• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Boundary Synchronization for a Coupled System of Wave Equations with Neumann Boundary Controls?

    2018-03-13 09:28:02TatsienLIXingLUBopengRAO

    Tatsien LIXing LUBopeng RAO

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    Synchronization is a widespread natural phenomenon.It wasfirst observed by Huygens in 1665(see[3]).The theoretical research on synchronization phenomenon from the mathematical point of view dates back to Wiener in 1950s(see[13]).However,almost all the previous works focused on systems described by ODEs,and studied the asymptotic synchronization of the states of the system as t→+∞.For coupled systems governed by PDEs,as shown by Li and Rao,synchronization can be realized in a limited time period by means of proper boundary controls,and after switching offall the controls,the state of synchronization remains.Precisely speaking,Li and Rao considered the exact boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls in any given space dimensions in the framework of weak solutions(see[4,6]),and acquired related results for the same system in one space dimension with all kinds of boundary controls in the framework of classical solutions(see[2,9]).Moreover,they got also corresponding results on the exact boundary synchronization by groups in[5,7].

    In this paper,we consider the following coupled system of wave equations with Neumann boundary controls:

    and the corresponding initial data

    where ? ? Rnis a bounded domain with smooth boundary Γ =and mes(Γ0) > 0,?νdenotes the outward normal derivative on the boundary,the coupling matrix A=(aij)is of order N,the boundary control matrix D is a full column-rank matrix of order N ×M(M ≤ N),both A and D have real constant elements,U=(u(1),···,u(N))Tand H=(h(1),···,h(M))Tdenote the state variables and the boundary controls,respectively.

    Denote

    We assume that ? satisfies the usual multiplier geometric control condition(see[1]).Without loss of generality,we assume that there exists an x0∈Rn,such that setting m=x?x0,we have

    where(·,·)denotes the inner product in Rn.

    Define the linear unbounded operator?Δ in H0by

    Clearly,?Δ is a positively definite self-adjoint operator with a compact resolvent.Then,for any given s∈ R,we can define the operatorwith the domaincontrolH∈LMwith compact support in[0,T],such that the corresponding mixed initialboundary value problem(1.1)–(1.2)admits a unique weak solutionU ∈ (Cloc([0,+∞);H1?s))N∩satisfying

    Moreover,we have the continuous dependence:

    wherecis a positive constant.

    For the exact boundary null controllability and the non-exact boundary null controllability of system(1.1),the following results were proved in[8].

    Lemma 1.2WhenM=N,there exists a constantT>0,such that system(1.1)is exactlynull controllable at the timeTfor any given initial data

    However,if there is a lack of boundary controls,we have the following lemma.

    Lemma 1.3WhenM<N,no matter how largeT>0is,system(1.1)is not exactly nullcontrollable at the timeTfor any given initial data

    Therefore,it is necessary to discuss whether system(1.1)is controllable in some weaker senses when there is a lack of boundary controls,namely,when M<N.Although the results are similar to those for the coupled system of wave equations with Dirichlet boundary controls,since the solution to a coupled system of wave equations with Neumann boundary conditions has a relatively weaker regularity,in order to realize the desired result,we need stronger function spaces,and the corresponding adjoint problem is also different.

    Wefirst give the following lemma(see[10]).

    Lemma 1.4For any givenN×NmatrixAand any given full row-rank(N?p)×NmatrixCwith1≤p<N,the following properties are equivalent:

    (1)Ker(C)is an invariant subspace ofA:

    (2)There exists a unique matrixof order(N?p),such that

    Moreover,the matrixis given by

    whereC+denotes the Moore-Penrose inverse ofC:

    Since Lemma 2.1 in[7]is independent of the type of boundary conditions,we still have the following lemma.

    Lemma 1.5Assume thatUis the solution to the mixed problem(1.1)–(1.2).LetCbe a full row-rank(N?p)×Nmatrix(where1≤p<N)such that

    Then we have either

    or there exists a full row-rank(N?p+1)×Nmatrix^Csuch that

    2 Exact Boundary Synchronization

    Definition 2.1System(1.1)is exactly synchronizable at the timeT > 0in the space(H1×H0)N,if for any given initial data(U0,U1)∈(H1×H0)N,there exists a boundary controlH∈LMwith compact support in[0,T],such that the weak solutionU=U(t,x)to the mixed initial-boundary value problem(1.1)–(1.2)satisfies

    where,u=u(t,x),being unknown a priori,is called the corresponding state of synchronization.

    The above definition requires that system(1.1)maintains the state of synchronization even though the boundary control is canceled after the time T.

    Theorem 2.1Assume thatM<N.If system(1.1)is exactly synchronizable in the space(H1×H0)N,then the coupling matrixA=(aij)should satisfy the following condition of compatibility(the sums of elements in every row are equal to each other):

    whereais a constant independent ofi=1,···,N.

    ProofBy Lemma 1.3,since M<N,system(1.1)is not exactly null controllable,then there exists an initial data(U0,U1)∈(H1×H0)N,such that for any given boundary control H,the corresponding state of synchronization u(t,x)/≡0.Then,noting(2.1),the solution to problem(1.1)corresponding to this initial data satisfies

    for all i=1,···,N.Then we have

    for i,k=1,···,N.It follows that

    which is just the required condition of compatibility(2.2).

    Now,let

    be the corresponding matrix of synchronization.C1is a full row-rank matrix,and Ker(C1)=Span{e1},where e1=(1,1,···,1)T.Clearly,the synchronization(2.1)can be equivalently written as

    By Lemma 1.4,we have

    Lemma 2.1The following properties are equivalent:

    (1)The condition of compatibility(2.2)holds;

    (2)e=(1,1,···,1)Tis a right eigenvector ofA,corresponding to the eigenvalueagiven by(2.2);

    (3)Ker(C1)is a one-dimensional invariant subspace ofA:

    (4)There exists a unique matrixof order(N?1),such that

    A1=is called the reduced matrix ofAbyC1,where

    Theorem 2.2Assume thatM=N?1.Under the condition of compatibility(2.2),if the matrixC1Dis invertible,namely,rank(C1D)=N?1,then there exists a constantT>0so large that system(1.1)is exactly synchronizable at the timeTin the space(H1×H0)N,moreover,we have the continuous dependence:

    whereCis a positive constant.

    On the other hand,whenrank(C1D)<N?1(especially,whenM<N?1),no matter how largeT>0is,system(1.1)is not exactly synchronizable at the timeT.

    ProofUnder the condition of compatibility(2.2),let

    Noting(2.9),it is easy to see that the original mixed problem(1.1)—(1.2)for U can be reduced to the following self-closed mixed problem for W:

    where D=C1D.Noting that C1is a surjection from(H1×H0)Nonto(H1×H0)N?1,we easily check that the exact boundary synchronization of system(1.1)for U is equivalent to the exact boundary null controllability of system(2.12)for W.Since rank=rank(C1D)=N?1,by Lemma 1.2,for any given initial data(,∈ (H1×H0)N?1,system(2.12)is exactly null controllable by means of a boundary controlH ∈ LN?1.By(1.6)in Definition 1.1,we get the continuous dependence(2.11).Sinceis invertible matrix,there exists a corresponding boundary control H ∈LN?1,such that system(1.1)is exactly synchronizable.

    On the other hand,when rank(C1D)<N?1,H can be rewritten assuch thatis a full column-rank matrix of order N×with<N?1 and∈L~Mwith compact support in[0,T],by Lemma 1.3,the reduced system(2.12)is not exactly null controllable,then system(1.1)is not exactly synchronizable either.

    3 Exact Boundary Synchronization by p-Groups

    When there is a further lack of boundary controls,we consider the exact boundary synchronization by p-groups(p≥1;when p=1,it becomes the exact boundary synchronization).This indicates that the components of U are divided into p groups:

    where 0=n0< n1< n2< ···< np=N,and each group is required to possess the exact boundary synchronization,respectively.

    Definition 3.1System(1.1)is exactly synchronizable byp-groups at the timeT > 0in the space(H1×H0)N,if for any given initial data()∈(H1×H0)N,there exists a boundary controlH∈LMwith compact support in[0,T],such that the weak solutionU=U(t,x)to the mixed initial-boundary value problem(1.1)–(1.2)satisfies

    where,(u1,···,up)T,being unknown a priori,is called the corresponding state of synchronization byp-groups.

    and let Cpbe the following(N?p)×N matrix of synchronization by p-groups:

    Obviously,we have

    where for 1≤s≤p,

    Thus,(3.2)can be equivalently written as

    Theorem 3.1Assume that system(1.1)is exactly synchronizable byp-groups.Then we necessarily haveM≥N?p.Especially,whenM=N?p,the coupling matrixA=(aij)should satisfy the following condition of compatibility:

    is a surjection from(H1×H0)Nonto(H1×H0)N?p+r,then,(3.11)is exactly null controllable at the time T in the space(H1×H0)N?p+r.By Lemmas 1.2—1.3(cf.the last paragraph in the proof of Theorem 2.2),we necessarily have

    then

    In particular,when M=N?p,we have r=0,namely,the condition of compatibility(3.8)holds.

    Remark 3.1The condition of compatibility(3.8)is equivalent to the fact that there exist some constants αrs(1 ≤ r,s≤ p)such that

    or,noting(3.6),A satisfies the following row-sum condition by blocks:

    Especially,this condition of compatibility becomes(2.2)when p=1.

    Theorem 3.2LetCpbe the(N ?p)×Nmatrix of synchronization byp-groups defined by(3.3)–(3.4).Under the condition of compatibility(3.8),assume that theN ×(N ?p)boundary control matrixDhas full column-rank and satisfiesrank(CpD)=N ? p.Then system(1.1)is exactly synchronizable byp-groups by means of boundary controlH ∈LN?p,moreover,we have the continuous dependence:

    whereCis a positive constant.

    On the other hand,whenrank(CpD)<N?p(especially,whenM<N?p),no matter how largeT>0is,system(1.1)is not exactly synchronizable byp-groups at the timeT.

    ProofAssume that the coupling matrix A=(aij)satisfies the condition of compatibility(3.8).By Lemma 1.4,there exists a unique matrixof order(N?p),such that

    Setting

    We can similarly get the following reduced system for W:

    where W is a vector valued function of(N?p)components.By the assumption that rank(D)=rank(CpD)=N?p and Lemma 1.2,system(3.19)is exactly null controllable.Also,by(1.6)in Definition 1.1,we get the continuous dependence(3.17).Then the original system(1.1)for U is exactly synchronizable by p-groups.

    On the other hand,when rank(CpD)<N?p,by Lemma 1.3(cf.the last paragraph in the proof of Theorem 2.2),the reduced system(2.12)is not exactly null controllable,then system(1.1)is not exactly synchronizable by p-groups.

    4 Determination of the State of Synchronization by p-Groups

    Now,under the condition of compatibility(3.8),we are going to discuss the determination of the state of synchronization by p-groups for system(1.1).Generally speaking,the state of synchronization should depend on the initial data()and the applied boundary control H.However,when the coupling matrix A possesses some good properties,the state of synchronization by p-groups is independent of the applied boundary control,and can be determined entirely by the solution to a system of wave equations with homogeneous boundary condition.

    First,by Lemma 1.1 and noting that the space(H1× H0)Ngiven in Definition 3.1 is included in(H1?s× H?s)N?s >),differently from the case of Dirichlet boundary controls,the attainable set of states of exact boundary synchronization by p-groups for the system with Neumann boundary controls is not the whole space(H1?s× H?s)p.Besides,as in the case of Dirichlet boundary controls(see[6]),the choice of boundary controls is not unique.We have the following theorem.

    Theorem 4.1LetHdenote the set of all the boundary controlsHwhich can realize the exact boundary synchronization byp-groups at the timeTfor system(1.1).If the condition of compatibility(3.8)holds,then forε> 0small enough,the value ofH ∈ Hon(0,ε)×Γ1can be arbitrarily chosen.

    ProofFirst of all,there exists a T0>0 independent of the initial data,such that,when T>T0,the reduced problem(3.19)is exactly null controllable at the time T.According to the proof of Theorem 3.2,the exact synchronization by p-groups of system(1.1)is equivalent to the exact null controllability of the reduced system(3.19).Therefore,taking an ε> 0 so small that T?ε>T0,system(1.1)is still exactly synchronizable by p-groups at the time T?ε.

    we solve the forward problem(1.1)on the time interval[0,ε]with H=and get the solutionas initial data,by

    Theorem 3.2,for system(1.1)we canfind a boundary control

    such that the corresponding solutionsatisfies exactly the initial condition

    and realizes the synchronization by p-groups at the time t=T.Let

    It can be verified that U is the solution to the mixed problem(1.1)with boundary control H,and it is exactly synchronizable by p-groups at the time T.By this way,we get an infinity of boundary controls H,the values of which on(0,ε)× Γ1can be taken arbitrarily.Finally,by the denseness of(?)in H1and H0,we can get the desired result.

    The state of synchronization by p-groups is closely related to the properties of the coupling matrix A.Let

    By[7],D ∈DN?pif and only if it can be expressed by

    where D0is a p×(N?p)matrix,andis a reversible matrix of order(N?p).We have the following theorem.

    Theorem 4.2Under the condition of compatibility(3.8),assume thatATpossesses an invariant subspaceSpan{E1,E2,···,Ep}which is bi-orthonormal toKer(Cp)=Span{e1,···,ep}:

    Then there exists a boundary control matrixD∈DN?p,such that the state of synchronization byp-groupsu=(u1,···,up)Tis independent of the applied boundary controls,and can be determined as follows:

    whereψ =(ψ1,···,ψp)Tis the solution to the following problem with homogeneous boundary condition:

    whereαrs(1 ≤ r,s≤ p)are given by(3.16).

    ProofNoting that Span{E1,E2,···,Ep}is bi-orthonormal to Ker(Cp)=Span{e1,···,ep},and taking

    in(4.1),we get a boundary control matrix D∈DN?p,such that

    On the other hand,since Span{E1,E2,···,Ep}is an invariant subspace of AT,we may denote

    where βsrare some constants.By

    and noticing(3.15),we have

    Then by bi-orthonormality,we get

    namely,

    Let ψr=(Er,U).Taking the inner product with Eron both sides of(1.1),we get(4.3).Finally,for the state of synchronization by p-groups,by(3.7)we have

    When ATdoes not possess any invariant subspace Span{E1,E2,···,Ep}which is biorthonormal to Ker(Cp)=Span{e1,···,ep},we can use the solution of(4.3)to give an estimate on the state of synchronization by p-groups.

    Theorem 4.3Under the condition of compatibility(3.8),assume that there exists a subspaceSpan{E1,E2,···,Ep}that is bi-orthonormal toSpan{e1,···,ep}.Then there exist a boundary control matrixD∈DN?pand a constantcindependent of the initial data,such that the state of synchronization byp-groupsu=(u1,···,up)Tsatisfies the following estimate:

    whereψ =(ψ1,···,ψp)Tis the solution to problem(4.3),ands >

    ProofSince{E1,E2,···,Ep}is bi-orthonormal to{e1,···,ep},similar to(4.4),there exists a boundary control matrix D ∈ DN?p,such that(4.5)holds.Let φr=(Er,U).Taking the inner product with Eron both sides of(1.1)—(1.2),we get

    Since

    and for any given k ∈ {1,···,p},we have

    we get

    Therefore,there exists a vector Rr∈ RN?p,such that

    Thus,for r=1,···,p,we have

    where αrs(1 ≤ r,s ≤ p)are defined by(3.16),and U=U(t,x) ∈ C(0,T;(H1?s)N)∩C1(0,T;(H?s)N)is the solution to the mixed initial-boundary value problem(1.1)—(1.2).Moreover,we have

    Noting that(4.3)and(4.12)possess the same initial data and the same boundary condition,by the well-posedness for a system of wave equations with Neumann boundary condition,we have(see[12,Chapter III])that,when t≥0,

    where,c is a positive constant.Noting that W=CpU,by well-posedness of the reduced problem(3.19)(see[12,Lemma 1.1]),we have

    Moreover,by(3.17)we have

    Substituting it into(4.15),we have

    then,by(4.14)we get

    Substituting(4.13)into(4.18),we get(4.8).

    Remark 4.1Differently from the case of Dirichlet boundary controls,although the solution to the problem(1.1)with Neumann boundary controls possesses a weaker regularity,the solution to the problem(4.3),which determines the state of synchronization by p-groups,possesses a higher regularity than the original problem(1.1)itself,then,this improved regularity makes it possible to approach the state of synchronization by p-groups by a solution to a relatively smoother problem.

    In order to exactly express the state of synchronization by p-groups,we can extend the subspace Span{e1,···,ep}to an invariant subspace Span{e1,···,ep,···,eq}of A,such that ATpossesses an invariant subspace Span{E1,···,Ep,···,Eq},which is bi-orthonormal to Span{e1,···,ep,···,eq}.

    Let

    in which the tensor product is defined by

    P can be represented by a matrix of order N.It is easy to see that

    and

    Let U=U(t,x)be the solution to the mixed initial-boundary value problem(1.1)—(1.2).We define its synchronizable part Usand controllable part Uc,respectively,as follows:

    If system(1.1)is exactly synchronizable by p-groups,then

    hence we have

    Noting(4.21),multiplying P and(I?P)from the left on both sides of(1.1)respectively,we see that the synchronizable part Usof U satisfies the following system:

    while,the controllable part Ucof U satisfies the following system:

    In fact,under the boundary control H,Ucwith the initial data((I?P)∈ Ker(P)×Ker(P)is exactly null controllable,while,Uswith the initial data∈ Im(P)×Im(P)is exactly synchronizable.

    Theorem 4.4Assume that the condition of compatibility(3.8)holds.LetPbe defined by(4.19).If system(1.1)is exactly synchronizable byp-groups,and the synchronizable partUsis independent of the applied boundary controlHfort≥T,then we have

    In particular,ifnull controllable.

    ProofBy Theorem 4.1,the value of H on(0,ε)× Γ1can be arbitrarily taken.If the synchronizable part Usis independent of the applied boundary control H for t≥T,then we have

    hence

    Noting(4.20),we have

    then p=q.

    5 Determination of the State of Exact Boundary Synchronization

    In the case of exact boundary synchronization,by Lemma 2.1,(1,1,···,1)Tis a right eigenvector of A,corresponding to the eigenvalue a defined by(2.2).Let ε1,ε2,···,εrand E1,E2,···,Erwith r ≥ 1 be the Jordan chains of A and AT,respectively,corresponding to the eigenvalue a,and Span{ε1,ε2,···,εr}is bi-orthonormal to Span{E1,E2,···,Er}.Thus we have

    with

    Let U=U(t,x)be the solution to the mixed initial-boundary value problem(1.1)—(1.2).If system(1.1)is exactly synchronizable,then

    where u=u(t,x)is the corresponding state of synchronization.The synchronizable part and the controllable part are,respectively,

    If the synchronizable part is independent of the applied boundary control H,by Theorem 4.4,we have r=1,then A possesses a left eigenvector E1such that

    Generally speaking,when r≥1,setting

    noting(4.19)and(4.22),we have

    Thus,(ψ1,···,ψr)are the coordinates of Usunder the basis(ε1,ε2,···,εr).

    Taking the inner product with Ekon both sides of(4.24),we get the following theorem.

    Theorem 5.1Letε1,ε2,···,εrandE1,E2,···,Erbe the Jordan chains ofAandAT,respectively,corresponding to the eigenvaluea,in whichεr=(1,···,1)T.Then the synchronizable partUs=(ψ1,···,ψr)is determined by the following system(1 ≤ k ≤ r):

    where

    Noting(5.3),we have

    Thus,the state of synchronization u is determined by

    However,in order to get the state of synchronization u,we must solve the whole coupled problem(5.4)—(5.5).

    6 Determination of the State of Exact Boundary Synchronization by 3-Groups

    In this section,for an example,we will give the details on the determination of the state of exact boundary synchronization by 3-groups for system(1.1).The state of synchronization by pgroups can be discussed in a similar way.We always assume that the condition of compatibility(3.8)is satisfied.

    By synchronization by 2-groups,when t≥T,we have

    Recall that the matrix C3of synchronization by 3-groups is defined by(3.4).Let

    Obviously,we have that

    and that the state of synchronization by 3-groups is given by(6.1)—(6.3)means that

    Since the invariant subspace Span{e1,e2,e3}of A is of dimension 3,it may contain one,two or three eigenvectors of A,thus we can distinguish the followings three cases.

    (i)A admits three eigenvectors fr,gsand htcontained in Span{e1,e2,e3},corresponding to eigenvalues λ,μ and ν,respectively.Let f1,f2,···,fr;g1,g2,···,gsand h1,···,htbe the Jordan chains corresponding to these right eigenvectors:

    and let ξ1,ξ2,···,ξr;η1,η2,···,ηsand ζ1,ζ2,···,ζtbe the Jordan chains corresponding to the related left eigenvectors:

    such that

    for i,l=1,···r;j,m=1,···s;k,n=1,···t and

    for i=1,···r;j=1,···s;k=1,···t.

    Taking the inner product with ξi,ηj,ζkon both sides of(1.1)—(1.2),respectively,and denoting

    for i=1,···r;j=1,···s;k=1,···t,we get

    Solving the reduced problems(6.12)—(6.14),we get φ1···,φr; ψ1,···,ψsand θ1,···,θt.Noting that fr,gs,htare contained in Span{e1,e2,e3},we have

    By(6.6)we have

    Noting(6.9)—(6.10),we have

    Since e1,e2,e3are linearly independent,the linear system(6.16)is invertible.Then,the state(u1,u2,u3)Tof synchronization by 3-groups can be determined by solving the linear system(6.18).

    In particular,when r=s=t=1,the invariant subspace Span{ξ1,η1,ζ1}of ATis biorthonormal to Ker(C3)=Span{e1,e2,e3}.By Theorem 4.2,there exists a boundary control matrix D ∈DN?3,such that the state(u1,u2,u3)Tof synchronization by 3-groups is independent of the applied boundary controls.

    (ii)A admits two eigenvectors frand gscontained in Span{e1,e2,e3},corresponding to eigenvalues λ and μ,respectively.Let f1,f2,···,frand g1,g2,···,gsbe the Jordan chains corresponding to these right eigenvectors:

    and let ξ1,ξ2,···,ξr;η1,η2,···,ηsbe the Jordan chains corresponding to the related left eigenvectors:

    such that

    and

    Taking the inner product with ξi, ηjon both sides of(1.1)—(1.2),respectively,and denoting

    we get again the reduced problems(6.12)—(6.13).

    In this case,since only two eigenvectors fr,gsare contained in the invariant subspace Span{e1,e2,e3}of dimension 3,either fr?1or gs?1is contained in Span{e1,e2,e3}.For fixing idea,we assume that fr?1is contained in Span{e1,e2,e3}.Then we have

    By(6.6)we have

    Noting(6.21)—(6.22),we have

    Since e1,e2,e3are linearly independent,the linear system(6.24)is invertible,then the state(u1,u2,u3)Tof synchronization by 3-groups can be determined by solving the linear system(6.26).

    In particular,when r=2,s=1,the invariant subspace Span{ξ1,ξ2,η1}of ATis biorthonormal to Span{e1,e2,e3}.By Theorem 4.2,there exists a boundary control matrix D ∈DN?3,such that the state(u1,u2,u3)Tof synchronization by 3-groups is independent of the applied boundary controls.

    (iii)A admits only one eigenvector frcontained in Span{e1,e2,e3},corresponding to the eigenvalue λ.Let f1,f2,···,frbe the Jordan chains corresponding to this right eigenvector:

    and let ξ1,ξ2,···,ξrbe the Jordan chains corresponding to the related left eigenvector:

    such that

    Taking the inner product with ξion both sides of(1.1)—(1.2),and denoting

    we get again the reduced problem(6.12).

    In this case,since only one eigenvectorfris contained in the invariant subspace Span{e1,e2,e3}which is of dimension 3,fr?1and fr?2are necessarily contained in Span{e1,e2,e3},then we have

    By(6.6)we have

    Noting(6.29),we have

    Since e1,e2,e3are linearly independent,the linear system(6.31)is invertible,then the state(u1,u2,u3)Tof synchronization by 3-groups can be determined by solving the linear system(6.33).

    In particular,when r=3,the invariant subspace{ξ1,ξ2,ξ3}of ATis bi-orthonormal to Span{e1,e2,e3}.By Theorem 4.2,there exists a boundary control matrix D ∈DN?3,such that the state(u1,u2,u3)Tof synchronization by 3-groups is independent of the applied boundary controls.

    [1]Bardos,C.,Lebeau,G.and Rauch,J.,Sharp sufficient conditions for the observation,control,and stabilization of waves from the boundary,SIAM J.Control Optim.,30,1992,1024–1065.

    [2]Hu,L.,Li,T.-T.and Rao,B.P.,Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type,Communications on Pure and Applied Analysis,13,2014,881–901.

    [3]Huygens,C.,Horologium Oscillatorium Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae,Apud F.Muguet,Parisiis,1673.

    [4]Li,T.-T.and Rao,B.P.,Exaxt synchronization for a coupled system of wave equation with Dirichlet boundary controls,Chin.Ann.Math.,Ser.B,34(1),2013,139–160.

    [5]Li,T.-T.and Rao,B.P.,A note on the exact synchronization by groups for a coupled system of wave equations,Math.Meth.Appl.Sci.,38(13),2015,2803–2808.

    [6]Li,T.-T.and Rao,B.P.,On the exactly synchronizable state to a coupled system of wave equations,Portugaliae Math.,72,2015,83–100.

    [7]Li,T.-T.and Rao,B.P.,Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary controls,J.Math.Pures Appl.,105(1),2016,86–101.

    [8]Li,T.-T.and Rao,B.P.,Exact boundary controllability for a coupled system of wave equations with Neumann controls,Chin.Ann.Math.,Ser.B,38(2),2017,473–488.

    [9]Li,T.-T.,Rao,B.P.and Hu,L.,Exact boundary synchronization for a coupled system of 1-D wave equations,ESAIM:Control,Optimisation and Calculus of Variations,20,2014,339–361.

    [10]Li,T.-T.,Rao,B.P.and Wei,Y.M.,Generalized exact boundary synchronization for a coupled system of wave equations,Discrete Contin.Dyn.Syst.,34,2014,2893–2905.

    [11]Lions,J.-L.and Magenes,E.,Non-homogeneous Boundary Value Problems and Applications,I,Springer-Verlag,New York,Heidelberg,1972.

    [12]Pazy,A.,Semigroups of Linear Operators and Applications to Partial Differential Equations,Applied Mathematical Sciences,44,Springer-Verlag,New York,1983.

    [13]Wiener,N.,Cybernetics,or Control and Communication in the Animal and the Machine,2nd ed.,the M.I.T.Press,Cambridge,Mass.,John Wiley&Sons,Inc.,New York,London,1961.

    国产精品一区二区在线观看99| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄| 国产色爽女视频免费观看| 欧美性感艳星| 成年人免费黄色播放视频| 9热在线视频观看99| 日本vs欧美在线观看视频| 香蕉国产在线看| 日韩一区二区视频免费看| 欧美国产精品va在线观看不卡| 亚洲成国产人片在线观看| 男女免费视频国产| 精品少妇内射三级| 亚洲精品国产色婷婷电影| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 蜜臀久久99精品久久宅男| 大话2 男鬼变身卡| 久久久欧美国产精品| 国产精品99久久99久久久不卡 | 母亲3免费完整高清在线观看 | 久久人妻熟女aⅴ| 精品亚洲成国产av| 乱码一卡2卡4卡精品| 国产亚洲精品第一综合不卡 | www.av在线官网国产| 91成人精品电影| 大香蕉97超碰在线| 欧美成人精品欧美一级黄| 高清毛片免费看| 精品人妻在线不人妻| 久久久久网色| 成人国产av品久久久| www.熟女人妻精品国产 | 黄片播放在线免费| 边亲边吃奶的免费视频| 一个人免费看片子| 亚洲精品国产av蜜桃| 成人国语在线视频| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 国产成人精品无人区| 18禁观看日本| 久久这里只有精品19| 国产69精品久久久久777片| 亚洲色图 男人天堂 中文字幕 | 欧美日韩国产mv在线观看视频| 国产男人的电影天堂91| 国产精品不卡视频一区二区| 欧美精品av麻豆av| 精品一区二区三区视频在线| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 丝袜美足系列| 最近最新中文字幕大全免费视频 | 国产男女超爽视频在线观看| 日本欧美视频一区| 免费看av在线观看网站| 欧美 亚洲 国产 日韩一| 777米奇影视久久| 成人黄色视频免费在线看| 成人毛片a级毛片在线播放| 欧美成人午夜免费资源| 老司机影院成人| 亚洲精品av麻豆狂野| 久久人人爽av亚洲精品天堂| a级毛片在线看网站| 免费观看在线日韩| 99re6热这里在线精品视频| 人妻系列 视频| 精品第一国产精品| 日日摸夜夜添夜夜爱| 男女免费视频国产| 国产精品成人在线| 大香蕉久久网| 一级毛片黄色毛片免费观看视频| 成年人免费黄色播放视频| 九九爱精品视频在线观看| 狂野欧美激情性bbbbbb| 亚洲av.av天堂| 成人影院久久| 少妇被粗大猛烈的视频| 只有这里有精品99| 捣出白浆h1v1| a级毛色黄片| 久久精品久久精品一区二区三区| 国产极品粉嫩免费观看在线| 亚洲精品自拍成人| 免费女性裸体啪啪无遮挡网站| 国产白丝娇喘喷水9色精品| 美女中出高潮动态图| h视频一区二区三区| 亚洲国产精品999| 飞空精品影院首页| a级毛片黄视频| 热re99久久精品国产66热6| 午夜激情av网站| 日韩一本色道免费dvd| 中国美白少妇内射xxxbb| 成人午夜精彩视频在线观看| 999精品在线视频| 亚洲国产精品国产精品| 宅男免费午夜| 美女国产视频在线观看| 国产一区二区三区综合在线观看 | 国产 精品1| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 交换朋友夫妻互换小说| 只有这里有精品99| 亚洲国产精品专区欧美| 91久久精品国产一区二区三区| 人人澡人人妻人| 黄色 视频免费看| 国产精品不卡视频一区二区| 久久久久久人人人人人| 久久久久久人人人人人| 十八禁高潮呻吟视频| 国产色爽女视频免费观看| 亚洲伊人色综图| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 宅男免费午夜| 丝袜在线中文字幕| 欧美国产精品va在线观看不卡| 2021少妇久久久久久久久久久| 亚洲精品国产色婷婷电影| 一边亲一边摸免费视频| 国产成人精品婷婷| 精品午夜福利在线看| 人人妻人人添人人爽欧美一区卜| 亚洲av免费高清在线观看| 热re99久久国产66热| av国产精品久久久久影院| 啦啦啦视频在线资源免费观看| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 亚洲,欧美精品.| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 宅男免费午夜| 人成视频在线观看免费观看| www.色视频.com| 久久青草综合色| 国产免费一区二区三区四区乱码| 国产一区二区在线观看av| 亚洲国产精品专区欧美| 最近最新中文字幕大全免费视频 | 美女中出高潮动态图| 亚洲精品成人av观看孕妇| 看免费av毛片| 九色成人免费人妻av| 大片免费播放器 马上看| 国产 一区精品| 五月开心婷婷网| 欧美日本中文国产一区发布| 免费高清在线观看日韩| 国产亚洲av片在线观看秒播厂| 熟女av电影| 全区人妻精品视频| 亚洲第一区二区三区不卡| 欧美精品一区二区免费开放| 日韩av在线免费看完整版不卡| 中文欧美无线码| 成人国语在线视频| 久久久久久久精品精品| 国产黄色视频一区二区在线观看| 午夜影院在线不卡| 黑人巨大精品欧美一区二区蜜桃 | 国产黄色免费在线视频| 成年美女黄网站色视频大全免费| 美女大奶头黄色视频| www.色视频.com| 啦啦啦中文免费视频观看日本| 日韩大片免费观看网站| 亚洲色图综合在线观看| 人妻少妇偷人精品九色| 免费黄色在线免费观看| 涩涩av久久男人的天堂| 女人久久www免费人成看片| 性高湖久久久久久久久免费观看| 女性生殖器流出的白浆| 亚洲人成77777在线视频| 久久久国产欧美日韩av| 极品少妇高潮喷水抽搐| 午夜福利视频在线观看免费| 侵犯人妻中文字幕一二三四区| 国产成人精品一,二区| 欧美成人精品欧美一级黄| 韩国精品一区二区三区 | 国产有黄有色有爽视频| 天堂中文最新版在线下载| 国产精品一区二区在线观看99| 日本黄大片高清| 天天影视国产精品| 亚洲三级黄色毛片| 久热这里只有精品99| 99精国产麻豆久久婷婷| 欧美97在线视频| 国产免费现黄频在线看| 黄色一级大片看看| 天堂中文最新版在线下载| 亚洲伊人久久精品综合| 国产一区二区三区av在线| 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 丰满饥渴人妻一区二区三| 少妇猛男粗大的猛烈进出视频| 久久国内精品自在自线图片| 超碰97精品在线观看| 欧美丝袜亚洲另类| 美女视频免费永久观看网站| 老熟女久久久| 欧美最新免费一区二区三区| av免费观看日本| 欧美精品av麻豆av| 欧美国产精品一级二级三级| 国产老妇伦熟女老妇高清| 国产精品三级大全| 少妇 在线观看| 99热全是精品| 亚洲国产成人一精品久久久| 欧美日韩av久久| 亚洲性久久影院| 亚洲av国产av综合av卡| 亚洲av免费高清在线观看| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 自线自在国产av| 全区人妻精品视频| 欧美日韩成人在线一区二区| 国产老妇伦熟女老妇高清| 下体分泌物呈黄色| 香蕉精品网在线| 肉色欧美久久久久久久蜜桃| 熟女电影av网| 夫妻性生交免费视频一级片| av片东京热男人的天堂| 久久国内精品自在自线图片| 99久久人妻综合| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看 | 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 国产无遮挡羞羞视频在线观看| 久久国产精品大桥未久av| 欧美精品av麻豆av| 久久ye,这里只有精品| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 国产一区二区在线观看av| 老司机影院成人| 国产精品久久久久久久久免| 亚洲av日韩在线播放| 日产精品乱码卡一卡2卡三| 热re99久久国产66热| 一本大道久久a久久精品| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 国产精品无大码| 欧美精品亚洲一区二区| 激情视频va一区二区三区| 亚洲图色成人| 伦精品一区二区三区| 久久久亚洲精品成人影院| 菩萨蛮人人尽说江南好唐韦庄| 男人爽女人下面视频在线观看| 色94色欧美一区二区| freevideosex欧美| 青春草亚洲视频在线观看| 三上悠亚av全集在线观看| 色5月婷婷丁香| 91精品三级在线观看| 黄频高清免费视频| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久久久99蜜臀| 亚洲国产精品sss在线观看 | 超碰97精品在线观看| 99在线人妻在线中文字幕 | 一本综合久久免费| av天堂在线播放| 18禁美女被吸乳视频| 最新的欧美精品一区二区| 9191精品国产免费久久| 水蜜桃什么品种好| 国产午夜精品久久久久久| 欧美日韩视频精品一区| av网站在线播放免费| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 亚洲色图综合在线观看| 成年动漫av网址| 99香蕉大伊视频| 国产高清videossex| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 啦啦啦视频在线资源免费观看| 乱人伦中国视频| 青草久久国产| 很黄的视频免费| 成年版毛片免费区| 国产在线一区二区三区精| 国产主播在线观看一区二区| 国产精品一区二区在线观看99| 91国产中文字幕| 一级毛片精品| 国产免费av片在线观看野外av| 免费高清在线观看日韩| 欧美成人免费av一区二区三区 | 一本大道久久a久久精品| 757午夜福利合集在线观看| 伊人久久大香线蕉亚洲五| 国产欧美日韩精品亚洲av| 在线观看一区二区三区激情| 精品亚洲成a人片在线观看| 99久久精品国产亚洲精品| 男女高潮啪啪啪动态图| 超碰成人久久| 亚洲男人天堂网一区| 两人在一起打扑克的视频| 法律面前人人平等表现在哪些方面| 手机成人av网站| 深夜精品福利| 亚洲人成77777在线视频| 两个人看的免费小视频| 丝瓜视频免费看黄片| 国产精品久久久av美女十八| tocl精华| 午夜激情av网站| 久久久久久免费高清国产稀缺| 69av精品久久久久久| av国产精品久久久久影院| 国产免费男女视频| 十八禁高潮呻吟视频| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 亚洲av日韩精品久久久久久密| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡| 丝袜在线中文字幕| 啪啪无遮挡十八禁网站| 欧美中文综合在线视频| 欧美最黄视频在线播放免费 | 亚洲七黄色美女视频| 欧美乱妇无乱码| 精品一区二区三区av网在线观看| 国产精品乱码一区二三区的特点 | 国产男靠女视频免费网站| 下体分泌物呈黄色| 久久精品国产清高在天天线| 90打野战视频偷拍视频| 精品久久蜜臀av无| 99久久99久久久精品蜜桃| 久久久久久久国产电影| 国产亚洲精品久久久久5区| a在线观看视频网站| svipshipincom国产片| www.自偷自拍.com| 免费看十八禁软件| 亚洲人成电影免费在线| 午夜影院日韩av| 男女床上黄色一级片免费看| 老司机福利观看| 国产在线观看jvid| 久久中文看片网| 黄色片一级片一级黄色片| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 美女 人体艺术 gogo| 亚洲精品成人av观看孕妇| 国产精品二区激情视频| 热99re8久久精品国产| 韩国av一区二区三区四区| 久久狼人影院| 亚洲精品乱久久久久久| 久久精品亚洲熟妇少妇任你| av有码第一页| 18在线观看网站| 亚洲精品久久午夜乱码| 啦啦啦 在线观看视频| 色综合欧美亚洲国产小说| 欧美大码av| 免费在线观看影片大全网站| 久久人妻熟女aⅴ| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 国产精品久久电影中文字幕 | 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇中文字幕五十中出 | 满18在线观看网站| 女人被狂操c到高潮| 丁香欧美五月| 国产精品.久久久| aaaaa片日本免费| 中文字幕精品免费在线观看视频| 天天影视国产精品| 欧美一级毛片孕妇| 一级毛片高清免费大全| 久久久久精品人妻al黑| 成年人黄色毛片网站| 成人影院久久| a级片在线免费高清观看视频| 久久影院123| 久久精品亚洲精品国产色婷小说| 黑丝袜美女国产一区| 亚洲欧美激情综合另类| 亚洲五月色婷婷综合| 91av网站免费观看| 高清毛片免费观看视频网站 | 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 久久精品国产99精品国产亚洲性色 | 少妇的丰满在线观看| 国产日韩一区二区三区精品不卡| videos熟女内射| 人人妻人人添人人爽欧美一区卜| netflix在线观看网站| 大型黄色视频在线免费观看| 国产男女超爽视频在线观看| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 国产有黄有色有爽视频| 亚洲五月婷婷丁香| 老司机午夜十八禁免费视频| 欧美性长视频在线观看| 老司机在亚洲福利影院| 久热这里只有精品99| 男人的好看免费观看在线视频 | 欧美精品高潮呻吟av久久| 久久99一区二区三区| 黄片播放在线免费| 国产精品影院久久| 精品福利永久在线观看| 久久ye,这里只有精品| 成人国产一区最新在线观看| 亚洲七黄色美女视频| 搡老乐熟女国产| 成人国产一区最新在线观看| 亚洲av欧美aⅴ国产| 激情在线观看视频在线高清 | 欧美人与性动交α欧美软件| 老司机午夜福利在线观看视频| 新久久久久国产一级毛片| 性少妇av在线| 国产深夜福利视频在线观看| 久久香蕉激情| 在线观看66精品国产| 国产亚洲欧美在线一区二区| 99香蕉大伊视频| 一本大道久久a久久精品| 午夜福利一区二区在线看| 无限看片的www在线观看| 乱人伦中国视频| 啦啦啦免费观看视频1| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| a在线观看视频网站| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 午夜福利一区二区在线看| 国产精品成人在线| av电影中文网址| 亚洲熟妇中文字幕五十中出 | 久久香蕉激情| 欧美日韩精品网址| 在线免费观看的www视频| 女人被狂操c到高潮| 国产免费男女视频| 深夜精品福利| 男女高潮啪啪啪动态图| 国产不卡一卡二| 欧美日韩视频精品一区| 亚洲午夜理论影院| 亚洲精品久久成人aⅴ小说| 久9热在线精品视频| 黑人巨大精品欧美一区二区mp4| 亚洲熟妇中文字幕五十中出 | 成年女人毛片免费观看观看9 | 欧美激情极品国产一区二区三区| 欧美精品av麻豆av| 日韩成人在线观看一区二区三区| 99香蕉大伊视频| 亚洲熟女毛片儿| 51午夜福利影视在线观看| 成人精品一区二区免费| 国产91精品成人一区二区三区| 女人精品久久久久毛片| 18禁观看日本| 欧美成狂野欧美在线观看| 水蜜桃什么品种好| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 亚洲欧美日韩高清在线视频| 日韩熟女老妇一区二区性免费视频| 欧美 亚洲 国产 日韩一| 在线观看午夜福利视频| 好男人电影高清在线观看| 三级毛片av免费| 国产一区有黄有色的免费视频| 在线播放国产精品三级| 一本一本久久a久久精品综合妖精| 国产aⅴ精品一区二区三区波| 国产亚洲欧美在线一区二区| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 激情视频va一区二区三区| 人人妻人人澡人人看| 欧美 日韩 精品 国产| 日韩大码丰满熟妇| 曰老女人黄片| 欧美日韩亚洲综合一区二区三区_| 一级毛片精品| 一级a爱片免费观看的视频| 操美女的视频在线观看| 99久久人妻综合| 精品熟女少妇八av免费久了| 欧美亚洲日本最大视频资源| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频 | 两性午夜刺激爽爽歪歪视频在线观看 | 久久青草综合色| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 国产精品98久久久久久宅男小说| 成年人免费黄色播放视频| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 国产亚洲欧美98| 自线自在国产av| 久久精品亚洲av国产电影网| 999久久久精品免费观看国产| 色婷婷av一区二区三区视频| 久久中文看片网| 亚洲欧美一区二区三区久久| 久久精品91无色码中文字幕| 一进一出抽搐gif免费好疼 | 免费日韩欧美在线观看| 欧美成狂野欧美在线观看| 身体一侧抽搐| 成年女人毛片免费观看观看9 | 欧美中文综合在线视频| 国产免费现黄频在线看| 国产精品98久久久久久宅男小说| 精品国产一区二区久久| 久久久精品免费免费高清| 国产成人免费无遮挡视频| 亚洲av熟女| 国产亚洲精品久久久久5区| 中文亚洲av片在线观看爽 | 久久精品国产亚洲av香蕉五月 | 天天添夜夜摸| 国产精品免费视频内射| 美女 人体艺术 gogo| 久久久精品免费免费高清| 9191精品国产免费久久| 这个男人来自地球电影免费观看| 精品亚洲成a人片在线观看| 国产精品一区二区在线不卡| 99精国产麻豆久久婷婷| 亚洲欧美激情在线| 国产97色在线日韩免费| 亚洲男人天堂网一区| 高清欧美精品videossex| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产一区二区精华液| 老汉色av国产亚洲站长工具| 午夜激情av网站| 国产精品秋霞免费鲁丝片| 精品国产美女av久久久久小说| 精品卡一卡二卡四卡免费| 久久久久国内视频| 男女午夜视频在线观看| 黄片播放在线免费| 亚洲人成77777在线视频| 老司机在亚洲福利影院| 操出白浆在线播放| 啦啦啦免费观看视频1| 99国产精品99久久久久| 亚洲人成电影观看| 中文字幕人妻丝袜制服| 建设人人有责人人尽责人人享有的| 在线av久久热| 一本一本久久a久久精品综合妖精| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 极品少妇高潮喷水抽搐| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 久久久国产成人精品二区 | 久久午夜亚洲精品久久| 亚洲欧美色中文字幕在线| 人妻丰满熟妇av一区二区三区 | 咕卡用的链子| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看|