• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poincar′e’s Lemma on Some Non-Euclidean Structures

    2018-03-13 09:28:17AlexandruKRISTLY

    Alexandru KRISTáLY

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction and Main Result

    Let ? ? Rnbe an open,simply connected set,and a=(ai)∈ C1(?;Rn),n ≥ 2.The classical Poincar′e lemma says that there exists u ∈ C2(?)with

    if and only if curl a=0 in C(?;Rn),i.e.,

    Here,as usual, ?u=(?xiu) ∈ C1(?;Rn).For a weak version of the Poincar′e lemma(e.g.in L2(?))and its equivalent formulation in terms of fundamental results in the theory of PDEs,we refer the reader to Amrouche,Ciarlet and Mardare[3—4]and to the comprehensive monograph by Ciarlet[12,Chapter 6].

    Very recently,Poincar′e’s lemma has been extended to some specific low-dimensional sub-Riemannian structures with rank 2 distributions;e.g.,thefirst Heisenberg group H1,Engel-type manifolds,Grushin and Martinet type distributions,and the sub-Riemannian 3-dimensional sphere S3(see Calin,Chang and Eastwood[6—7]and Calin,Chang and Hu[8—10]).In the sub-Riemannian setting,the number of equations in the system which is going to be solved is strictly less than the space dimension.Accordingly,the solvability of such gradient-type systems deeply depends on the Lie bracket generating properties of the sub-Riemannian distributions,and it turns out that the “curl-vanishing” characterization of the solvability of the sub-Riemannian system becomes a system of PDEs containing higher-order derivatives.In order to visualize this phenomenon,we consider thefirst Heisenberg group H1=C×R endowed with its usual group operation and left-invariant vectorfields X1= ?x1?2x2?x3and X2= ?x2+2x1?x3.The sub-Riemannian system

    is solvable in F(H1)(=the space of smooth functions on H1)for a=(a1,a2)∈C1(H1;R2)if and only if

    (see,e.g.Calin and Chang[5,Theorem 2.9.8]).In addition,the solution u of(1.1)can be given the work done by the force vectorfield X=a1X1+a2X2along any horizontal curve starting from 0∈H1,called also as the Ces`aro-Volterra horizontal path integral.

    The purpose of our paper is to prove Poincar′e lemmas on some sub-Riemannian structures of arbitrary dimension with corank 1 distribution,including for instance step-two Carnot groups with not necessarily trivial kernel.In the sequel,we present our main result(see Section 3 for the notions used below).

    Let(M,D,g)be an(n+1)-dimensional sub-Riemannian manifold(n≥2),and consider the distribution D in a given local coordinate system(xi)i=1,···,n+1containing vector fields of the form

    where Ai:M → R are smooth functions depending only on thefirst n variables,i.e.,Ai=Ai(x1,···,xn).We assume that

    and

    Due to the latter assumptions,the rank n distribution D is nonholonomic on M,since

    Given a∈ Γ(D)(=the set of horizontal vectorfields on M),we are going to study the solvability of the system

    where u ∈ F(M)and ?Hdenotes the horizontal gradient.Our main result,the Poincar′e lemma on sub-Riemannian manifolds,reads as follows.

    Theorem 1.1Let(M,D,g)be an(n+1)-dimensional simply connected sub-Riemannian manifold(n≥ 2),where the distributionDis given by the vectorfields in(1.3)with functionsAidepending only on thefirstnvariables,verifying(1.4)andI0/= ?.

    Givena∈Γ(D),the sub-Riemannian system(1.6)has a solutionu∈F(M)if and only if

    wherea=aiXiand=gijai(the summations being from1ton),and(gij)are the components ofgwith respect to the distributionD.Moreover,ifx0∈M,the solutionu:M→Rfor the system(1.6)can be obtained by

    wherec0=u(x0)∈ Randγ :[0,1]→ Mis any horizontal curve joiningx0withx.

    Some remarks are in order.

    Remark 1.1(a)Although(1.7)and(1.8)contain n4and n3conditions,a simple combinatorial reasoning shows that it is enough to verify at most

    and

    conditions,respectively.Thus,the number of compatibility conditions is

    (b)Theorem 1.1 provides an answer to the open question of Calin and Chang[5,p.55]whenever the sub-Riemannian manifold with arbitrarily dimension has corank 1 distribution.We note that the existing results in the literature solve the system(1.6)only for two components,i.e.,the distributions contain two vectorfields.In particular,if M=H1is thefirst Heisenberg group,the solvability of the system(1.1)can be recovered by Theorem 1.1;indeed,in this particular case,n=2,D={X1,X2}and gij= δij.Moreover,A1= ?2x2,A2=2x1;thus c12= ?c21=4 and c11=c22=0 in(1.4).Notice that thefirst-ordered relations in(1.7)are trivially satisfied(supported also by the fact that s2=0,thus nothing should be checked),while the second-ordered ones(1.8)reduce precisely to(1.2),containing=2 conditions.In higherdimensional Heisenberg groups Hd,d≥ 2,thefirst-ordered assumptions are indispensable as well.

    (c)There are more involved,non-Heisenberg-type vectorfields which verify also the assumptions of Theorem 1.1.Indeed,let(R5,D,g)be the sub-Riemannian manifold with the vectorfields Xi,i=1,···,4 from(1.3)with A1=In this case we have that the elements from(1.4)are c12=4=?c21,c34=2=?c43,while the rest of cij’s are zero.

    (d)Note that Theorem 1.1 can be formulated on any simply connected open domain instead of the whole M.

    Organization of the paperIn Section 2 we prove the Poincar′e lemma on generic Riemannian manifolds.As a direct byproduct,we also state a Saint-Venant lemma on Riemannian manifolds whose proof is presented in the Appendix(Section 6).The Poincar′e lemma on generic Riemannian manifolds turns to be indispensable in the proof of our main theorem,which will be provided in Section 3.Here,we shall explore basic properties of the Riemannian manifolds as the metric compatibility and torsion-freeness(or symmetry)of the Levi-Civita connection with respect to the Riemannian metric.In fact,we shall reduce our original sub-Riemannian system(defined on the distribution)to a differential system on a Riemannian manifold where we can apply the Riemannian Poincar′e lemma and Ces`aro-Volterra integral formula.An elegant computation connects the force vectorfields in these two settings,proving in this way relation(1.9).In Section 4 we give some examples,thefirst on the hyperbolic spaces,the second one on Carnot/Heisenberg groups.In Section 5 we formulate some problems for further investigations.

    2 Poincar′e Lemma on Riemannian Manifolds:A Local Version

    Let(M,g)be an m-dimensional Riemannian manifold;here(gij)are the components of the Riemannian metric g in a given local coordinate system(xi)i=1,···,m.

    Let u:M → R be a C1-functional on M;the differential of u at x,denoted by du(x),belongs to the cotangent spaceM and is defined by

    in the sequel,we prefer to use 〈·,·〉ginstead of g.If the local components of du are denoted by uk= ?xku,then the local components of?gu are ui=gikuk;here,gijare the local components of g?1=(gij)?1.

    The main result of the present section is the Poincar′e lemma on Riemannian manifolds.

    Theorem 2.1Let(M,g)be anm-dimensional Riemannian manifold and??Mbe a simply connected open set.Given a vectorfieldV ∈ C1(?,T?),the system

    is solvable inC2(?)if and only if we have

    where

    Moreover,ifx0∈?isfixed and(2.3)holds,the solutionu:?→Rfor(2.2)can be obtained by

    wherec0=u(x0)∈ Randγ :[0,1]→ ?is any curve joiningx0withx.

    Proof(2.2)?(2.3).First of all,(2.2)is equivalent to

    Multiplying both sides by gji,we have

    Deriving these relations,(2.3)yields at once by the symmetry of second-order derivatives.

    (2.3)?(2.2).We closely follow the proof from Ciarlet[12,Theorem 6.17-2].Let x0∈ ?be given and fix x ∈ ?.Since ? is simply connected,there exists a path γ :[0,1]→ ? such that γ(0)=x0and γ(1)=x.If there exists u ∈ C2(?)which satisfies(2.2),then the function P:[0,1]→ R defined by P(t)=u(γ(t))verifies

    The latter equation together with the Cauchy data P(0)=P0∈R provides a unique solution P:[0,1]→ R which depends on the path γ.

    We are going to show that the value P(1)does not depend on the choice of the path γ whenever(2.3)holds.To see this,let γ0,γ1:[0,1] → ? be two smooth paths such that γi(0)=x0and γi(1)=x,i ∈ {0,1}.Since ? is simply connected,we can find a smooth homotopy H:[0,1]× [0,1]→ ? between γ0and γ1,i.e.,

    For every λ ∈ [0,1],let P(·,λ):[0,1]→ R be the unique solution of the Cauchy problem

    We claim that

    To see this,let us consider the function σ :[0,1]× [0,1]→ R defined by

    Since the Levi-Civita connection is compatible with the Riemannian metric,it follows from[16,Proposition 3.2]that

    where D denotes the covariant derivation on(M,g).Concerning the latter term,we know from the torsion-freeness of the Levi-Civita connection on(M,g)that

    (see[16,Lemma 3.4]).The sophisticated part is to show that

    To prove(2.7)we recall the following well-known facts:If W=(w1,···,wm)is a vector field along a path(x),its covariant derivative can be expressed by

    Coming back to(2.7),we have

    In a similar way,

    Therefore,we have that

    where the latter relation holds true due to(2.3).Consequently,by relations(2.6)—(2.7)and the Cauchy problem(Cλ)we have

    i.e.,t → σ(t,λ)is constant.Since P(0,λ)=P0∈ R and H(0,λ)=x0,it turns out that

    In particular,

    Since H(1,λ)=x0for every λ ∈ [0,1],it follows the claim(2.5),showing that the value P(1)is not depending on the particular choice of the path.

    For every x∈ ?,let u:? → R be defined by

    where P is the unique solution to the Cauchy problem(Cλ)having the initial data P(0)=P0and using any path joining x0and x;thus,the function u is well-defined.

    To conclude the proof,we show the validity of(2.2).Let x∈? and v∈TxM be arbitrarilyfixed elements.Let γ:[0,1]→? be a path such that γ(0)=x0,γ(1)=x and˙γ(1)=v∈TxM,and let P be the solution of the Cauchy problem associated to this path,thus,P(t)=u(γ(t)).Therefore,the latter relation yields that

    On the other hand,by the Cauchy problem we have

    Accordingly,for the moment t=1,it follows that

    and the arbitrariness of v∈TxM concludes the proof of(2.2).

    If γ :[0,1]→ ? is any path joining the points x0and x,the Ces`aro-Volterra path integral formula easily follows as

    which is precisely(2.4).

    Remark 2.1Poincar′e’s lemma can be also proved by using 1-forms,see,e.g.Abraham,Marsden and Ratiu[1].However,we preferred here a direct proof based on local coordinates for two reasons:(a)It highlights the importance of the Riemannian structure,i.e.,the metric compatibility and torsion-freeness of the Levi-Civita connection,which is not valid anymore on non-Riemannian Finsler settings(see Section 5 for details);(b)The proof provides directly a Ces`aro-Volterra path integral formula.

    As a byproduct of the Poincar′e lemma(Theorem 2.1),we state a Saint-Venant lemma on generic Riemannian manifolds;its proof is sketched in the Appendix.To present it,fix ei∈ T?,i=1,···,m,and assume that they can be represented as

    The m-vectorfield e=(e1,···,em)∈ C2(?,T?m)is called symmetric if eij=eji∈ C2(?)for every i,j=1,···,m.

    Proposition 2.1Let(M,g)be anm-dimensional Riemannian manifold and??Mbe a simply connected open set.Givene=(e1,···,em)∈ C2(?,T?m)a symmetricm-vectorfield on?,the system

    has a vectorfield solutionV=(V1,···,Vm) ∈ C3(?,Rm),where the components of the symmetric gradient?s,gVare given by

    if and only if the Saint-Venant compatibility relations hold(in local coordinate system)in?,i.e.,

    Moreover,ifx0∈Misfixed and(2.10)holds,then the solution of(2.9)is obtained by

    where

    withUi=gls(pis+eis)?xl,

    andWij=gls(?xjeis? ?xiejs)?xlfor some numbersand the curveγ :[0,1]→ ?isarbitraryfixed joiningx0withx∈?.

    Remark 2.2(a)Note that?s,gV is a kind ofsymmetric Lie derivativeof the vectorfield V with respect to the Riemannian metric g;indeed,the latter notion appears in[11,p.518],where?s,gV is an L?type tensor of the form

    In our setting,the elements Cijkare expressed by means of the Christoffel symbols as

    (b)Proposition 2.1 provides a curved version of the Saint-Venant lemma;further curvilinear versions of the Saint-Venant lemma can be found in the papers by Ciarlet,Gratie,Mardare and Shen[13],Ciarlet and Mardare[14],and Ciarlet,Mardare and Shen[15].

    3 Proof of Theorem 1.1

    In order to prove Theorem 1.1,wefirst recall some basic notions from the theory of sub-Riemannian manifolds;for further details,see Agrachev,Barilari and Boscain[2],Calin and Chang[5]and Figalli and Rifford[17].

    Let M be a smooth connected(n+1)-dimensional manifold(n≥2),D be a smooth nonholonomic distribution of rank m≤n on M(i.e.,a rank m subbundle of the tangent bundle TM)and g be a Riemannian metric on D.Without loss of generality,we may assume that g is defined on the whole tangent bundle TM(not necessarily in a unique way);we shall keep the same notation of g on TM.The triplet(M,D,g)is a sub-Riemannian manifold.As usual,the distribution D is said to be nonholonomic if for every x∈M there exists an m-tuple,···,of smooth vector fields on a neighborhood Nxof x such that all the Lie brackets generated by these vectors at y generate TyM for every y ∈ Nx.A curve γ :[0,1]→ M is horizontal with respect to D if it belongs to W1,2([0,1];M)and˙γ(t)∈D(γ(t))for a.e.t∈[0,1].If D is nonholonomic on M,by the Chow-Rashewsky theorem,every two points of M can be joined by a horizontal path.Let Γ(D)be the set of horizontal vector fields on M,and F(M)be the set of smooth functions on M.If u∈F(M),the horizontal gradient?Hu∈Γ(D)of u is defined by g(?Hu,X)=X(u)for every X ∈ Γ(D).

    Now,let us put ourselves into the context of Theorem 1.1.Accordingly,let(M,D,g)be an(n+1)-dimensional sub-Riemannian manifold(n≥2),and the rank n distribution D in a local coordinate system(xi)i=1,···,n+1formed by the vector fields given in(1.3)and verifying(1.4).Since

    by(1.4)we obtain(1.5),i.e.,

    [Xi,Xj]=XiXj? XjXi=(?xiAj? ?xiAj)?xn+1=cij?xn+1for every i,j=1,···,n.Therefore,since I0={(i,j):cij/=0}/=?,the distribution D is nonholonomic on M.

    Let a∈Γ(D)befixed.The system(1.6),i.e.,

    in local coordinates reads as

    where gij=g(Xi,Xj)and a=aiXi.With this preparatory part in our mind,we now present the proof of our main result.

    Proof of Theorem 1.1(1.6)?(1.7)—(1.8).Assume that the sub-Riemannian system(1.6)has a solution u∈F(M).First,by(1.5)applied to u,we have

    This relation and(3.1)give that

    If?xn+1u(x)=0 for some x ∈ M,then=0 for every i,j=1,···,n,thus(1.7)clearly holds.If?xn+1u(x)/=0 for some x∈ M,then by writing the relation(3.2)for(k,l)instead of(i,j),and eliminating?xn+1u(x)/=0,we obtain(1.7).

    Deriving(3.2)with respect to the vector field Xk,k=1,···,n,and taking into account that[Xk,?xn+1]=Xk?xn+1? ?xn+1Xk=0,it turns out by(3.1)and(1.5)that

    which is precisely relation(1.8).

    (1.7)—(1.8)?(1.6).Since I0/= ?,let(i0,j0)∈ I0and introduce the function

    Let

    We are going to prove that

    To do this,we distinguish three cases:

    Case 1i=j=n+1.(3.4)trivially holds.

    Case 2i∈ {1,···,n}and j=n+1.On one hand,(3.4)is equivalent to ?xiOn the other hand,by the definition of~a,(1.8)and(1.5)we have that

    which is the required relation.

    Case 3i,j ∈ {1,···,n}.We have the following chain of equivalences:

    By the definition of~a,let us observe that the latter relation is nothing but(1.7)with the choice(k,l)=(i0,j0),which concludes the proof of(3.4).

    According to Theorem 2.1(applied forand relation(3.4),it turns out that the system(3.3)has a solution in C2(M),which can be obtained by

    By(3.3)we clearly have for every j=1,···,n that

    which is equivalent to?Hu=a,see(3.1),i.e.,u∈C2(M)is a solution to(1.6).

    It remains to prove the sub-Riemannian Ces`aro-Volterra path integral formula(1.9).To do this,let us fix an arbitrary horizontal path γ :[0,1]→ M,joining x0with x ∈ M.If γ has the local representation γ =(γ1,···,γn+1),its horizontality means that

    Considering every term at the moment t∈[0,1]in the following computations,we have

    Thus,by(3.5)and the latter computation we obtain(1.9),which concludes our proof.

    4 Examples

    In this section we provide some computational examples as applications to Theorems 1.1 and 2.1 and Proposition 2.1,respectively.

    4.1 Hyperbolic space

    where

    The pair(Bm,ghyp)is a model of the m-dimensional hyperbolic space with constant sectional curvature?1.

    Example 4.1We solve the problem

    where?ghypdenotes the hyperbolic gradient.

    A direct computation shows that ?xi(pxj)= ?xj(pxi)for every i,j=1,···,m,thus we may apply Theorem 2.1 on(Bm,ghyp),which implies the solvability of(4.1).Moreover,if γ :[0,1]→ Bmis γ(t)=tx with an arbitrarily fixed x ∈ Bm,the solution u can be obtained as

    for any c0∈R.

    For simplicity,in the next example we consider only the hyperbolic plane(B2,ghyp).

    Example 4.2We solve the problem

    4.2 Carnot and Heisenberg groups

    Let G be an(n+1)-dimensional corank 1 Carnot group with the Lie algebra g=g1⊕g2,where dimg1=n and dimg2=1.Usually,the operation on g(in exponential coordinates on Rn×R)is given by

    where x=(x1,···,xn+1),y=(y1,···,yn+1),and without loss of generality,A is represented by

    (see,e.g.[19]).Here 0< α1≤ ···≤ αd,and 0n?2dis the(n?2d)×(n?2d)square null-matrix.The layers g1and g2are generated by the left-invariant vectorfields

    Note that[Xi,Xj]=Aij?xn+1,i,j=1,···,n.

    If n=2d(thus the kernel of A is trivial)and α1= ···= αd=4,the Carnot group G reduces to the usual Heisenberg group Hd=R2d×R.

    For our example,we shall consider a 6-dimensional corank 1 Carnot group with the leftinvariant vectorfields given by(4.4),by choosing d=2,n=5,α1=4 and α2=2.To be more explicit,the distribution D on(G,?)is formed by the vector fields given by

    Let a=(a1,a2,a3,a4,a5)∈ Γ(D)be given by the functions

    Example 4.3We solve the problem

    To do this,we are going to fully explore Theorem 1.1;by using the same notations,we identify A1=0,A2= ?2x3,A3=2x2,A4= ?x5,A5=x4.Moreover,c23=4= ?c32,c45=2= ?c54,and the rest of the elements of the matrix C=(cij)are zero,i,j=1,···,5.In order to solve(4.7),we have to check relations(1.7)and(1.8),respectively.It is easy to observe that(1.7)is relevant only for(i,j)=(2,3)and(k,l)=(4,5)(the other choices giving always zero),where simple computations give thatthus,(1.7)holds.Another simple reasoning shows that relation(1.8)is also verified;for instance,same way.

    Thus,Theorem 1.1 implies that the system(4.7)is solvable in F(G);let x0=0∈G and any horizontal curve γ =(γ1,γ2,γ3,γ4,γ5,γ6):[0,1] → G with γ(0)=0 and γ(1)=x=(x1,x2,x3,x4,x5,x6)∈ G.Note that the horizontality of γ means that

    Due to the latter relation and(1.9),some suitable rearrangements and γ(0)=0 give that

    for some c0∈R,which provides the solution of system(4.7).

    5 Final Remarks

    We conclude the paper with two remarks which can be considered as starting points of further investigations.

    (I)Poincar′e lemma on Finsler manifoldsLet(M,F)be an m-dimensional,not necessarily reversible Finsler manifold and ??M be a simply connected domain.Given a vectorfield V ∈ C1(?,T?),we are asking about the solvability of the equation

    where?Fdenotes the Finslerian gradient.Here,as usual?Fu(x)=J?(x,Du(x)),where J?:T?M→TM is the Legendre transform associating to each element α ∈M the unique maximizer on TxM of the map y → α(y)?F2(x,y)and Du(x)∈M is the derivative of u at x ∈ M(see[18]).Note that in general,u → ?Fu is not linear.In order to solve(5.1),a necessarily curl-vanishing condition can be formulated by using the inverse Legendre transform J=(J?)?1and fundamental form of the Finsler metric F.However,we cannot adapt the proof of Theorem 2.1 into the Finsler setting.Indeed,we recall that in the proof of Theorem 2.1 we explored the metric compatibility and torsion-freeness of the Levi-Civita connection with respect to the given Riemannian metric;as we know,such properties are not simultaneously valid on a generic Finsler manifold unless it is Riemannian.

    (II)Saint-Venant lemma on sub-Riemannian structuresFor simplicity,we shall consider only the usual Heisenberg group(Hd,D,g),where D={X1,···,X2d}with

    and g is the natural Riemannian metric on D(see(4.4)).Given a symmetric vectorfield e=(e1,···,e2d)∈ Γ(D)2don ? ? Hd,i.e.,eij=ejifor every i,j=1,···,2d where ei=the question concerns the solvability of the sub-Riemannian system

    for the unknown vector field V=(V1,···,V2d) ∈ C∞(?,R2d),where the components of the symmertric horizontal gradient?s,Hare given by

    Thefirst challenging problem is to establish the necessary Saint-Venant compatibility relations associated to problem(5.2)and then to apply Proposition 2.1;note that Schwartz type properties are not valid in this setting since usually XiXj/=XjXifor i/=j.Moreover,weaker versions of the Saint-Venant lemma on Hdwould provide a sub-Riemannian Korn-type inequality as well.Clearly,more general sub-Riemannian structures can also be considered instead of Heisenberg groups verifying the assumptions of Theorem 1.1.

    6 Appendix:Proof of the Saint-Venant Lemma(Proposition 2.1)

    A direct computation shows that if(2.9)has a solution,then the Saint-Venant compatibility relations(2.10)trivially hold.

    Conversely,the Saint-Venant compatibility relations(2.10)can be written into the form

    which is equivalent to

    If Wijis a vector field on ? with the representation

    relation(6.1)can be written equivalently into the form

    Thus,we may apply Theorem 2.1,i.e.,there exists pij∈ C2(?)such that

    By components,the latter relation means that

    Multiplying from left by gtland adding them,we have

    Since?xlpij+?xlpji=0,we can assume without loss of generality that pij+pji=0.

    Again,the latter relation can be transformed into

    Therefore,if

    Theorem 2.1 implies the existence of ui∈ C2(?)such that

    If we write the components of the latter relation,it yields that

    which is nothing but?s,gV=e,i.e.,relation(2.9).The Ces`aro-Volterra integral formula follows at once by combining the above steps.

    AcknowledgementsThe author thanks Professor Philippe G.Ciarlet for his invitation to the City University of Hong Kong where the present work has been initiated.He is also grateful to Professors Ovidiu Calin and Der-Chen Chang for their suggestions and remarks.

    [1]Abraham,R.,Marsden,J.E.and Ratiu,T.,Manifolds,Tensor Analysis,and Applications,2nd edition,Applied Mathematical Sciences,75,Springer-Verlag,New York,1988.

    [2]Agrachev,A.,Barilari,D.and Boscain,U.,Introduction to Geodesics in Sub-Riemannian Geometry,Geometry Analysis and Dynamics on Sub-Kiemannian Manifolds,II,EMS Ser.Lect.Math.,Eur.Math.Soc.,Zürich,2016.

    [3]Amrouche,Ch.,Ciarlet,P.G.and Mardare,C.,Remarks on a lemma by Jacques-Louis Lions,C.R.Math.Acad.Sci.Paris,352(9),2014,691–695.

    [4]Amrouche,Ch.,Ciarlet,P.G.and Mardare,C.,On a lemma of Jacques-Louis Lions and its relation to other fundamental results,J.Math.Pures Appl.(9),104(2),2015,207–226.

    [5]Calin,O.and Chang,D.-C.,Sub-Riemannian Geometry,General Theory and Examples,Encyclopedia Math.Appl.,126,Cambridge University Press,Cambridge,2009.

    [6]Calin,O.,Chang,D.-C.and Eastwood,M.,Integrability conditions for the Grushin and Martinet distributions,Bull.Inst.Math.Acad.Sin.(N.S.),8(2),2013,159–168.

    [7]Calin,O.,Chang,D.-C.and Eastwood,M.,Integrability conditions for Heisenberg and Grushin-type distributions,Anal.Math.Phys.,4(1–2),2014,99–114.

    [8]Calin,O.,Chang,D.-C.and Hu,J.,Poincar′e’s lemma on the Heisenberg group,Adv.in Appl.Math.,60,2014,90–102.

    [9]Calin,O.,Chang,D.-C.and Hu,J.,Integrability conditions on Engel-type manifolds,Anal.Math.Phys.,5(3),2015,217–231.

    [10]Calin,O.,Chang,D.-C.and Hu,J.,Integrability conditions on a sub-Riemannian structure on S3,Anal.Math.Phys.,7(1),2017,9–18.

    [11]Chen,W.and Jost,J.,A Riemannian version of Korn’s inequality,Calc.Var.Partial Differential Equations,14,2012,517–530.

    [12]Ciarlet,P.G.,Linear and nonlinear functional analysis with applications,Society for Industrial and Applied Mathematics,Philadelphia,PA,2013.

    [13]Ciarlet,P.G.,Gratie,L.,Mardare,C.and Shen,M.,Saint Venant compatibility equations on a surface application to intrinsic shell theory,Math.Models Methods Appl.Sci.,18(2),2008,165–194.

    [14]Ciarlet,P.G.and Mardare,S.,Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates,Math.Models Methods Appl.Sci.,23(12),2013,2293–2321.

    [15]Ciarlet,P.G.,Mardare,S.and Shen,M.,Saint Venant compatibility equations in curvilinear coordinates,Anal.Appl.(Singap.),5(3),2007,231–251.

    [16]do Carmo,M.P.,Riemannian Geometry,Birkh?user,Boston,1992.

    [17]Figalli,A.and Rifford,L.,Mass transportation on sub-Riemannian manifolds,Geom.Funct.Anal.,20(1),2010,124–159.

    [18]Ohta,S.and Sturm,K.-T.,Heatflow on Finsler manifolds,Comm.Pure Appl.Math.,62(10),2009,1386–1433.

    [19]Rizzi,L.,Measure contraction properties of Carnot groups,Calc.Var.Partial Differential Equations,55(3),2016,20 pages.

    在线观看66精品国产| 亚洲av熟女| 欧美日本亚洲视频在线播放| 亚洲电影在线观看av| 国产成人午夜福利电影在线观看| 老师上课跳d突然被开到最大视频| 亚洲欧美精品综合久久99| 亚洲欧美中文字幕日韩二区| 日本一二三区视频观看| 亚洲成人久久爱视频| 久久国内精品自在自线图片| 亚洲五月天丁香| 男人舔奶头视频| 日本免费一区二区三区高清不卡| 91久久精品电影网| 久久久亚洲精品成人影院| 日本免费在线观看一区| 亚洲精华国产精华液的使用体验| 国产精品99久久久久久久久| 国产探花极品一区二区| 成人综合一区亚洲| av线在线观看网站| 乱系列少妇在线播放| 欧美一区二区亚洲| 丰满人妻一区二区三区视频av| 久久久午夜欧美精品| 少妇高潮的动态图| 白带黄色成豆腐渣| 91精品一卡2卡3卡4卡| 尤物成人国产欧美一区二区三区| 色尼玛亚洲综合影院| 久久精品久久久久久久性| 欧美xxxx黑人xx丫x性爽| 久久综合国产亚洲精品| 亚洲国产欧洲综合997久久,| 国产一区二区三区av在线| 岛国毛片在线播放| 麻豆一二三区av精品| 18禁动态无遮挡网站| 久久精品夜色国产| 插阴视频在线观看视频| 偷拍熟女少妇极品色| 欧美精品国产亚洲| 九九久久精品国产亚洲av麻豆| 日韩精品青青久久久久久| 精品国产露脸久久av麻豆 | 国产黄色小视频在线观看| 久久久久久大精品| 我要看日韩黄色一级片| 国国产精品蜜臀av免费| 亚洲国产精品sss在线观看| 国内少妇人妻偷人精品xxx网站| 在线观看66精品国产| 国产精品综合久久久久久久免费| 只有这里有精品99| 国产成人免费观看mmmm| 高清av免费在线| 超碰av人人做人人爽久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲高清免费不卡视频| 一级毛片我不卡| 亚洲av福利一区| 久久久久久久久久成人| 夜夜爽夜夜爽视频| 九九爱精品视频在线观看| 日本一二三区视频观看| 淫秽高清视频在线观看| 久久精品国产自在天天线| 久久这里只有精品中国| 国产欧美另类精品又又久久亚洲欧美| 黑人高潮一二区| 色哟哟·www| 丰满乱子伦码专区| av在线天堂中文字幕| 18禁在线播放成人免费| 我要看日韩黄色一级片| 日本av手机在线免费观看| 偷拍熟女少妇极品色| 91在线精品国自产拍蜜月| 丰满少妇做爰视频| 日本一二三区视频观看| 亚洲最大成人手机在线| 丰满人妻一区二区三区视频av| 精品一区二区三区人妻视频| 亚洲最大成人中文| 午夜久久久久精精品| 国产成人a∨麻豆精品| 九九久久精品国产亚洲av麻豆| 七月丁香在线播放| 国产真实伦视频高清在线观看| 亚洲精品乱码久久久久久按摩| 久久99蜜桃精品久久| 国产亚洲av嫩草精品影院| 国产亚洲av嫩草精品影院| 乱系列少妇在线播放| 超碰97精品在线观看| 精品久久久久久成人av| 中文在线观看免费www的网站| 高清在线视频一区二区三区 | av在线播放精品| 中国国产av一级| 黑人高潮一二区| 国产精品人妻久久久影院| 亚洲国产精品sss在线观看| 精品一区二区三区人妻视频| 国产精品一区二区在线观看99 | 国产精品一区www在线观看| 男人和女人高潮做爰伦理| 春色校园在线视频观看| 禁无遮挡网站| 岛国在线免费视频观看| 久久精品综合一区二区三区| 亚洲av福利一区| 国产精品人妻久久久影院| 国产伦精品一区二区三区视频9| 搡女人真爽免费视频火全软件| 自拍偷自拍亚洲精品老妇| 91久久精品电影网| 亚洲精品aⅴ在线观看| 亚洲欧美精品自产自拍| 女人久久www免费人成看片 | 国产成人精品婷婷| 国产高清视频在线观看网站| 99热网站在线观看| 国产成人免费观看mmmm| 久久久成人免费电影| 人人妻人人澡欧美一区二区| 我的老师免费观看完整版| www.av在线官网国产| 久久这里有精品视频免费| 久久人妻av系列| 免费黄网站久久成人精品| 天堂网av新在线| 在线播放无遮挡| 精品酒店卫生间| 小蜜桃在线观看免费完整版高清| 国产成人freesex在线| 波野结衣二区三区在线| 欧美激情久久久久久爽电影| 99久久精品一区二区三区| 成年av动漫网址| 精品久久久久久成人av| 看片在线看免费视频| 国产极品天堂在线| 亚洲国产精品合色在线| 精品少妇黑人巨大在线播放 | 搡女人真爽免费视频火全软件| av免费在线看不卡| 变态另类丝袜制服| 精品久久久久久电影网 | 亚洲aⅴ乱码一区二区在线播放| 亚洲内射少妇av| a级毛片免费高清观看在线播放| 日日撸夜夜添| 七月丁香在线播放| 国产高清视频在线观看网站| 亚洲精品乱久久久久久| 亚州av有码| 国产精品三级大全| 男女国产视频网站| 激情 狠狠 欧美| 日韩强制内射视频| 国产黄色小视频在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美变态另类bdsm刘玥| 国产免费又黄又爽又色| 国产精品电影一区二区三区| 国产综合懂色| 国产淫语在线视频| 国产探花在线观看一区二区| .国产精品久久| 自拍偷自拍亚洲精品老妇| 黑人高潮一二区| 91精品伊人久久大香线蕉| 久久久国产成人精品二区| 一级毛片aaaaaa免费看小| 亚洲av二区三区四区| 午夜福利在线在线| 91av网一区二区| 国产 一区精品| 22中文网久久字幕| 中文字幕av成人在线电影| 亚洲国产精品专区欧美| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 久久99热6这里只有精品| 少妇人妻精品综合一区二区| 级片在线观看| 国产免费男女视频| 日韩欧美 国产精品| 日本wwww免费看| 深爱激情五月婷婷| 欧美激情在线99| 久久精品夜色国产| 国产亚洲av片在线观看秒播厂 | 欧美成人一区二区免费高清观看| 国产精品国产三级国产专区5o | 中文字幕av在线有码专区| 乱码一卡2卡4卡精品| 国产 一区 欧美 日韩| 中文字幕制服av| 99热这里只有是精品在线观看| 免费看av在线观看网站| 成人av在线播放网站| 麻豆精品久久久久久蜜桃| 晚上一个人看的免费电影| 欧美潮喷喷水| av福利片在线观看| 日本午夜av视频| 久久久精品94久久精品| 亚洲欧美日韩高清专用| 亚洲精品一区蜜桃| 国产成人一区二区在线| 午夜福利高清视频| 日韩三级伦理在线观看| 天美传媒精品一区二区| 一边摸一边抽搐一进一小说| 能在线免费观看的黄片| 99热全是精品| 直男gayav资源| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 国产精品不卡视频一区二区| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 欧美又色又爽又黄视频| 亚洲怡红院男人天堂| 国国产精品蜜臀av免费| 亚洲va在线va天堂va国产| 国产精品久久久久久久久免| 国产av一区在线观看免费| 赤兔流量卡办理| av福利片在线观看| 人妻夜夜爽99麻豆av| 免费看a级黄色片| 国产欧美另类精品又又久久亚洲欧美| 欧美一区二区亚洲| 亚洲欧美清纯卡通| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆| 国产欧美日韩精品一区二区| 久久久久久久久久成人| 日本-黄色视频高清免费观看| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看 | 亚洲在久久综合| 成年女人看的毛片在线观看| 自拍偷自拍亚洲精品老妇| 国产私拍福利视频在线观看| 淫秽高清视频在线观看| 日本一本二区三区精品| 久久久久久久国产电影| 久久这里有精品视频免费| 国产精品.久久久| 国产午夜精品久久久久久一区二区三区| 国产又黄又爽又无遮挡在线| 免费看光身美女| 又粗又爽又猛毛片免费看| 我的女老师完整版在线观看| 一区二区三区四区激情视频| 日韩一区二区三区影片| 国产精品电影一区二区三区| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 午夜激情欧美在线| 秋霞伦理黄片| 免费观看在线日韩| 亚洲欧洲国产日韩| 国产精品国产三级国产av玫瑰| 卡戴珊不雅视频在线播放| 欧美成人午夜免费资源| 大香蕉久久网| 久久精品国产自在天天线| 国产精品久久视频播放| videos熟女内射| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区在线观看日韩| 女人十人毛片免费观看3o分钟| 中文字幕制服av| 亚洲最大成人中文| 亚洲av成人精品一二三区| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 看非洲黑人一级黄片| 色哟哟·www| 一级毛片我不卡| 亚洲欧美精品综合久久99| 久久精品熟女亚洲av麻豆精品 | 亚洲国产最新在线播放| a级毛色黄片| 日韩视频在线欧美| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| av又黄又爽大尺度在线免费看 | 国产人妻一区二区三区在| 欧美极品一区二区三区四区| 久久久久久久久中文| 日本黄色视频三级网站网址| 日本午夜av视频| 亚洲国产欧美人成| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 国产午夜精品一二区理论片| 免费观看在线日韩| 久久精品久久久久久噜噜老黄 | 国产精品麻豆人妻色哟哟久久 | a级一级毛片免费在线观看| .国产精品久久| 91av网一区二区| 亚洲国产欧美人成| 日本一二三区视频观看| 欧美成人免费av一区二区三区| 美女被艹到高潮喷水动态| 日本熟妇午夜| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 99久久无色码亚洲精品果冻| 精品无人区乱码1区二区| 国产日韩欧美在线精品| 九草在线视频观看| 国产一区二区三区av在线| 九九热线精品视视频播放| 一本久久精品| 高清毛片免费看| 日韩,欧美,国产一区二区三区 | 国产片特级美女逼逼视频| av线在线观看网站| 日韩,欧美,国产一区二区三区 | 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| 亚洲色图av天堂| 少妇人妻一区二区三区视频| 综合色av麻豆| 精品人妻熟女av久视频| 免费观看精品视频网站| 国产成人精品久久久久久| 久久久久久久久大av| 六月丁香七月| 18禁动态无遮挡网站| 熟妇人妻久久中文字幕3abv| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 国产亚洲一区二区精品| 久久久久久久久久成人| 汤姆久久久久久久影院中文字幕 | 欧美区成人在线视频| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 久久久久性生活片| 看黄色毛片网站| 国产乱人视频| 有码 亚洲区| 午夜爱爱视频在线播放| 可以在线观看毛片的网站| 1000部很黄的大片| 久久精品影院6| 99在线视频只有这里精品首页| 日本一本二区三区精品| 成年版毛片免费区| 少妇被粗大猛烈的视频| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放 | 最近2019中文字幕mv第一页| 成人美女网站在线观看视频| 99热6这里只有精品| 可以在线观看毛片的网站| 中文天堂在线官网| 国产精品三级大全| 最近手机中文字幕大全| 国产色爽女视频免费观看| av.在线天堂| av又黄又爽大尺度在线免费看 | 亚洲精品一区蜜桃| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| 不卡视频在线观看欧美| 五月伊人婷婷丁香| 丝袜美腿在线中文| 成年av动漫网址| 色网站视频免费| 国产男人的电影天堂91| 欧美色视频一区免费| 一级毛片aaaaaa免费看小| 国产爱豆传媒在线观看| 国产精品爽爽va在线观看网站| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放 | 最近的中文字幕免费完整| 久久久欧美国产精品| 国产亚洲5aaaaa淫片| 观看美女的网站| 国产在线一区二区三区精 | 精品久久久久久久久亚洲| 亚洲av熟女| 高清在线视频一区二区三区 | 久久久久久伊人网av| 亚洲综合精品二区| 日韩视频在线欧美| 午夜福利高清视频| 最近视频中文字幕2019在线8| 成人二区视频| 久久久久久久久久久免费av| 亚洲怡红院男人天堂| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 国产极品天堂在线| 69人妻影院| 精品人妻一区二区三区麻豆| 久久热精品热| 国产精品女同一区二区软件| 欧美另类亚洲清纯唯美| 亚洲成色77777| 国产男人的电影天堂91| 欧美xxxx黑人xx丫x性爽| 超碰97精品在线观看| 国产精品99久久久久久久久| 两个人的视频大全免费| 色哟哟·www| 女人被狂操c到高潮| 亚洲成色77777| 国产高清视频在线观看网站| 国产69精品久久久久777片| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 99在线视频只有这里精品首页| 人人妻人人看人人澡| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片| 天堂av国产一区二区熟女人妻| 久久国产乱子免费精品| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 久久国产乱子免费精品| 亚洲va在线va天堂va国产| 国产激情偷乱视频一区二区| eeuss影院久久| 在线免费十八禁| 日韩国内少妇激情av| 七月丁香在线播放| 国产黄色视频一区二区在线观看 | 精品久久久久久久末码| 高清在线视频一区二区三区 | 日韩大片免费观看网站 | 国产精品野战在线观看| 精品人妻视频免费看| 1024手机看黄色片| 国产伦一二天堂av在线观看| 我的女老师完整版在线观看| 精品无人区乱码1区二区| 亚洲经典国产精华液单| 九色成人免费人妻av| 久久久国产成人精品二区| 亚洲精品久久久久久婷婷小说 | 三级毛片av免费| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 国产一级毛片在线| 全区人妻精品视频| 嫩草影院精品99| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 中文资源天堂在线| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 精品不卡国产一区二区三区| 激情 狠狠 欧美| 亚洲天堂国产精品一区在线| 人人妻人人澡欧美一区二区| 性色avwww在线观看| 国产精品人妻久久久久久| www.色视频.com| a级毛色黄片| 成年女人看的毛片在线观看| 一个人免费在线观看电影| 亚洲在线自拍视频| 哪个播放器可以免费观看大片| 亚洲国产色片| 国产精品.久久久| 丰满乱子伦码专区| 国产av一区在线观看免费| 国产女主播在线喷水免费视频网站 | 99久久九九国产精品国产免费| 男女边吃奶边做爰视频| 日本三级黄在线观看| 日日啪夜夜撸| 国产淫片久久久久久久久| h日本视频在线播放| 青春草亚洲视频在线观看| 久久久精品大字幕| 亚洲av成人精品一二三区| 99热全是精品| 国产精品一区二区性色av| 嫩草影院入口| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 成年av动漫网址| 午夜福利在线在线| 欧美色视频一区免费| 波野结衣二区三区在线| 视频中文字幕在线观看| 国产淫语在线视频| 99热网站在线观看| 成年av动漫网址| 久久久午夜欧美精品| 毛片女人毛片| 女人久久www免费人成看片 | 亚洲在线观看片| 热99在线观看视频| 久久久久性生活片| 日韩人妻高清精品专区| 18禁裸乳无遮挡免费网站照片| 天天一区二区日本电影三级| 综合色av麻豆| 一级毛片aaaaaa免费看小| av免费在线看不卡| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 亚洲成人久久爱视频| 日本黄大片高清| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 久久久久久久午夜电影| 黄色欧美视频在线观看| 亚洲怡红院男人天堂| 99久国产av精品| 午夜福利在线在线| 简卡轻食公司| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 99久久九九国产精品国产免费| 免费大片18禁| 日韩欧美在线乱码| 日本猛色少妇xxxxx猛交久久| 午夜久久久久精精品| 国产不卡一卡二| 一级av片app| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 日韩欧美 国产精品| 99久久精品国产国产毛片| av福利片在线观看| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 黄片wwwwww| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 99热全是精品| 亚洲精品自拍成人| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 男人和女人高潮做爰伦理| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 一个人看的www免费观看视频| 日日干狠狠操夜夜爽| 国产探花极品一区二区| 久久综合国产亚洲精品| 国产亚洲精品av在线| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 午夜久久久久精精品| 亚洲综合色惰| 午夜久久久久精精品| 99热网站在线观看| 老师上课跳d突然被开到最大视频| 亚洲怡红院男人天堂| av线在线观看网站| 国产精品av视频在线免费观看| 国产精品久久电影中文字幕| 久久这里只有精品中国| 亚洲美女搞黄在线观看| 午夜a级毛片| 日本三级黄在线观看| 国产精品av视频在线免费观看| 国产在视频线在精品| 99久久中文字幕三级久久日本| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| 十八禁国产超污无遮挡网站| 97超视频在线观看视频| 国产 一区 欧美 日韩| 日韩三级伦理在线观看| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 久久久精品94久久精品| 看黄色毛片网站| 听说在线观看完整版免费高清| 欧美人与善性xxx| 国产高清有码在线观看视频| 成人高潮视频无遮挡免费网站| av视频在线观看入口| 色综合色国产| av国产久精品久网站免费入址| 在线观看66精品国产| 男插女下体视频免费在线播放| 亚洲欧美精品自产自拍| 久久久国产成人免费| ponron亚洲|