• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions

    2018-03-13 09:28:22LourenBEIRDAVEIGAFrancoBREZZIFrancoDASSILuisaDonatellaMARINIAlessandroRUSSO

    Louren?o BEIR?O DA VEIGAFranco BREZZIFranco DASSI Luisa Donatella MARINIAlessandro RUSSO

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    The virtual element method(VEM for short)was introduced in[5,7]as a generalization of thefinite element method(FEM for short)that allows for very general polygonal and polyhedral meshes,also including non convex and very distorted elements.Differently from standard FEM,the VEM is not based on the explicit construction and evaluation of the basis functions,but rather on a wise choice and a suitable use of the degrees of freedom in order to approximate the operators and the corresponding bilinear forms involved in the problem.The local functions are virtual,in the sense that they are defined,in general,through a partial differential equation(or even a system);they include(but in general are not restricted to)polynomials.However,the non-polynomial functions are never computed in practice,and the accuracy of the method is ensured by the polynomial part of the virtual space.The use of such an approach introduces other potential advantages,such as exact satisfaction of linear constraints as in[12]or[3],and the possibility to build easily discrete spaces of high global regularity[2—3,16].Since its introduction,the VEM has shared a good degree of success and has been applied to a large array of problems.We here mention,in addition to the ones above,a sample of papers[1,4,8,13,17,19,22,27]and refer to[25]for a more complete survey of the existing VEM literature.

    Although the construction of the virtual element method for several three dimensional problems is accomplished already in many papers,at the current level of development a detailed presentation of their properties for general second order elliptic operators is still lacking.Moreover very few 3D numerical experiments are available in the literature[19,22—23]and all of them are limited to the lowest order case(k=1)while the only work dealing with the higher order case is[10].

    The objective of this work is to extend to the three-dimensional case the work of[8].From another point of view,we could consider it as an extension of[10]to general elliptic second order operators.We have also implemented the serendipity version of the VEM(see[9])applied to faces in three dimensions which allows for a strong reduction of the face degrees of freedom without spoiling the approximation properties.Moreover we also numerically validate the theory with suitable numerical experiments.In doing this we will follow faithfully the construction in[1,5,8,10]and the coding guidelines of[7].

    The paper is organized as follows.In Section 2 we introduce the model problem and the virtual element method in three dimensions.The review of the method is complete but brief,and we refer to other contributions in the literature for a more detailed presentation of the scheme.In Section 3 we outline the convergence proof,following straightforwardly the arguments given in the two-dimensional case.Finally,in Section 4 several numerical tests are shown.

    2 The Virtual Element Discretization

    In the present section we give a very brief overview of the virtual element method in three space dimensions,and in particular to its variant using serendipity elements on faces.More details on several aspects of the method can be found in[1,5,7—8,10].

    2.1 The differential problem

    Let ? ? R3be a bounded convex polyhedron and let Γ be its boundary.Let moreover κ and γ be smooth functions ? → R with κ(x) ≥ κ0> 0 for all x ∈ ?,and let finally b be a smooth vector valued function ? → R3.

    We consider the problem

    where f is a given right-hand side in H?1(?).

    We assume that problem(2.1)is well posed.That is,we assume that the problem is solvable for any f ∈ H?1(?),and that the estimate

    together with the regularity estimate

    holds with a constant C independent of f.

    We recall that these assumptions imply that existence and uniqueness hold as well for the(formal)adjoint operator L?given by

    Moreover,they imply that for every g ∈ L2(?)there exists a unique ? ∈ H2(?)∩(?)such that L?? =g,and

    for a constant C?independent of g.Actually,the 2-regularity in(2.3)and in(2.5)is not strictly necessary in order to get the results of the present work,and an s-regularity with s>1 would be sufficient.Similarly,the convexity assumption on ? could be by-passed.Here however we are not interested in minimizing the regularity assumptions.

    We also point out that the choice of having a scalar diffusion coefficient was done just for simplicity.Having a full diffusion tensor would not change the analysis in a substantial way.Similarly,the use of Dirichlet boundary conditions on Γ is done just for the sake of simplicity,and other boundary conditions can be easily accommodated.

    The variational form of our problem reads

    where

    When convenient,we will also use the notation

    and we remark that our assumptions on the coefficients imply that the bilinear form B(·,·)verifies

    and hence

    It is also easy to check that this,together with(2.2),implies that

    for some constant CB>0 independent of u.On the other hand,it is also well known that(2.9)and(2.10)imply existence and uniqueness of the solution of problem(2.6).

    Remark 2.1We point out that,together with(2.9)we also have

    that will come at hand later on.

    2.2 Some useful notation

    In what follows k will denote a positive integer associated with the “polynomial degree” of the virtual element scheme.We will denote by P a polyhedron in R3,while edges,faces,and vertices of P will be indicated by e,F,and ν respectively.We will denote by xP,hPand|P|the centroid,the diameter,and the volume of P,respectively.The set of of polynomials of degree less than or equal to s in P will be indicated by Ps(P).If α =(α1,α2,α3)is a multi-index,we will indicate by mαthe scaled monomial

    where|α|= α1+α2+α3.

    Remark 2.2Note that,in our computations,we will always use the scaled monomials as a basis for the polynomial spaces.Other choices might be more convenient in some particular cases.See for instance[14,24,26].

    The corresponding definitions in the case of a polygon in R2are completely analogous.A face F of a polyhedron is treated as a polygon in two dimensions,using local coordinates(x,y).Edges of polyhedra and polygons are treated in an analogous way as one-dimensional sets.

    2.3 Virtual elements on faces

    We start by briefly recalling the virtual element spaces on the faces of a generic polyhedron.Given a polygon F(representing a generic face),we define the preliminary virtual space

    The standard VEM in three dimensions is actually the one proposed in[1],that carries much less degrees of freedom on faces with respect to the choice(2.14)(see also[10]).Here we avoid the presentation of such space,and recall instead directly its serendipity version,that produces an even larger reduction of the number of degrees of freedom.

    2.4 Serendipity version of virtual elements on faces

    The Serendipity version of virtual elements was introduced in[9]as a tool to decrease the number of internal degrees of freedom on polygons.We here recall them very briefly and refer to the above paper for a detailed description.

    Serendipity virtual elements are based on the introduction of a projection operator

    that can be computed using only the boundary degrees of freedom plus a suitable subset of the internal ones:Typically the moments up to a certain degree kF≤k depending on the geometry of the element F.For instance(following[9]),denoting by NSthe number of selected degrees of freedom,one can define the mapping D from~Vk(F)to RNSthat associates to v ∈ ~Vk(F)the vector of its corresponding NSdegrees of freedom.Then one definesv ∈ Pk(F)such that

    and the precise formulation for our request on kFis:kFmust be such that(2.18)has a unique solution.

    Using such projection operator,one can define the serendipity space

    A set of degrees of freedom for the above space are the sets(D1)and(D2)given in(2.15)—(2.16),plus

    Remark 2.3It is important to point out that for v∈VkS(F)all the moments

    are computable:For polynomials p of degree≤kFwe get them directly form the degrees of freedom(D3′),and the others are obtainable throughv(computable from the degrees of freedom of v)and the definition(2.19).

    Remark 2.4It is clear that the bigger is kF,the more degrees of freedom we retain in(F).To minimize their number one would like to choose the smallest possible kFthat ensures the unique solvability of(2.18).On the other hand,the computation of such a kFon every polygon could be a rather heavy burden.We refer to[9]for a deeper discussion of this matter.Following the terminology in[9],denoting by ηFthe minimum number of lines needed to cover the whole boundary of F,we can set kF=k?ηF.Since for strictly convex polygons ηFis equal to the number of edges,and in any case is always≥ 3,a lazy choice could be to take ηF=3 for all the elements,while a stingy choice would compute the exact ηFfor each element.Thefirst choice is robust but leads to a lesser gain in terms of degrees of freedom.The second choice leads to larger computational gain but its performance is mesh dependent(in a sense detailed in[9]).The quest for a cheap way to choose the most convenient kFis not over yet,and we will discuss it more at length in our future works.In Subsection 4.2.1 we will discuss the problem in more details.

    Remark 2.5We point out that the serendipity approach depends heavily on the degrees of freedom.The present choice is based on the degrees of freedom of[9].In other circumstances different strategies might be needed,leading to different serendipity spaces(see,e.g.,[6]).

    2.5 Virtual elements on polyhedrons

    Let ?hbe a partition of ? into non-overlapping and conforming polyhedrons.We begin by defining the virtual space locally,on each polyhedron P ∈ ?h.Note that each face F ∈ ?P is a two-dimensional polygon.We introduce the following boundary space:

    The above space is made of functions that on each face are two-dimensional virtual functions and are continuous across the edges.Once the boundary space is defined,we can construct the local virtual space on P following for instance[1].We recall the procedure briefly and refer to[10]for a more detailed description.We define first the preliminary space

    and then we define the local virtual space as

    It is easy to check that the following linear operators constitute a set of degrees of freedom for the space Vk(P):

    The associated(global)degrees of freedom are the obvious counterpart of the local ones introduced above.

    2.6 Discretization of the problem

    We start by introducing the discrete counterpart of the bilinear forms(2.7).On every polyhedron P∈?hwe follow the same construction introduced in[8]for the two-dimensional case.Wefirst introduce the stabilization form

    where dofi(v)is the value of the ith local degree of freedom of the function v,denotes the number of the degrees of freedom(2.24)—(2.27),and the positive constants diare given by the diagonal recipe proposed in[10](which takes into account also the values of κ on P).Then we introduce,for all v,w∈Vk(P),the local approximations of the bilinear forms in(2.7),

    Remark 2.6Here we are implicitly assuming that the diffusion coefficient κ is not too small compared to the other coefficients b and γ (or,more precisely,locally to|b|hPand γ).When this is not the case,a suitable stabilizing term inand/orwill also be necessary.

    The above bilinear forms are stable in the sense of[5].The respective global bilinear forms ah(·,·),bh(·,·),ch(·,·)are constructed as usual by summing over all elements P of ?h.

    We canfinally state the discrete problem:

    where the approximate loading fhis the L2-projection of f on piecewise polynomials of degree k.Note that all the forms and operators appearing above are computable in terms of the degrees of freedom of uhand vh,as observed above.Often we will use

    3 Convergence Results

    In this section we extend to the three dimensional case the error estimates that were obtained in[9]for the two-dimensional case.Most steps are quite similar,and we just briefly sketch the general path of the proofs.

    3.1 Interpolation results

    We presentfirst some approximation results concerning the virtual element spaces of the previous section.The results are a simple extension(to the present case of serendipity nodal spaces on faces)of the interpolation estimates shown in[27]for two dimensions and extended in[18]to the three dimensional case(see also[11,15]).

    We assume that{?h}his a family of meshes,satisfying the following assumptions(typical of the virtual element methods):There exists a positive constant σ such that all elements P of{?h}hand all faces of?P are star-shaped with respect to a sphere(respectively,a disk)of radius bigger than or equal to σhP,hPbeing the diameter of P;moreover,all edges e ∈ ?P for all P ∈ {?h}hhave length bigger than or equal to σhP.

    Here and in the sequel C will denote a generic positive constant independent of hP,with different meaning in different occurrences,and generally depending on the coefficients of the operator L.Whenever needed to better follow the steps of the proofs,for a smooth scalar or vector-valued function?,we shall use C?to denote a constant depending on?and possibly on its derivatives up to the needed order.

    Proposition 3.1There exists a positive constantC=C(σ,k)such that,for allPin?hand all smooth enough functions?defined onP,it holds

    where?I∈ Vkis the interpolant of?inVk,i.e.,such thatdofi(?)=dofi(?I).

    3.2 Continuity results

    Concerning the bilinear forms presented in the previous section,we state a continuity result,whose proof is a trivial extension of several classical results in the framework of virtual element methods.

    Proposition 3.2The bilinear formBh(·,·)is continuous inVk× Vk,that is,

    withCκ,b,γa positive constant depending onκ,b,γbut independent ofh.Moreover,similarly to(2.11),we have

    3.3 Approximation of the bilinear forms

    The following result will be needed to estimate the difference between continuous and discrete bilinear forms.This is done once and for all in the following preliminary lemma.

    Lemma 3.1LetP∈?h,letμbe a smooth function onP,and letu,vdenote smooth scalar or vector-valued functions onP.For a generic? ∈ L2(P)(or in(L2(P))3)we define,forsinteger≤k,

    Then we have the estimate

    whereCμis a constant depending onμ.

    ProofFor simplifying the notation we will set:=u,:=v.By adding and subtracting terms,and by the definition of projection we have

    and the result follows by Cauchy-Schwarz inequality with Cμ= ‖μ‖∞.

    The following result follows immediately by a direct application of Lemma 3.1.

    Lemma 3.2For allP∈?hit holds

    From all the above results,proceeding as in[9],we have the following consistency property that is reminiscent of the classical results forfinite element methods(as,e.g.,the crucial Theorem 4.1.4.in[20]).

    Proposition 3.3For allusufficiently regular and for allvh∈Vk,it holds

    whereuis again theL2-projection ofuontoPk(P).

    Remark3.1 We point out that(3.9)holds for a generic vh∈Vk,for which only H1regularity can be used.If for instance vh=vI,that is,vhis the interpolant of a more regular function,(3.9)can be improved.Indeed,proceeding again as in[9]we would have

    On the other hand,using(3.7)—(3.8)we can easily show for all u and v in H1(P),

    3.4 Stability results

    Before going to study the error estimates for our problem,we have to prove the following stability result.

    Proposition 3.4The bilinear formBh(·,·)satisfies the following condition(discrete counterpart of(2.10)):There exists anh0>0and a constantsuch that,for allh<h0and for alluh∈Vk,

    The proof follows the classical path of Schatz[29].Wefirst prove that for every v?∈there exists a∈Vksuch that

    and moreover,there exists a constant C independent of h,such that

    This is done following essentially the path of[9]combined with the 3D estimates in[18].Then we recall that for uh∈Vk,using(2.10)we have

    Then we take the correspondinggiven by(3.13),and we get

    From this,using(3.2)and(3.11)we have

    that joined to(3.15)gives

    and the result follows easily.

    Remark 3.2Clearly,if b=0,and γ=0,(3.12)holds for any h.

    3.5 Convergence in H1

    We are now ready to prove the following theorem.

    Theorem 3.1Forhsufficiently small,problem(2.30)has a unique solutionuh∈Vk,and the following error estimate holds:

    withCa constant depending onκ,b,andγbut independent ofh.

    ProofThe existence and uniqueness of the solution of problem(2.30),for h small,are a consequence of Proposition 3.4.To prove the estimate(3.17),using(3.12)we have that for h≤h0,there exists a∈Vkverifying

    Thefirst term in the right-hand side of(3.19)is bounded by the Cauchy-Schwarz inequality and standard approximation estimates on the load f.The second and fourth terms are bounded using the continuity of Bhand B,respectively,and the third term is bounded by the consistency estimate(3.16).Also using approximation estimates for polynomials and for the virtual element space,we get

    and the proof is concluded.

    Remark 3.3It is immediate to check that,by the same proof,also the following refined result holds:

    3.6 L2estimate

    Theorem 3.2Forhsufficiently small,the following error estimate holds:

    ProofAs usual,we shall use duality arguments.Let ψ ∈ H2(?)∩(?)be the solution of the adjoint problem(see(2.4)):

    and let ψI∈ Vkbe its interpolant,for which it holds

    Then

    and the result follows with the usual arguments.Thefirst term is bounded through(3.1),(3.17),and(3.22).For the second term we apply Cauchy-Schwarz and standard approximation estimates.The third and fourth terms are bounded through(3.10),taking k=0 for the third one,and standard approximation estimates.

    4 Numerical Results

    Figure 1 Three types of discretizations of the domain ? and cross section of such meshes.

    In this section we present some numerical tests.In Subsection 4.1 we focus on the standard VEM approach in 3D(that is the standard construction of[5]but using on faces the advanced space of[1],see for instance[10]),while Subsection 4.2 is devoted to the serendipity VEM approach.

    In these examples the domain is the unit cube ?:=[0,1]3,we take as exact solution the function u(x,y,z):=sin(πx)cos(πy)cos(πz)and we choose

    The load term and the boundary data are set in accordance with the above data and solution.

    In all the examples we will consider three different discretizations of ? (see Figure 1):

    Structureda structured mesh composed by cubes;

    CVTa mesh composed by well-shaped Voronoi cells obtained via a standard Lloyd’s algorithm(see[21]);

    Randoma Voronoi mesh composed by distorted cells.

    To construct the last two types of meshes we use the c++library voro++(see[28]).Then,for each type of mesh we make a sequence of finer meshes with mesh-size h defined as h:=N being the number of polyhedrons in the mesh and hPthe diameter of the polyhedron P.

    We follow the trend of the following errors:

    ?H1errorcomputed as

    where Π?kuhis the element wise VEM H1-projection on polynomials of degree k defined in(2.23),and|·|1,?denotes the standard H1-seminorm;

    ?L2errorcomputed as

    In accordance with Theorems 3.1—3.2,if we consider a VEM approximation degree k,we expect order k in H1,and k+1 in L2.

    4.1 Test case 1:h-analysis with a standard approach

    Figure 2 Test case 1:Convergence rates for standard VEM on all meshes.

    Figure 2 shows the convergence curves of the errors for each set of meshes,and for various degrees:k=1,2,3,4.From these graphs we can see that both the H1and the L2errors behave as expected.Moreover,the trend of the error is not affected by mesh distortions.Indeed,in all cases the convergence slopes of the Random mesh are close to those obtained via more regular meshes(structured and CVT).

    4.2 Test case 2:h-analysis with the serendipity approach

    In Subsection 2.4 we proposed the serendipity VEM approach to reduce the computational effort.We consider both the stingy and lazy choice and compare them with the standard VEM approach.

    Figure 3 Test case 2:Comparison between VEMOand VEMLfor all meshes.

    To make the following discussion clearer,we refer to the standard VEM approach as VEMO,to the stingy choice as VEMS,andfinally to the lazy choice as VEML.

    Figure 4 Test case 2:Comparison between VEMOand VEMSfor all meshes.

    We recall that,according to Remark 2.4,the two choices correspond to

    with ηF=minimum number of straight lines necessary to cover the boundary of F.We focus on two aspects of the serendipity approach.On the one hand,we want to check that the serendipity procedure does not alter the accuracy.On the other hand we estimate the gain by counting the dofs with the standard and the serendipity approach.We count the number of vertex,edge and face dofs(in short,boundary dofs)for the standard VEM,#dof?,and the serendipity VEM,#.We then define the gain as

    We underline that we compute the gain only in terms of the boundary dofs,since the internal(volume)dofs can be removed by static condensation as forfinite elements.

    Table 1 Test case 2:Gain of VEMSand VEMLover VEMOfor all meshes.

    We show the convergence graphs of the lazy approach(VEML)in Figure 3,and of the stingy approach(VEMS)in Figure 4,together with the standard approach(VEMO).From these graphs we observe that the stingy choice is not so robust with respect to element degeneracies.Indeed,we recover the same convergence rates of the standard case for structured meshes,while the scheme fails to converge for CVT and random meshes,as shown in Figure 4:CVT fails for k=4 and random fails for

    and

    The lazy approach is definitely more robust,see Figure 3.For all the degrees k we recover the same convergence plots of VEMO(the convergence lines are indistinguishable from their counterpart of a standard VEMO).

    In Table 1 we show the gain in terms of boundary dofs.Here,we can appreciate that the gain for the stingy choice is remarkable:For the case k=3 and 4,we save around the 40%of the face dofs.Consequently,if we are dealing with well-shaped meshes,the stingy serendipity approach can tear down the number of dofs.However,we also underline that the gain for the lazy choice is not as large as for the stingy case,but it is still noteworthy:It is at least the 25%for all the cases.

    4.2.1 An adaptive stingy choice

    Figure 5 Test case 3:Comparison between VEMOand VEMAfor CVT and Random meshes.

    In this short paragraph we propose a strategy inspired by[9]to cure the stingy serendipity approach.The idea behind this method is to relax the conditions which determine the value of kFon a face F.Indeed,as explained in[9],the reason for the failures of the stingy choice is due to the presence of very small edges and/or edges laying almost on the same line.The strategy adopted in the code is the following:We fix an angle threshold,θ,and an edge ratio,ρ.Two edges forming an angle bigger than θ are considered as a single edge,and edges having length smaller than ρhFare neglected.If μFis the number of internal angles greater than θ,and ζF

    is the number of edges of F with length

    the definition of kFis modified as

    Wefixed

    and

    and solved the same problem above.In the following graphs and tables we refer to this approach as VEMA.In Figure 5 we compare the convergence graphs of VEMAwith VEMO,while in Table 2 we collect the gain in terms of boundary degrees of freedom.We do not show the case of structured meshes since we get exactly the same results as the stingy choice.

    Table 2 Test case 3:Gain for VEMS,VEMLand VEMAwith CVT and Random meshes.

    We observe that this new way to compute kFis robust with respect to element degeneracies.Indeed,all the convergence lines provided by such method are undistinguishable from the standard VEM ones(see Figure 5).Moreover,the gain is now greater than that obtained with the lazy choice and close to the optimal one obtained with the stingy approach,see the highlighted values in Table 2.

    [1]Ahmad,B.,Alsaedi,A.,Brezzi,F.,et al.,Equivalent projectors for virtual element methods,Comput.Math.Appl.,66(3),2013,376–391.

    [2]Antonietti,P.F.,Beir?o da Veiga,L.,Scacchi,S.and Verani,M.,A C1virtual element method for the Cahn-Hilliard equation with polygonal meshes,SIAM J.Numer.Anal.,54(1),2016,34–57.

    [3]Artioli,E.,de Miranda,C.,Lovadina,C.and Patruno,L.,A stress/displacement virtual element method for plane elasticity problems,Computer Methods in Applied Mechanics and Engineering,325,2017,155–174.

    [4]Ayuso,B.,Lipnikov,K.and Manzini,G.,The nonconforming virtual element method,ESAIM:M2AN,50(3),2016,879–904.

    [5]Beir?o da Veiga,L.,Brezzi,F.,Cangiani,A.,et al.,Basic principles of virtual element methods,Math.Models Methods Appl.Sci.,23(1),2013,199–214.

    [6]Beir?o da Veiga,L.,Brezzi,F.,Dassi,F.,et al.,Virtual element approximation of 2d magnetostatic problems,Comput.Methods Appl.Mech.Engrg.,327,2017,173–195.

    [7]Beir?o da Veiga,L.,Brezzi,F.,Marini,L.D.and Russo,A.,The hitchhiker’s guide to the virtual element method,Math.Models Methods Appl.Sci.,24(8),2014,1541–1573.

    [8]Beir?o da Veiga,L.,Brezzi,F.,Marini,L.D.and Russo,A.,Virtual element methods for general second order elliptic problems on polygonal meshes,Math.Models Methods Appl.Sci.,26(4),2016,729–750.

    [9]Beir?o da Veiga,L.,Brezzi,F.,Marini,L.D.and Russo,A.,Serendipity nodal VEM spaces,Comp.Fluids,141,2016,2–12.

    [10]Beir?o da Veiga,L.,Dassi,F.and Russo,A.,High-order virtual element method on polyhedral meshes,Computers&Mathematics with Applications,74(5),2017,1110–1122.

    [11]Beir?o da Veiga,L.,Lovadina,C.and Russo,A.,Stability analysis for the virtual element method,Math.Models Methods Appl.Sci.,27(13),2017,2557–2594.

    [12]Beir?o da Veiga,L.,Lovadina,C.and Vacca,G.,Divergence free Virtual Elements for the Stokes problem on polygonal meshes,ESAIM Math.Model.Numer.Anal.,51,2017,509–535.

    [13]Benedetto,M.F.,Berrone,S.,Borio,A.,et al.,A hybrid mortar virtual element method for discrete fracture network simulations,Journal of Computational Physics,306,2016,148–166.

    [14]Berrone,S.and Borio,A.,Orthogonal polynomials in badly shaped polygonal elements for the virtual element method,Finite Elem.Anal.Des.,129,2017,14–31.

    [15]Brenner,S.,Guan,Q.and Sung,L.,Some estimates for virtual element methods,Computational Methods in Applied Mathematics,17,2017,553–574.

    [16]Brezzi,F.and Marini,L.D.,Virtual element methods for plate bending problems,Comput.Methods Appl.Mech.Engrg.,253,2013,455–462.

    [17]C′aceres,E.and Gatica,G.N.,A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem,IMA J.Numer.Anal.,37(1),2017,296–331.

    [18]Cangiani,A.,Georgoulis,E.H.,Pryer,T.and Sutton,O.J.,A posteriori error estimates for the virtual element method,Numerische Mathematik,137,2017,857–893.

    [19]Chi,H.,Beir?o da Veiga,L.and Paulino,G.H.,Some basic formulations of the virtual element method(VEM)forfinite deformations,Computer Methods in Applied Mechanics and Engineering,318,2017,148–192.

    [20]Ciarlet,P.G.,Thefinite element method for elliptic problems,Studies in Mathematics and Its Applications,4,North-Holland Publishing Co.,Amsterdam,New York,Oxford,1978.

    [21]Du,Q.,Faber,V.and Gunzburger,M.,Centroidal voronoi tessellations:Applications and algorithms,SIAM Rev.,41(4),1999,637–676.

    [22]Gain,A.L.,Paulino,G.H.,Leonardo,S.D.and Menezes,I.F.M.,Topology optimization using polytopes,Comput.Methods Appl.Mech.Engrg.,293,2015,411–430.

    [23]Gain,A.L.,Talischi,C.and Paulino,G.H.,On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes,Comput.Methods Appl.Mech.Engrg.,282,2014,132–160.

    [24]Mascotto,L.,A therapy for the ill-conditioning in the virtual element method,ArXiv:1705.10581.

    [25]Mascotto,L.,Beir?o da Veiga,L.,Chernov,A.and Russo,A.,Exponential convergence of the hp virtual element method with corner singularities,Numer.Math.,DOI:10.1007/s00211-017-0921-7.

    [26]Mascotto,L.and Dassi,F.,Exploring high-order three dimensional virtual elements:Bases and stabilizations,2017,arXiv:1709.04371.

    [27]Mora,D.,Rivera,G.and Rodr′?guez,R.,A virtual element method for the Steklov eigenvalue problem,Math.Models Methods Appl.Sci.,25(8),2015,1421–1445.

    [28]Rycroft,C.H.,Voro++:A three-dimensional voronoi cell library in C++,Chaos,19(4),2009,041111.

    [29]Schatz,A.H.,An observation concerning Ritz-Galerkin methods with indefinite bilinear forms,Math.Comp.,28,1974,959–962.

    如日韩欧美国产精品一区二区三区| 国产精品成人在线| 大香蕉久久成人网| 夜夜爽天天搞| 久久久国产成人免费| 国产亚洲欧美精品永久| 制服人妻中文乱码| 久久久久国产精品人妻aⅴ院| av片东京热男人的天堂| 在线av久久热| 成人亚洲精品av一区二区 | 一a级毛片在线观看| 亚洲国产看品久久| 亚洲第一青青草原| 在线看a的网站| 久久精品成人免费网站| 男人操女人黄网站| 日本撒尿小便嘘嘘汇集6| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频 | 亚洲中文字幕日韩| 亚洲一区二区三区色噜噜 | 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 欧美日韩一级在线毛片| 久久久久精品国产欧美久久久| 亚洲色图综合在线观看| 国产精品98久久久久久宅男小说| 91在线观看av| www日本在线高清视频| 国产一区二区三区视频了| 亚洲欧美日韩无卡精品| 色综合站精品国产| 一级片免费观看大全| 亚洲人成电影免费在线| 欧美一级毛片孕妇| 精品久久久久久久久久免费视频 | 日本五十路高清| avwww免费| 五月开心婷婷网| 一个人免费在线观看的高清视频| 久久久久久久久久久久大奶| 人人妻人人澡人人看| 精品久久蜜臀av无| 日韩大尺度精品在线看网址 | 久久香蕉精品热| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 免费女性裸体啪啪无遮挡网站| 中国美女看黄片| 精品国产一区二区久久| 在线播放国产精品三级| 一本大道久久a久久精品| 亚洲五月色婷婷综合| 日韩精品青青久久久久久| 宅男免费午夜| 久久中文字幕一级| 国产极品粉嫩免费观看在线| 国内久久婷婷六月综合欲色啪| 亚洲三区欧美一区| 久久久久亚洲av毛片大全| 久久中文看片网| 中文字幕另类日韩欧美亚洲嫩草| 18禁裸乳无遮挡免费网站照片 | 久久久精品欧美日韩精品| 久久久久久大精品| 日韩人妻精品一区2区三区| 中国美女看黄片| 性欧美人与动物交配| 91老司机精品| 美女国产高潮福利片在线看| 国产精品99久久99久久久不卡| 国产无遮挡羞羞视频在线观看| 在线视频色国产色| 国产欧美日韩一区二区三| 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一小说| 在线看a的网站| 91国产中文字幕| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 久久久久久久久免费视频了| 欧美乱码精品一区二区三区| 美女扒开内裤让男人捅视频| 国产成人欧美在线观看| 亚洲在线自拍视频| 欧美乱色亚洲激情| 亚洲三区欧美一区| 国产在线观看jvid| 亚洲精品美女久久av网站| 日本免费a在线| 国产极品粉嫩免费观看在线| 好看av亚洲va欧美ⅴa在| 在线视频色国产色| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 中亚洲国语对白在线视频| 男女高潮啪啪啪动态图| 麻豆久久精品国产亚洲av | 青草久久国产| 首页视频小说图片口味搜索| 国产精品亚洲av一区麻豆| 久久草成人影院| 50天的宝宝边吃奶边哭怎么回事| 精品国产乱子伦一区二区三区| 成人永久免费在线观看视频| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 国产精品一区二区三区四区久久 | 99精国产麻豆久久婷婷| 色精品久久人妻99蜜桃| tocl精华| 国产精品一区二区在线不卡| 欧美日韩av久久| 国产成人系列免费观看| 久久人妻熟女aⅴ| 日本wwww免费看| 亚洲欧美日韩高清在线视频| 一区二区三区国产精品乱码| 国产一区二区三区视频了| 国产真人三级小视频在线观看| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 最近最新中文字幕大全电影3 | 精品国产亚洲在线| 黑人巨大精品欧美一区二区蜜桃| 国产野战对白在线观看| 长腿黑丝高跟| 99精国产麻豆久久婷婷| 日韩欧美免费精品| 国产黄色免费在线视频| 日韩大码丰满熟妇| а√天堂www在线а√下载| 亚洲av第一区精品v没综合| 久久性视频一级片| av网站在线播放免费| 9191精品国产免费久久| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频| 波多野结衣一区麻豆| 国内久久婷婷六月综合欲色啪| 午夜日韩欧美国产| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 成人永久免费在线观看视频| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 国产精品乱码一区二三区的特点 | 淫秽高清视频在线观看| 法律面前人人平等表现在哪些方面| 九色亚洲精品在线播放| 国产精品日韩av在线免费观看 | 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 日本a在线网址| 最新美女视频免费是黄的| 韩国精品一区二区三区| 视频在线观看一区二区三区| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 男女高潮啪啪啪动态图| 精品人妻1区二区| 大型av网站在线播放| 国产精品一区二区在线不卡| 亚洲色图av天堂| 黄片小视频在线播放| 国产麻豆69| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 日韩高清综合在线| 黄色毛片三级朝国网站| 少妇被粗大的猛进出69影院| 亚洲欧美激情综合另类| 亚洲欧美激情在线| 亚洲狠狠婷婷综合久久图片| 成人18禁高潮啪啪吃奶动态图| 色哟哟哟哟哟哟| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 欧美人与性动交α欧美软件| 成年人免费黄色播放视频| 亚洲一区高清亚洲精品| 在线观看www视频免费| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 身体一侧抽搐| 啪啪无遮挡十八禁网站| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| av福利片在线| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 一级毛片女人18水好多| 欧美黑人精品巨大| 国产区一区二久久| 麻豆久久精品国产亚洲av | 岛国在线观看网站| 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 亚洲成人精品中文字幕电影 | 国产熟女xx| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 成人亚洲精品av一区二区 | 十分钟在线观看高清视频www| 色老头精品视频在线观看| 国产黄a三级三级三级人| 国产亚洲欧美精品永久| 久久精品91无色码中文字幕| 9191精品国产免费久久| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 亚洲欧美激情在线| 免费人成视频x8x8入口观看| 午夜福利影视在线免费观看| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 国产精品国产高清国产av| 99国产精品免费福利视频| 少妇的丰满在线观看| 妹子高潮喷水视频| 天堂中文最新版在线下载| 脱女人内裤的视频| 99热只有精品国产| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 国产一区在线观看成人免费| 亚洲人成伊人成综合网2020| 在线观看www视频免费| av在线天堂中文字幕 | 欧美日本亚洲视频在线播放| 男人操女人黄网站| 少妇 在线观看| 久久中文字幕人妻熟女| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| 一区二区三区精品91| 无限看片的www在线观看| 在线永久观看黄色视频| 少妇的丰满在线观看| ponron亚洲| 免费人成视频x8x8入口观看| 欧美性长视频在线观看| 午夜福利免费观看在线| 正在播放国产对白刺激| 亚洲国产精品999在线| 69精品国产乱码久久久| 超碰97精品在线观看| 国产精品久久久久久人妻精品电影| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看| 久久久久亚洲av毛片大全| 免费看十八禁软件| 一本大道久久a久久精品| 十八禁网站免费在线| 午夜成年电影在线免费观看| 丁香欧美五月| 国产成人av教育| 热re99久久精品国产66热6| 人成视频在线观看免费观看| 一本综合久久免费| 天天添夜夜摸| 精品高清国产在线一区| 亚洲精品国产精品久久久不卡| 国产欧美日韩综合在线一区二区| 色播在线永久视频| 亚洲成av片中文字幕在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| 91精品三级在线观看| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 免费不卡黄色视频| 午夜免费成人在线视频| 国产成人av教育| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 曰老女人黄片| 在线看a的网站| 在线观看舔阴道视频| 国产黄a三级三级三级人| 成人影院久久| 黄色女人牲交| 成人18禁在线播放| 国产精品国产av在线观看| 老司机福利观看| 亚洲美女黄片视频| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 麻豆国产av国片精品| 少妇 在线观看| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 午夜免费观看网址| 一级片'在线观看视频| 国产av在哪里看| 久久香蕉激情| 国产欧美日韩一区二区三区在线| 一边摸一边抽搐一进一小说| 一边摸一边抽搐一进一出视频| 国产午夜精品久久久久久| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 91大片在线观看| 日韩欧美一区视频在线观看| 精品久久久久久成人av| 午夜福利欧美成人| 老司机福利观看| 亚洲欧美日韩无卡精品| www国产在线视频色| 国产男靠女视频免费网站| 亚洲一卡2卡3卡4卡5卡精品中文| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 一个人观看的视频www高清免费观看 | 国产激情久久老熟女| 国产三级在线视频| 成人国语在线视频| 精品久久久久久,| 亚洲欧美激情综合另类| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 一级,二级,三级黄色视频| 岛国在线观看网站| 国产精品久久久久久人妻精品电影| 精品久久久精品久久久| 午夜亚洲福利在线播放| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 一本综合久久免费| 亚洲七黄色美女视频| 久久精品亚洲熟妇少妇任你| 精品国产乱码久久久久久男人| 正在播放国产对白刺激| 日韩欧美三级三区| 久久人妻av系列| 精品一品国产午夜福利视频| 国产97色在线日韩免费| 搡老岳熟女国产| 精品久久蜜臀av无| 啦啦啦免费观看视频1| 欧美一级毛片孕妇| 在线观看免费视频网站a站| 99久久综合精品五月天人人| 在线观看一区二区三区| 伦理电影免费视频| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 国产黄a三级三级三级人| xxxhd国产人妻xxx| 免费av毛片视频| 99久久综合精品五月天人人| 日韩欧美一区视频在线观看| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 91麻豆av在线| 黄色女人牲交| 亚洲在线自拍视频| av有码第一页| 在线观看舔阴道视频| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 电影成人av| 高清欧美精品videossex| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 久久精品91无色码中文字幕| 成年版毛片免费区| 在线观看午夜福利视频| 亚洲中文字幕日韩| 欧美日韩一级在线毛片| 国产av在哪里看| 在线av久久热| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 国产一区二区三区综合在线观看| 国产精品电影一区二区三区| 亚洲性夜色夜夜综合| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 亚洲一区中文字幕在线| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 一级片'在线观看视频| 80岁老熟妇乱子伦牲交| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 欧美不卡视频在线免费观看 | 天堂俺去俺来也www色官网| 久久精品亚洲av国产电影网| 老司机靠b影院| 午夜老司机福利片| 无遮挡黄片免费观看| 一级片'在线观看视频| 午夜福利一区二区在线看| 国产高清videossex| 在线免费观看的www视频| 日日夜夜操网爽| 国产精品爽爽va在线观看网站 | 亚洲欧美激情综合另类| 美女午夜性视频免费| 黑人猛操日本美女一级片| 一进一出好大好爽视频| 国产激情欧美一区二区| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 免费av中文字幕在线| 在线观看一区二区三区| 国产在线精品亚洲第一网站| 国产精品爽爽va在线观看网站 | 在线观看免费午夜福利视频| 精品人妻1区二区| 欧美成人免费av一区二区三区| 亚洲一区二区三区色噜噜 | 久久精品亚洲精品国产色婷小说| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久,| 国产熟女午夜一区二区三区| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 不卡一级毛片| 制服诱惑二区| 亚洲精品中文字幕在线视频| 成人手机av| 国产视频一区二区在线看| av网站免费在线观看视频| 91在线观看av| 久久久国产精品麻豆| 怎么达到女性高潮| 日韩精品免费视频一区二区三区| 欧美色视频一区免费| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 深夜精品福利| 天堂影院成人在线观看| 久久国产精品男人的天堂亚洲| av网站免费在线观看视频| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 日韩av在线大香蕉| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 精品无人区乱码1区二区| 黑人巨大精品欧美一区二区蜜桃| 久久精品人人爽人人爽视色| 国产片内射在线| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色 | 亚洲性夜色夜夜综合| xxxhd国产人妻xxx| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 99久久人妻综合| 别揉我奶头~嗯~啊~动态视频| 欧美性长视频在线观看| 国产av精品麻豆| 黄色怎么调成土黄色| 精品一区二区三区av网在线观看| 巨乳人妻的诱惑在线观看| 亚洲免费av在线视频| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 日韩免费av在线播放| tocl精华| 一区二区三区激情视频| 香蕉国产在线看| 丰满饥渴人妻一区二区三| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 午夜福利在线免费观看网站| 欧美日韩精品网址| 久久香蕉激情| 国产又色又爽无遮挡免费看| 亚洲色图综合在线观看| 满18在线观看网站| 欧美日韩亚洲高清精品| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 国产熟女xx| 亚洲人成电影观看| 村上凉子中文字幕在线| 久久热在线av| 日韩欧美免费精品| 超碰97精品在线观看| 久久精品国产99精品国产亚洲性色 | 国产成人欧美| 国产精品美女特级片免费视频播放器 | 国产亚洲欧美在线一区二区| 韩国av一区二区三区四区| 一个人观看的视频www高清免费观看 | 精品久久久精品久久久| 久久久久九九精品影院| 亚洲成人精品中文字幕电影 | 日本五十路高清| 国产人伦9x9x在线观看| 天天添夜夜摸| 天堂俺去俺来也www色官网| 两人在一起打扑克的视频| 国产精品免费一区二区三区在线| 精品高清国产在线一区| 麻豆av在线久日| av中文乱码字幕在线| 搡老乐熟女国产| 久久中文字幕人妻熟女| 国产99白浆流出| 欧美成人免费av一区二区三区| 1024香蕉在线观看| 999精品在线视频| 久久伊人香网站| 久久精品aⅴ一区二区三区四区| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 超色免费av| 亚洲熟女毛片儿| 久久久久久久久久久久大奶| 变态另类成人亚洲欧美熟女 | 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 午夜福利在线免费观看网站| 成人永久免费在线观看视频| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看.| 一边摸一边抽搐一进一小说| 精品国产亚洲在线| 麻豆国产av国片精品| 18禁观看日本| 国产精品 欧美亚洲| 国产精品自产拍在线观看55亚洲| www日本在线高清视频| 精品熟女少妇八av免费久了| 国产免费av片在线观看野外av| 国产在线精品亚洲第一网站| 亚洲av熟女| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 午夜亚洲福利在线播放| 国产精品综合久久久久久久免费 | 亚洲欧洲精品一区二区精品久久久| 久久久久久久午夜电影 | 国产黄色免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 电影成人av| 亚洲成人免费av在线播放| 久久青草综合色| 人成视频在线观看免费观看| 午夜免费成人在线视频| 亚洲欧美日韩高清在线视频| 电影成人av| 久久人人精品亚洲av| 99精品在免费线老司机午夜| 中亚洲国语对白在线视频| 亚洲少妇的诱惑av| 我的亚洲天堂| av网站免费在线观看视频| 亚洲精品一区av在线观看| 久久久久久久久免费视频了| 精品福利永久在线观看| 国产男靠女视频免费网站| 怎么达到女性高潮| 久久天躁狠狠躁夜夜2o2o| 亚洲国产毛片av蜜桃av| 看片在线看免费视频| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 精品国产国语对白av| 成年人黄色毛片网站| 久久亚洲精品不卡| 亚洲专区字幕在线| 国产国语露脸激情在线看| 人人妻人人爽人人添夜夜欢视频|