十分钟在线观看高清视频www | 亚洲精品456在线播放app| 久久久久国产网址| 日日撸夜夜添| 精品一区二区三区视频在线| 亚洲国产精品国产精品| 免费看日本二区| 久久女婷五月综合色啪小说| 免费久久久久久久精品成人欧美视频 | 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 国产午夜精品久久久久久一区二区三区| 午夜福利影视在线免费观看| 久久久欧美国产精品| 草草在线视频免费看| 一级黄片播放器| 久久热精品热| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 一区二区三区精品91| 99热6这里只有精品| 这个男人来自地球电影免费观看 | 97超碰精品成人国产| 久久ye,这里只有精品| 亚洲精华国产精华液的使用体验| 在线观看美女被高潮喷水网站| 99re6热这里在线精品视频| 国产综合精华液| 国产毛片在线视频| 高清不卡的av网站| 国产精品一区二区在线观看99| 午夜福利视频精品| 在线天堂最新版资源| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 22中文网久久字幕| 色视频www国产| 国产精品无大码| 男人狂女人下面高潮的视频| 日韩不卡一区二区三区视频在线| 精品亚洲成国产av| 国产精品免费大片| 欧美高清成人免费视频www| 国产日韩一区二区三区精品不卡 | 大陆偷拍与自拍| 插阴视频在线观看视频| 边亲边吃奶的免费视频| 国产乱来视频区| 日本av免费视频播放| 亚洲成人一二三区av| 精品久久久久久久久亚洲| 99热这里只有精品一区| 免费不卡的大黄色大毛片视频在线观看| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 在线播放无遮挡| 久久人人爽av亚洲精品天堂| 国产在线视频一区二区| av国产久精品久网站免费入址| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 婷婷色麻豆天堂久久| 日本黄色片子视频| 少妇人妻 视频| 中文字幕人妻熟人妻熟丝袜美| 各种免费的搞黄视频| 欧美97在线视频| 有码 亚洲区| a级片在线免费高清观看视频| 少妇裸体淫交视频免费看高清| 成年人免费黄色播放视频 | 国产在线视频一区二区| 久久午夜福利片| 成年美女黄网站色视频大全免费 | 久久久欧美国产精品| 国产综合精华液| 五月开心婷婷网| 插阴视频在线观看视频| 日韩一本色道免费dvd| 97精品久久久久久久久久精品| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品高潮呻吟av久久| 一级a做视频免费观看| kizo精华| 成人影院久久| 国产欧美日韩精品一区二区| 色94色欧美一区二区| 纵有疾风起免费观看全集完整版| 夫妻午夜视频| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 久久午夜福利片| 麻豆成人av视频| 国产亚洲91精品色在线| 亚洲国产精品国产精品| 国产熟女午夜一区二区三区 | 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花| 啦啦啦中文免费视频观看日本| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看 | 男女国产视频网站| av视频免费观看在线观看| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 又黄又爽又刺激的免费视频.| 国产 一区精品| av线在线观看网站| 国产精品免费大片| 十八禁网站网址无遮挡 | 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 欧美日韩视频精品一区| 精品亚洲成国产av| 亚洲欧洲精品一区二区精品久久久 | 国产淫语在线视频| 视频中文字幕在线观看| 高清午夜精品一区二区三区| 99热6这里只有精品| 日韩伦理黄色片| 精品亚洲成国产av| 搡老乐熟女国产| 五月开心婷婷网| 亚洲四区av| 2022亚洲国产成人精品| 老熟女久久久| 多毛熟女@视频| 免费看光身美女| 夜夜骑夜夜射夜夜干| 婷婷色麻豆天堂久久| 成年av动漫网址| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验| 六月丁香七月| 一级,二级,三级黄色视频| 中文字幕亚洲精品专区| 又粗又硬又长又爽又黄的视频| 亚洲欧美成人精品一区二区| av卡一久久| 亚洲精品aⅴ在线观看| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| 熟女av电影| 在线观看免费高清a一片| 我的老师免费观看完整版| 国产无遮挡羞羞视频在线观看| 日韩制服骚丝袜av| 国产午夜精品一二区理论片| 热re99久久国产66热| 男的添女的下面高潮视频| 欧美成人精品欧美一级黄| 黑人高潮一二区| 国产伦理片在线播放av一区| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕| 高清在线视频一区二区三区| 成人影院久久| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| 又大又黄又爽视频免费| 久久婷婷青草| 日日爽夜夜爽网站| av网站免费在线观看视频| 亚洲av不卡在线观看| 国产男人的电影天堂91| 欧美日本中文国产一区发布| 在现免费观看毛片| 精品久久久久久久久亚洲| 日韩视频在线欧美| 国产av国产精品国产| 高清黄色对白视频在线免费看 | 亚洲国产精品专区欧美| kizo精华| 日韩免费高清中文字幕av| 一区二区三区精品91| 乱码一卡2卡4卡精品| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 免费在线观看成人毛片| av免费在线看不卡| 伦精品一区二区三区| 久久国内精品自在自线图片| 深夜a级毛片| 欧美一级a爱片免费观看看| 亚洲精品久久午夜乱码| 日韩欧美 国产精品| 中文字幕制服av| 一级a做视频免费观看| 成人免费观看视频高清| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 国产又色又爽无遮挡免| 人妻人人澡人人爽人人| 国产精品无大码| 久久国产精品男人的天堂亚洲 | 久久影院123| 国产有黄有色有爽视频| 婷婷色av中文字幕| 大片电影免费在线观看免费| 久久久久国产网址| 日韩 亚洲 欧美在线| 九九久久精品国产亚洲av麻豆| 蜜桃在线观看..| 亚洲精品国产av成人精品| 国产真实伦视频高清在线观看| 夜夜爽夜夜爽视频| 少妇猛男粗大的猛烈进出视频| 亚洲激情五月婷婷啪啪| 新久久久久国产一级毛片| 成人影院久久| 欧美三级亚洲精品| 欧美日韩亚洲高清精品| 色哟哟·www| av天堂中文字幕网| 欧美丝袜亚洲另类| 一边亲一边摸免费视频| 波野结衣二区三区在线| 秋霞在线观看毛片| 十分钟在线观看高清视频www | 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 性色av一级| 久久久国产一区二区| 色94色欧美一区二区| 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 国产欧美亚洲国产| 国产中年淑女户外野战色| 十分钟在线观看高清视频www | 国产高清国产精品国产三级| 国产av码专区亚洲av| 亚洲国产欧美日韩在线播放 | 黄色一级大片看看| 99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看| 欧美日本中文国产一区发布| 狂野欧美激情性bbbbbb| 亚洲综合色惰| 国产成人freesex在线| a 毛片基地| 极品人妻少妇av视频| 欧美+日韩+精品| 乱系列少妇在线播放| 一级毛片 在线播放| 久久鲁丝午夜福利片| 免费黄色在线免费观看| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 欧美精品亚洲一区二区| 中国三级夫妇交换| 国产成人freesex在线| 97精品久久久久久久久久精品| 亚洲精品乱久久久久久| 精品酒店卫生间| 99热这里只有是精品在线观看| 大片电影免费在线观看免费| av天堂中文字幕网| 香蕉精品网在线| 亚洲精品国产成人久久av| 亚洲欧美一区二区三区黑人 |