• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms

    2018-03-13 09:28:15PierreLISSYEnriqueZUAZUA

    Pierre LISSY Enrique ZUAZUA

    (This article is dedicated to Phillippe G.Ciarlet in the occasion of his 80th birthday,with gratitude and admiration for his mastery and continuous support.Merci Philippe!)

    1 Introduction

    1.1 Motivation

    Nonlocal parabolic systems are relevant in a variety of applications to Biology and Physics(see[24]).They have been analyzed exhaustively in the recent past,in particular in the context of the non-local fractional Laplacian,and significant progress has been achieved.But controllability issues for these models remain very much unexplored.Here we analyse parabolic systems coupled by non-local lower order perturbations,the principal part being a classical constant coefficient parabolic system.

    The content of this paper is a natural combination of the methods developed in[21]to achieve sharp results for parabolic systems coupled through constant coefficient matrices and those in[15]devoted to scalar equations perturbed by non-local lower order potentials.Our goal here is to derive a simple and exploitable spectral necessary and sufficient condition of controllability and the corresponding dual observability one.

    This paper is very much inspired in the pioneering ideas introduced by J.L.Lions in his famous SIAM Review article[19]that stimulated a significant step forward on the state of the art.The early developments in thisfield were summarized with mastery in the celebrated survey article by D.L.Russell[25].The presentation in this paper is concise,relying significantly on various tools of functional analysis that are developed and presented in a self-contained manner in the more recent book by Phillippe G.Ciarlet[7].

    1.2 Problem formulation and main result

    Let us now present the problem under consideration into more details.

    Let ? be a smooth domain of RN(N ∈N?),T > 0,n∈N?and m ∈ N?(with possibly m < n).Let ωi(i ∈ [|1,m|])be some open subsets of ? that can be chosen arbitrarily(in particular all the ωi’s may be disjoint).

    We are interested in the controllability of the following system of heat equations with Dirichlet boundary conditions:

    with Y0∈ [L2(?)]n,u=(u1,···,um)∈ [L2(?)]m(which play the role of distributed controls),A ∈ Mn(H)? Mn(L2(? × ?))(where H is a space of admissible potentials that will be introduced afterwards in(1.12)),Bibeing the i-th column of B∈Mn,m(R).

    The coupling matrix D∈Mn(R)is assumed to satisfy the ellipticity condition

    (here and hereafter,‖·‖will always denote the euclidean norm).Condition(1.2)is sufficient to ensure the well-posedness of(1.13),since the principal part DΔ in(1.13)is strongly parabolic in the sense of[17,Chapter 7,Definition 7].

    More precisely,we consider the so-called null controllability problem,the goal being to drive the system to the nullfinal target Y(T)≡ 0 by a suitable choice of the controls u=(u1,···,um)∈ [L2(?)]m.

    The scalar case(i.e.,n=1)has been analyzed in[15]for a scalar potential a∈H.Our goal here is to extend those results to coupled systems,obtaining a simple and exploitable spectral necessary and sufficient condition of controllability and the corresponding dual observability one.

    The controllability and observability of systems of partial differential equations have been intensively studied in the last decade,leading to important progress.We shall refer to some of the existing literature in the end of this introduction.But,as indicated above,the number of articles devoted to non-local problems is very limited.

    Our analysis will follow a combination of the methods developed in[21]for the analysis of parabolic systems and in[15]to handle non-local coupling terms.Accordingly,we shall use in an essential manner the spectral decomposition of the Laplacian.

    Let{λk}k≥1be the eigenvalues of?Δ with Dirichlet boundary conditions and ek∈ H10(?)be the corresponding eigenfunctions,constituting an orthonormal basis of L2(?).

    Before considering the non-locally perturbed case,let usfirst recall some recent results on models involving constant coefficient coupling terms:

    where Z0∈(L2(?))nand A?∈ Mn(R)is a constant coupling matrix.

    Here,rather than dealing with the controllability problem we consider the dual observability one.It concerns the obtention of full estimates on the state Z at time t=T out of partial measurements on the control subsets ωi.

    In[21]it was proved that system(1.3)is observable on(0,T)in the sense that there exists C=C(T)> 0 such that for every Z0∈ [L2(?)]n,the solution Z of(1.3)verifies

    if and only if

    where

    Moreover,following[21,Proof of Theorem 3]and[23,Proof of Theorem 2.2],a precise upper bound on the observability constant C(T)in(1.4)can be given for T>0 small enough,getting

    If A?=0,it is easy to prove that(1.6)is equivalent to the following Kalman rank condition:

    where,by definition,

    that only concerns the coupling matrix D and the control one B.When A?/=0 though,we get a sequence of spectral conditions,depending on the eigenvalues of the Laplacian.

    In all what follows,we decompose the initial condition as

    where(Zk)k∈N? ∈ (l2(N?))n.

    The observability inequality(1.7),as pointed out in[16,Remark 6.1]?see also[23,Lemma 3.3]with β =1 and α =),can be rewritten,in terms of the Fourier series expansion of the initial datum Z0given in(1.10),as

    for some R> 0 and C(T)> 0 independent of Z0∈ [L2(?)]n.

    Note that this kind of observability inequality(which is related to reachability issues,see e.g.[12]),introduced in[16],has also been used in[15,Lemma 2],for instance,to deal with non-local perturbations.Note also that estimating R in(1.11)and,more precisely,finding explicit lower bounds on R(in terms for instance of the geometries of ?,ωiand the coupling matrices D and A)is an open problem,related to the optimal weights that can be considered in a Carleman estimate for the solutions of(2.1)(see[16]and Lemma 2.1 below),which are not known in general.This constitutes a challenging problem,also related to the cost of controllability and its dependence with respect to the geometry,which is still unknown in dimension greater than 1.Summarizing,the constant R>0 so that(1.11)holds is known to exist,but very little is known on its actual value and its dependence on the parameters of the system under consideration.

    This spectral observability inequality motivates the introduction of the following Hilbert space of non-local potentials(that was mentioned before when describing the class of models under consideration)

    R>0 being as in(1.11).Let us emphasize that kernels A∈Mn(H)enjoy the following property(see for instance[15,Remark 5]):

    Let us now consider the following(forward)adjoint system of(1.1)involving also the nonlocal coupling terms:

    for some Z0∈ (L2(?))n.

    Our goal is to extend the observability inequalities above for this complete model involving the non-local perturbations.We are able to reduce the observability problem under consideration to a unique continuation property for an elliptic problem,usually called Fattorini’s Criterion(see[13]).This condition is much easier to be verified in practice,as illustrated by two examples in Section 3.Note however that,due to the presence of the non-local term,this property is not a consequence of the existing wide literature on the unique continuation for elliptic problems and that analyticity assumptions are imposed on the kernel.As a consequence of the spectral observability inequality,by duality,we shall also derive the controllability property for the original control system involving the non-local terms.

    The main result of this paper is the following.

    Theorem 1.1Consider any T > 0 and assume that A(x,ξ)∈ Mn(H),where H is defined in(1.12),and that KDverifies the Kalman rank condition(1.8).

    Then,there exists C(T)>0 such that any solution Z of(1.13)(involving the non-local perturbation terms)verifies

    if and only if the following unique continuation property is verified for every λ ∈ R:

    Equivalently,under condition(1.15),system(1.1)is null-controllable on(0,T),in the sense that for any Y0∈ [L2(?)]n,there exists u ∈ [L2((0,T)× ?)]msuch that the corresponding solution to(1.1)verifies Y(T,·)=0.

    The proof of the main result consists in obtaining the inequality(1.12)for the complete system(1.13)on the basis of the same inequality for the system in the absence of non-local perturbations(1.3).This is done applying a compactness-uniqueness argument,and reduces the issue to the fulfillment of the unique continuation property above(1.15)for the spectral problem.Once(1.12)is proved for the complete adjoint system(1.13),the null controllability result for(1.1)is a direct consequence of a classical duality principle.

    Compactness-uniqueness arguments have rarely been applied in the context of heat equations because of the strong time irreversibility.In[15]this principle was applied in a satisfactory manner for scalar parabolic equations involving non-local potentials,provided they belong to the space H.This compactness-uniqueness technique,which applies in the context of nonlocal perturbation terms,cannot be used for pointwise space-varying coupling terms.The main novelty of the present article is to extend this analysis to parabolic systems involving non-local terms.

    Several other remarks are in order.

    Remark 1.1(1)We are unable to derive an explicit estimate on the cost of controllability in small time,similar to the one given in(1.7),because we use a contradiction argument.

    (2)Remark that in(1.15),B?? =0 is assumed on all ? and not only ω.This is a consequence of the analyticity properties of the kernel A?.This fact facilitates the needed unique continuation property,which becomes a problem of an algebraic nature since localisation(in the space variable)issues do not arise.

    (3)The hypothesis that A(x,ξ)belongs to Mn(H)is necessary in our study to develop the compactness-uniqueness argument.However,it is likely that this hypothesis to be of purely technical nature.In fact,there is no reason that A should be analytic,and it is likely that one might obtain the same result for any kernel that is regular enough to ensure that equation(1.1)is well-posed,for example A(x,ξ) ∈ Mn(L2(? × ?)).Hence,a natural conjecture would be that the main result of Theorem 1.1 holds under the assumption that A(x,ξ)∈ Mn(L2(?×?))(instead of A(x,ξ)∈ Mn(H))and provided the unique continuation property(1.15)holds.

    Note that in[22]a 1-d scalar equation is considered and that the analyticity assumption is avoided within the particular class of kernels in separated variables A(x,ξ)=Ax(x)Aξ(ξ),under the assumption that Ax(x)does not vanish in the subset where the control is being applied.On the other hand,as indicated by Patrick Gérard in a private communication,unique continuation may fail for the spectral problem with smooth kernels in separated variables of compact support even in the scalar case n=1.Accordingly it fails for time-dependent parabolic problems too.This example shows the necessity of some additional assumption on the kernel,such as analyticity,for the unique continuation property to hold even for scalar equations.Finding sharp conditions on the non-local kernel for unique continuation in the context of systems is an interesting open problem.

    1.3 Bibliographical comments

    As indicated above,there is an extensive literature devoted to the controllability properties of PDE systems but problems involving non-local terms are rarely considered.Apart from references[15]and[22],we would like to mention[20],where a Carleman estimate for a scalar non-local parabolic equation with an integral term involving the solution and itsfirst order derivatives is proved,with applications to unique continuation and inverse problems.

    Concerning parabolic systems without non-local terms,some of the existing results concern the following topics and techniques(see also the survey[1]for earlier results).For a more detailed presentation,concerning also the hyperbolic and dispersive case,we refer to[21].

    (1)One-dimensional results(i.e.,d=1)were obtained in[2—4,6].

    (2)Multi-dimensional results were obtained in[10]for constant or time-dependent coupling terms,and partial results in the case of space-dependent coupling terms were obtained in[2—3,5—6,11,18].

    (3)The nonlinear case was notably studied in[8—9,14].Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms 287

    (4)Observability properties for systems involving a superposition of different dynamics(notably coupled systems of heat and wave equations)were studied in[26].

    2 Proof of the Main Result

    Assuming that the spectral unique continuation property(1.15)is verified,the proof consists in showing that the null-controllability of(1.1)holds.To do this,using the equivalence between null controllability and observability,it suffices to show that the observability inequality(1.14)holds for the complete system(1.13).

    The proof of this inequality for the complete system involving the non-local terms relies on a compactness-uniqueness argument similar to the one in[15,Proof of(16)].We proceed in several steps.

    Step 1Splitting of the solution.To get(1.14),first of all,we decompose the solution Z of(1.13)into two parts Z= ζ+p,where p verifies

    and ζ verifies

    From(1.8)and(1.11),we already know that

    Step 2An auxiliary Carleman estimate.Let us prove the following useful Carleman estimate.

    Lemma 2.1There exist two constants C0>0(not depending on T)and C(T)>0 such that for any Z0∈ [L2(?)]n,the solution p of(2.1)verifies

    ProofWe follow the computations of[16,Remark 6.1].First of all,we decompose Z0in the Hilbert basis{ek}as

    For C0>0(to be determined later on)we remark that

    Using the ellipticity condition(1.2),there exists C1>0(independent of C1)such that for any t>0,one has

    Hence,from(2.5)and(2.7)we deduce that

    Besides,it is well-known that,as λ → ∞,

    Hence,there exists some C2>0 such that for any k>0,one has

    We deduce from(2.8)that

    Inequality(2.4)then follows by using(1.11)together with(2.9)and taking C0large enough

    Step 3Reduction to the proof of two inequalities.We remark that in order to obtain(1.14),it is enough to prove the two following key inequalities:

    and

    Step 4Proof of(2.10).Assume that(2.10)is not verified whereas(1.15)is verified.Then,there exists a sequence()n∈Nsuch that the corresponding solution pnof(2.1)with initial conditionverifies

    and the corresponding solution Znof(1.13)with initial conditionis such that

    We also call ζnthe solution to(2.2)where p is replaced by pn,so that we have the relation

    We are going to prove that ζn→ 0(up to a subsequence)strongly in L2((0,T)× ?),which is obviously in contradiction with(2.12)—(2.13)since these estimates together with(2.14)imply

    First of all,let us remark that there exists C>0 such that

    It is an easy consequence of the computation given in[15,(21)]applied on each component of A?.Hence,by classical energy estimates and compactness arguments,one may assume that ζnconverges strongly in L2((0,T)× ?)to some ζ∈ L2((0,T)× ?).This implies,together with(2.4)and(2.14),that if we fix δ∈ (0,T),(Zn)n∈Nis bounded in L2((δ,T),?).Hence,(Zn)n∈Ncan be assumed to converge weakly in L2((δ,T),?)to some Z ∈ L2((δ,T),?).Then,one can prove that Z solves the following PDE:

    Moreover,we also know,thanks to(2.13),thatZ(t,x)=0 on(0,T)×ωi,?i∈[|1,m|].Using the well-known Fattorini criterion for approximate controllability(see[13]),proving that Z≡0 is equivalent to proving the following assertion:

    Hence,we consider any ? ∈ L2(?)verifying

    We will prove the following analyticity property on ?.

    Lemma 2.2Any ? ∈ L2(?)verifying the first two lines of(2.17)for some λ ∈ R is analytic on ?.

    ProofFrom(2.17)and taking into account that x →R?A?(ξ,x)?(ξ)dξ is analytic on ?(hence C∞on ?)since ? ∈(?),an easy induction argument gives that ? ∈ C∞(?).Now,consider any component of A?that we call a?and that we decompose as

    Using condition(1.12)and since A?∈Mn(H),we obtain that for any j∈N,one has

    implying thanks to(2.17)that for any ? ∈(?)n,one has K(?)=0 on ??,where K is given by

    Hence,another easy induction argument enables us to conclude that

    where Δ represents here the Dirichlet Laplace operator with domain(?)∩ H2(?).Let us now prove that ? is moreover analytic.Let k ∈ N.In what follows,C is a constant that may vary from inequality to inequality and is independent of k.We consider the scalar product of the first line of(2.17)by the vector Δ2k+1? and we integrate on ?.Taking into account(2.18),we obtain after some integrations by parts that

    so that notably

    Let us focus on ‖Δ2k+1(K?)‖L2(?).Following the computations of[15,Remark 5],one easily infers that for any component of A?that we call a?and that we decompose as a?(ξ,x)=

    where for any multi-index α =(α1,···,αN),we write for simplicity|α|= α1+ ···+ αNand?α? =It is well-known that inequality(2.24)implies the analyticity of ? on ?,whichfinishes the proof.

    We are now ready to complete the proof of Step 4.Let us consider any ? ∈ L2(?)Nverifying(2.17).Using Lemma 2.2,we deduce that ? is analytic on ?,which implies that B?? is also analytic on ?.Hence,using the last line of(2.17),we deduce that B?? =0 in ?.

    Now,using assumption(1.15),(2.16)is verified and hence Z ≡ 0 on(0,T)× ?.We deduce that pnconverges weakly to?ζ in L2((0,T)×?),which implies that ζn→ 0= ζ in L2((0,T)×?)because of(2.2).This leads to the desired contradiction.

    Step 5Proof of(2.11).This inequality is a consequence of(2.3)and easy energy estimates on ξ using equation(2.2)and arguing as in the proof of[15,(21)].

    Finally,we have proved that(1.15)implies(1.14).The fact that the null-controllability of(1.1)(i.e.,(1.14))implies(1.15)is standard and is omitted.

    3 Two Simple Examples of Application

    3.1 Indirect controllability of cascade systems of two equations

    In what follows,we consider the case of two coupled equations with cascade structure and control on thefirst component.

    More precisely,we consider the following system:

    Here D is given by

    and is assumed to verify(1.2).The non-local potential A is given by

    We consider the control operator B given by

    The control acts on some open subset ω ? ?.We are going to prove the following sufficient condition for the controllability of(3.1).

    Theorem 3.1Consider any T>0 and assume that aij(x)∈H for(i,j)∈{1,2}2,d21/=0 and d22/=0.Then,(3.1)is null-controllable.

    ProofFirst,observe that condition(1.8)is equivalent to d21/=0.Then,applying Theorem 1.1,the null-controllability of(3.1)is equivalent to the following unique continuation property:

    By contradiction,assume that there exists some ? /≡ 0 verifying the first three equations of(3.2).Let us decompose a21as follows:from the second equation of(3.2)that there exists m ∈ N?such that λ =d22λm.In this case,without loss of generality we may assume that ?(x)=em(x).Using the spectral decomposition of a21,we obtain that

    Moreover,one has ?d21Δ?(x)=d21λmem(x).Hence,we deduce that a21is necessarily such that the two following conditions are verified:

    (1)ckm=0 if k/=m.

    (2)cmm=d21λm.

    The conclusion follows since such an a21cannot be in H in view of(1.12).

    3.2 Simultaneous controllability of two equations with diagonal principal part

    In what follows,we consider the case of two coupled equations with simultaneous control:

    Here D is given by

    where d11>0 and d22>0.A is given by

    where aij(x)∈H for i,j=1,2.We consider the control operator B given by

    The control acts on some open subset ω ? ?.

    We are going to prove the following sufficient condition for the controllability of(3.3).

    Theorem 3.2Consider any T>0 and assume that aij(x)∈H for(i,j)∈{1,2}2,(i,j)/=(2,2)and d11/=d22.Then,(3.3)is null-controllable if the following conditions(for instance)are verified:

    (1)a11=a21.

    (2)a12and a22are symmetric in the variables(x,ξ).

    ProofRemark that the Kalman rank condition(1.8)is verified here since d11/=d22and each component of B is nonzero.Hence,we can apply Theorem 1.1 and we obtain that the null-controllability of(3.3)is equivalent to the following unique continuation property:

    Substituting ?2in the first two equations of(3.4)and using the hypothesis a11=a21,we obtain that(3.4)is equivalent to

    From the first line of(3.5)we may assume that λ > 0(since every eigenvalue of the Laplace operator with Dirichlet boundary conditions is positive).We multiply thefirst line of(3.5)by d22and the second line of(3.5)by d11,and we subtract the result.We obtain that

    We apply the Laplace operator to this equation,we use the symmetry of the coefficients a12,a22and we perform some integrations by parts.We obtain that

    Now,we replace Δ?1thanks to the first line of(3.5)and we obtain

    Multiplying(3.6)by λ and using(3.7)lead to ?1=0 since λ /=0 and d11/=d22,so that we also have ?2=0 by the third line of(3.4).

    [1]Ammar-Khodja,F.,Benabdallah,A.,González-Burgos,M.and de Teresa,L.,Recent results on the controllability of linear coupled parabolic problems:A survey,Mathematical Control and Related Fields,1(3),2011,267–306.

    [2]Ammar-Khodja,F.,Benabdallah,A.,González-Burgos,M.and de Teresa,L.,The Kalman condition for the boundary controllability of coupled parabolic systems,bounds on biorthogonal families to complex matrix exponentials,J.Math.Pures Appl.(9),96(6),2011,555–590.

    [3]Ammar-Khodja,F.,Benabdallah,A.,González-Burgos,M.and de Teresa,L.,Minimal time for the null controllability of parabolic systems:The effect of the condensation index of complex sequences,J.Funct.Anal.,267(7),2014,2077–2151.

    [4]Ammar Khodja,F.,Benabdallah,A.,González-Burgos,M.and de Teresa,L.,New phenomena for the null controllability of parabolic systems:Minimal time and geometrical dependence,J.Math.Anal.Appl.,444(2),2016,1071–1113.

    [5]Benabdallah,A.,Boyer,F.,González-Burgos,M.and Olive,G.,Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null controllability in cylindrical domains,SIAM J.Control Optim.,52(5),2014,2970–3001.

    [6]Boyer,F.and Olive,G.,Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients,Math.Control Relat.Fields,4(3),2014,263–287.

    [7]Ciarlet,P.G.,Linear and Nonlinear Functional Analysis with Applications,Society for Industrial and Applied Mathematics,Philadelphia,PA,2013.

    [8]Coron,J.-M.,Guerrero,S.and Rosier,L.,Null controllability of a parabolic system with a cubic coupling term,SIAM Journal on Control and Optimization,48(8),2010,5629–5653.

    [9]Coron,J.-M.and Guilleron,J.-P.,Control of three heat equations coupled with two cubic nonlinearities,SIAM J.Control Optim.,55(2),2016,989–1019.

    [10]Duprez,M.and Lissy,P.,Indirect controllability of some linear parabolic systems of m equations with m?1 controls involving coupling terms of zero orfirst order,J.Math.Pures Appl.(9),106(5),2016,905–934.

    [11]Duprez,M.and Lissy,P.,Positive and negative results on the internal controllability of parabolic equations coupled by zero and first order terms,J.Evol.Equ.,2016,1–22,DOI:10.1007/s00028-017-0415-1.

    [12]Ervedoza,S.and Zuazua,E.,Sharp observability estimates for heat equations,Archive for Rational Mechanics and Analysis,202,2011,975–1017.

    [13]Fattorini,H.O.,Some remarks on complete controllability,SIAM J.Control,4(4),1966,686–694.

    [14]Fernández-Cara,E.,González-Burgos,M.and de Teresa,L.,Controllability of linear and semilinear nondiagonalizable parabolic systems,ESAIM Control Optim.Calc.Var.,21(4),2015,1178–1204.

    [15]Fernández-Cara,E.,Lü,Q.and Zuazua,E.,Null controllability of linear heat and wave equations with nonlocal spatial terms,SIAM J.Control Optim.,54(4),2016,2009–2019.

    [16]Fernández-Cara,E.and Zuazua,E.,The cost of approximate controllability for heat equations:The linear case,Adv.Differential Equations,5(4–6),2000,465–514.

    [17]Ladyzenskaja,O.A.,Solonnikov,V.A.and Ural’ceva,N.N.,Linear and quasilinear equations of parabolic type,23,American Mathematical Society,Providence,R I.,1968.

    [18]Léautaud,M.,Spectral inequalities for non-selfadjoint elliptic operators and application to the nullcontrollability of parabolic systems,J.Funct.Anal.,258(8),2010,2739–2778.

    [19]Lions,J.-L.,Exact controllability,stabilization and perturbations for distributed systems,SIAM Rev.,30(1),1988,1–68.

    [20]Lorenzi,A.,Two severely ill-posed linear parabolic problems,Alexandru Myller Mathematical Seminar,AIP Conf.Proc.,1329,Amer.Inst.Phys.,Melville,NY,2011,150–169.

    [21]Lissy,P.and Zuazua,E.,Internal observability for coupled systems of linear partial differential equations,HAL,2017,https://hal.archives-ouvertes.fr/hal-01480301/document.

    [22]Micu,S.and Takahashi,T.,Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence,HAL,2017,https://hal.archives-ouvertes.fr/hal-01572317.

    [23]Miller,L.,A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups,Discrete Contin.Dyn.Syst.Ser.B,14(4),2010,1465–1485.

    [24]Okubo,A.and Levin,S.A.,Diffusion and Ecological Problems:Modern Perspectives,Interdisciplinary Applied Mathematics,14,Springer-Verlag,New York,2001.

    [25]Russell,D.L.,Controllability and stabilizability theory for linear partial differential equations:Recent progress and open questions,SIAM Rev.,20(4),1978,639–739.

    [26]Zuazua,E.,Stable observation of additive superpositions of partial differential equations,Systems Control Lett.,93,2016,21–29.

    国产不卡av网站在线观看| 精品少妇内射三级| 国产成人av激情在线播放| 啦啦啦在线免费观看视频4| 91大片在线观看| 国产精品一区二区免费欧美| 人人澡人人妻人| 国产一区二区 视频在线| 欧美久久黑人一区二区| 啦啦啦中文免费视频观看日本| 日日夜夜操网爽| 亚洲午夜理论影院| 欧美性长视频在线观看| 97人妻天天添夜夜摸| 久久久久网色| 水蜜桃什么品种好| 999久久久精品免费观看国产| 国产欧美日韩一区二区三区在线| 十八禁高潮呻吟视频| 美女午夜性视频免费| av天堂在线播放| 美女午夜性视频免费| 免费在线观看完整版高清| 欧美激情极品国产一区二区三区| 天天添夜夜摸| 精品免费久久久久久久清纯 | 91麻豆精品激情在线观看国产 | 欧美精品亚洲一区二区| 在线观看www视频免费| 激情视频va一区二区三区| 亚洲中文字幕日韩| 妹子高潮喷水视频| 久久久久久人人人人人| tube8黄色片| 欧美变态另类bdsm刘玥| 欧美老熟妇乱子伦牲交| 国产午夜精品久久久久久| 俄罗斯特黄特色一大片| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品久久二区二区91| 一级,二级,三级黄色视频| 日韩大码丰满熟妇| 久久久国产成人免费| 两人在一起打扑克的视频| 中文字幕人妻熟女乱码| aaaaa片日本免费| 777米奇影视久久| 多毛熟女@视频| 欧美大码av| 亚洲精品久久午夜乱码| 91精品国产国语对白视频| 99精品在免费线老司机午夜| 淫妇啪啪啪对白视频| 一区二区三区国产精品乱码| 久久精品亚洲精品国产色婷小说| 老司机深夜福利视频在线观看| 黄色视频在线播放观看不卡| 女同久久另类99精品国产91| kizo精华| 国产欧美日韩一区二区三区在线| 日韩制服丝袜自拍偷拍| 国产精品影院久久| 极品少妇高潮喷水抽搐| av在线播放免费不卡| 一区二区日韩欧美中文字幕| 精品乱码久久久久久99久播| 99精品欧美一区二区三区四区| 日韩三级视频一区二区三区| 美女高潮喷水抽搐中文字幕| 日本黄色日本黄色录像| 国产午夜精品久久久久久| 日韩视频一区二区在线观看| 欧美激情高清一区二区三区| 国产伦人伦偷精品视频| cao死你这个sao货| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美精品济南到| 一进一出抽搐动态| 亚洲成a人片在线一区二区| 精品欧美一区二区三区在线| av网站在线播放免费| 大片电影免费在线观看免费| 首页视频小说图片口味搜索| 国产亚洲欧美精品永久| 正在播放国产对白刺激| 黄片播放在线免费| 怎么达到女性高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 99riav亚洲国产免费| 久久精品亚洲av国产电影网| 一级,二级,三级黄色视频| 免费人妻精品一区二区三区视频| 十八禁人妻一区二区| 女警被强在线播放| 日本撒尿小便嘘嘘汇集6| www.精华液| xxxhd国产人妻xxx| 搡老熟女国产l中国老女人| 9热在线视频观看99| 蜜桃国产av成人99| 女人高潮潮喷娇喘18禁视频| 国产又色又爽无遮挡免费看| 免费在线观看完整版高清| 国产成人精品在线电影| 免费观看人在逋| 亚洲一区二区三区欧美精品| 香蕉国产在线看| 日本wwww免费看| 国产精品免费大片| 我的亚洲天堂| 亚洲午夜理论影院| 在线观看免费高清a一片| 久久精品亚洲熟妇少妇任你| 亚洲五月色婷婷综合| 丁香六月天网| 19禁男女啪啪无遮挡网站| 51午夜福利影视在线观看| 免费人妻精品一区二区三区视频| av片东京热男人的天堂| 国产精品欧美亚洲77777| 91大片在线观看| 欧美乱码精品一区二区三区| 亚洲五月色婷婷综合| 国产精品麻豆人妻色哟哟久久| 亚洲精品一二三| 少妇裸体淫交视频免费看高清 | 日本a在线网址| 一级片免费观看大全| 一进一出抽搐动态| 99热网站在线观看| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一出视频| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠婷婷综合久久久久久88av| www.999成人在线观看| 啦啦啦免费观看视频1| 在线观看66精品国产| 久久 成人 亚洲| 国产精品 欧美亚洲| 69精品国产乱码久久久| 母亲3免费完整高清在线观看| 69av精品久久久久久 | av电影中文网址| 97人妻天天添夜夜摸| 久久婷婷成人综合色麻豆| 999精品在线视频| 极品少妇高潮喷水抽搐| 1024香蕉在线观看| 俄罗斯特黄特色一大片| 免费人妻精品一区二区三区视频| 又大又爽又粗| 久久精品国产99精品国产亚洲性色 | 国产精品免费一区二区三区在线 | 午夜福利视频在线观看免费| 精品人妻在线不人妻| 一个人免费在线观看的高清视频| 国产黄色免费在线视频| 精品久久久久久电影网| 高清在线国产一区| 国产亚洲精品一区二区www | 老熟妇仑乱视频hdxx| 精品亚洲成a人片在线观看| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看 | 91成年电影在线观看| 一级,二级,三级黄色视频| 日本撒尿小便嘘嘘汇集6| www.熟女人妻精品国产| 窝窝影院91人妻| 欧美精品亚洲一区二区| 精品亚洲成国产av| 18禁国产床啪视频网站| 18禁美女被吸乳视频| 成人黄色视频免费在线看| 老司机午夜福利在线观看视频 | 国产精品影院久久| 亚洲视频免费观看视频| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片| 亚洲国产欧美在线一区| 在线观看免费高清a一片| 在线观看66精品国产| 在线观看一区二区三区激情| 亚洲熟妇熟女久久| 国产精品久久久久久人妻精品电影 | 人人澡人人妻人| 夜夜骑夜夜射夜夜干| 久久久精品区二区三区| 亚洲国产毛片av蜜桃av| 美女高潮到喷水免费观看| 高清毛片免费观看视频网站 | 老司机亚洲免费影院| 欧美亚洲日本最大视频资源| 精品一区二区三卡| 亚洲精品国产精品久久久不卡| 日韩人妻精品一区2区三区| 日本vs欧美在线观看视频| 精品一区二区三区av网在线观看 | 欧美在线黄色| 女性生殖器流出的白浆| 交换朋友夫妻互换小说| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 黑人操中国人逼视频| 亚洲中文字幕日韩| 美女午夜性视频免费| 久久中文字幕一级| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频| 一区二区三区乱码不卡18| 国产精品久久久久久精品古装| 国产精品久久久人人做人人爽| 黄频高清免费视频| 欧美日韩一级在线毛片| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影 | 考比视频在线观看| 大香蕉久久网| a在线观看视频网站| 亚洲综合色网址| 夜夜骑夜夜射夜夜干| 女人高潮潮喷娇喘18禁视频| 国产在线免费精品| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 激情在线观看视频在线高清 | 亚洲少妇的诱惑av| 国产一区二区三区综合在线观看| 成人手机av| 搡老乐熟女国产| 国产精品1区2区在线观看. | 亚洲成人手机| 久久婷婷成人综合色麻豆| 国产精品免费一区二区三区在线 | 精品少妇黑人巨大在线播放| 电影成人av| av网站在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲五月色婷婷综合| 日韩制服丝袜自拍偷拍| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 黑人欧美特级aaaaaa片| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 午夜福利在线免费观看网站| 热99re8久久精品国产| 久久99热这里只频精品6学生| 777久久人妻少妇嫩草av网站| 久久人妻av系列| 精品少妇内射三级| 天堂俺去俺来也www色官网| 日韩 欧美 亚洲 中文字幕| 男女之事视频高清在线观看| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 老熟妇仑乱视频hdxx| 日本黄色日本黄色录像| 久久久国产成人免费| 国产区一区二久久| 啦啦啦视频在线资源免费观看| 99国产精品一区二区三区| 757午夜福利合集在线观看| 男女高潮啪啪啪动态图| 亚洲av片天天在线观看| 欧美精品啪啪一区二区三区| 国产成人精品久久二区二区免费| 色婷婷久久久亚洲欧美| 黄色视频在线播放观看不卡| 国产成人欧美| 飞空精品影院首页| 精品人妻1区二区| 午夜福利视频在线观看免费| 超碰97精品在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 叶爱在线成人免费视频播放| 日韩大码丰满熟妇| 麻豆国产av国片精品| 熟女少妇亚洲综合色aaa.| 啦啦啦中文免费视频观看日本| 午夜激情av网站| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 欧美+亚洲+日韩+国产| videosex国产| 电影成人av| 香蕉国产在线看| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 亚洲精品一卡2卡三卡4卡5卡| 午夜视频精品福利| 国产精品98久久久久久宅男小说| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 一个人免费在线观看的高清视频| 最近最新中文字幕大全免费视频| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 中文字幕色久视频| 欧美大码av| 欧美日韩国产mv在线观看视频| 在线观看舔阴道视频| 精品福利观看| 在线观看免费视频日本深夜| 大片免费播放器 马上看| 亚洲欧美日韩另类电影网站| 在线观看www视频免费| 十八禁高潮呻吟视频| 蜜桃在线观看..| 久久中文字幕人妻熟女| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久国产亚洲av麻豆专区| 在线 av 中文字幕| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 十八禁网站免费在线| 中文字幕人妻丝袜制服| 亚洲精华国产精华精| e午夜精品久久久久久久| 日本av手机在线免费观看| 美女国产高潮福利片在线看| 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 国产欧美亚洲国产| 人成视频在线观看免费观看| 亚洲五月婷婷丁香| 99热国产这里只有精品6| 久久国产亚洲av麻豆专区| 国产日韩欧美视频二区| 精品人妻1区二区| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 久久久国产成人免费| 免费久久久久久久精品成人欧美视频| 亚洲avbb在线观看| 亚洲 欧美一区二区三区| 亚洲全国av大片| 日韩欧美三级三区| 中文字幕人妻丝袜制服| tocl精华| 2018国产大陆天天弄谢| 久久 成人 亚洲| 女同久久另类99精品国产91| 黑人巨大精品欧美一区二区蜜桃| av视频免费观看在线观看| 久久久国产精品麻豆| 国产精品成人在线| 可以免费在线观看a视频的电影网站| 亚洲欧洲精品一区二区精品久久久| 婷婷丁香在线五月| 成人18禁高潮啪啪吃奶动态图| 多毛熟女@视频| 精品第一国产精品| av电影中文网址| 999久久久精品免费观看国产| 欧美 日韩 精品 国产| 日韩免费av在线播放| 欧美午夜高清在线| 丁香六月天网| 日韩精品免费视频一区二区三区| 精品少妇黑人巨大在线播放| 丝袜美腿诱惑在线| 色精品久久人妻99蜜桃| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 在线 av 中文字幕| 狠狠精品人妻久久久久久综合| 日韩制服丝袜自拍偷拍| 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 久久精品成人免费网站| 日韩一卡2卡3卡4卡2021年| 国产在线精品亚洲第一网站| 国产成人精品久久二区二区免费| 国产成+人综合+亚洲专区| 中文字幕av电影在线播放| av一本久久久久| 无限看片的www在线观看| 嫩草影视91久久| 午夜福利一区二区在线看| 成在线人永久免费视频| 免费人妻精品一区二区三区视频| 桃花免费在线播放| 99精品在免费线老司机午夜| 9热在线视频观看99| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 国产一区二区激情短视频| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| 黄片播放在线免费| 99久久人妻综合| 国产精品国产av在线观看| 国产精品美女特级片免费视频播放器 | 国产一区二区在线观看av| 美国免费a级毛片| 精品一区二区三区视频在线观看免费 | 一级毛片精品| 欧美人与性动交α欧美软件| 自线自在国产av| 日本黄色日本黄色录像| 一本色道久久久久久精品综合| 搡老熟女国产l中国老女人| 999久久久国产精品视频| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 久久久久视频综合| 一进一出抽搐动态| 正在播放国产对白刺激| 久久午夜综合久久蜜桃| 窝窝影院91人妻| 另类精品久久| 国产深夜福利视频在线观看| 深夜精品福利| 桃红色精品国产亚洲av| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 亚洲少妇的诱惑av| 亚洲中文av在线| 91国产中文字幕| 国产精品亚洲av一区麻豆| 99九九在线精品视频| 成人国产一区最新在线观看| 精品国产一区二区三区四区第35| 天天躁夜夜躁狠狠躁躁| 露出奶头的视频| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 亚洲av日韩在线播放| 桃花免费在线播放| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 久久精品人人爽人人爽视色| 69精品国产乱码久久久| 精品第一国产精品| 麻豆乱淫一区二区| 亚洲视频免费观看视频| 1024视频免费在线观看| 精品国产国语对白av| 免费看a级黄色片| 中文欧美无线码| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 大型av网站在线播放| 亚洲avbb在线观看| 亚洲国产欧美日韩在线播放| av有码第一页| 精品国产乱码久久久久久小说| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 高清黄色对白视频在线免费看| 中文字幕色久视频| 成人av一区二区三区在线看| 黄片小视频在线播放| 99热国产这里只有精品6| 少妇 在线观看| 久久av网站| 亚洲国产欧美一区二区综合| 亚洲国产欧美网| 亚洲少妇的诱惑av| 精品国产一区二区三区久久久樱花| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 精品国产一区二区久久| 看免费av毛片| 精品亚洲成国产av| 狠狠婷婷综合久久久久久88av| 日本撒尿小便嘘嘘汇集6| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 国产成人精品无人区| 大片电影免费在线观看免费| 搡老熟女国产l中国老女人| 男人舔女人的私密视频| 露出奶头的视频| 久久久精品国产亚洲av高清涩受| 不卡av一区二区三区| 十八禁网站免费在线| 一区二区av电影网| 一区二区三区乱码不卡18| 91成人精品电影| 大型av网站在线播放| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 91成年电影在线观看| 一本—道久久a久久精品蜜桃钙片| 女性被躁到高潮视频| 午夜福利一区二区在线看| 大香蕉久久成人网| 美女福利国产在线| 国产深夜福利视频在线观看| 久久久精品免费免费高清| 亚洲av国产av综合av卡| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区 | 日韩中文字幕视频在线看片| 亚洲午夜理论影院| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| 一本久久精品| 老汉色av国产亚洲站长工具| 亚洲成a人片在线一区二区| 少妇粗大呻吟视频| 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 色播在线永久视频| 国产男靠女视频免费网站| 考比视频在线观看| 69精品国产乱码久久久| 9191精品国产免费久久| 亚洲精品国产精品久久久不卡| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区 | 少妇猛男粗大的猛烈进出视频| 丰满饥渴人妻一区二区三| 黄片小视频在线播放| 这个男人来自地球电影免费观看| 正在播放国产对白刺激| 久久久久久久国产电影| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 国产精品亚洲一级av第二区| 国产在线免费精品| 高清在线国产一区| 99国产精品一区二区三区| 国产真人三级小视频在线观看| a在线观看视频网站| 91精品国产国语对白视频| 国产男靠女视频免费网站| 国产成人精品久久二区二区91| av一本久久久久| 国产高清视频在线播放一区| 俄罗斯特黄特色一大片| 久久ye,这里只有精品| 一边摸一边做爽爽视频免费| 日韩三级视频一区二区三区| 极品人妻少妇av视频| 免费日韩欧美在线观看| kizo精华| 一进一出抽搐动态| 热99国产精品久久久久久7| 欧美变态另类bdsm刘玥| 欧美人与性动交α欧美精品济南到| 精品久久久精品久久久| 考比视频在线观看| 欧美日韩一级在线毛片| 亚洲午夜理论影院| 国产主播在线观看一区二区| 久久免费观看电影| 日本一区二区免费在线视频| 欧美精品av麻豆av| 午夜精品国产一区二区电影| 亚洲性夜色夜夜综合| 午夜久久久在线观看| 久久婷婷成人综合色麻豆| 91av网站免费观看| 正在播放国产对白刺激| 99久久人妻综合| 久久免费观看电影| 2018国产大陆天天弄谢| 日本黄色视频三级网站网址 | 视频区图区小说| 一区二区三区乱码不卡18| 热99久久久久精品小说推荐| 制服诱惑二区| 国产在视频线精品| 日韩欧美三级三区| 亚洲精品乱久久久久久| 丰满饥渴人妻一区二区三| 一个人免费在线观看的高清视频| 国产精品欧美亚洲77777| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 欧美成人免费av一区二区三区 | 麻豆成人av在线观看| 久久av网站| 最近最新免费中文字幕在线| 日韩大片免费观看网站| 曰老女人黄片| 捣出白浆h1v1| 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区免费| 国产精品国产av在线观看| 极品人妻少妇av视频| 精品少妇一区二区三区视频日本电影| 国产欧美亚洲国产| 国产精品久久电影中文字幕 | 亚洲国产成人一精品久久久| a在线观看视频网站| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| 黄色视频不卡| 亚洲色图综合在线观看| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| tube8黄色片| 男女之事视频高清在线观看| 一区二区av电影网| 热re99久久国产66热| 在线观看一区二区三区激情| 久久久久久久久久久久大奶|