• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme

    2018-03-13 09:27:57OlivierPIRONNEAU

    Olivier PIRONNEAU

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    Currently two methods dominate FSI(Fluid-Structure-Interaction)science:Arbitrary Lagrangian Eulerian(ALE for short)methods especially for thin structures(see[17,28])and immersed boundary methods(IBM for short)(see[11,29]),for which the mathematical analysis is more advanced(see[5])but the numerical implementations lag behind.ALE for large displacements have meshing difficulties(see[25])and to a lesser extent with the matching conditions at thefluid-solid interface(see[23]).Furthermore,iterative solvers for ALE-based FSI methods which rely on alternative solutions of thefluid and the structure parts are subject to the added mass effect and require special solvers(see[7,16]).

    Alternatives to ALE and IBM are few.One old method(see[2—3])has resurfaced recently,the so-called actualized Lagrangian methods for computing structures(see[22,26]),see also[10]although different from the present study because it deals mostly with membranes.

    Continuum mechanics does not distinguish between solids andfluids till it comes to the constitutive equations.This has been exploited numerically in several studies but most often in the context of ALE(see[21,24,32]).

    In the present study,which is a follow-up of[30]and[19],we investigate what Stephan Turek[21],Heil[20]and Wang[34]called a monolithic formulation but here in an Eulerian framework,as in[13—15,31],following the displaced geometry of the fluid and the solid.In[13],the authors obtained excellent results with the fully Eulerian formulation adopted here but at the cost of meshing difficulties to handle the Lagrangian derivatives.Here we advocate the Characteristic-Galerkin method and obtain an energy estimate,which is not a proof of stability but a prerequisite for it.

    2 Conservation Laws

    The following standard notations are used.For more details see one of textbooks:[1—2,9,27],or the following articles:[21,24].For clarity we use bold characters for vectors and tensors/matrices,with some exceptions,like x,x0∈Rd,d=2 or 3.

    We denote by trAand detAthe trace and determinant of A.To describe thefluid structure system we need the following:

    Finally and unless specified all spatial derivatives are with respect to x ∈ ?tand not with respect to x0∈ ?0.Let φ a function of x,t;as x=X(x0,t),x0∈ ?0,φ is also a function of x0and we have

    When X is one-to-one and invertible,d and F can be seen as functions of(x,t)instead of(x0,t).They are related by

    Time derivatives are related by(note the notation Dt)

    It is convenient to introduce(note the difference between Dtabove and D here):

    Conservation of momentum and conservation of mass take the same form for thefluid and the solid:

    So Jρ= ρ0at all times

    with continuity of u and of σ ·n at the fluid-structure interface Σ in absence of interface constraint like surface tension.There are also unwritten constraints pertaining to the realisability of the map X(see[9,27]).

    Figure 1 The geometry of the FLUSTRUK test(see[15]).The cylinder(in black)isfixed but the flag is a thick compressible Mooney-Rivlin material clamped to the cylinder by its left boundary;the outer rectangle isfilled with afluid which enters from the left Γinand leaves on the right Γout;the horizontal boundaries of the outer rectangle are walls,so they form together with the cylinder the boundary Γw.The flag is at time zero a rectangle of size l×h.The outer rectangle has size L×H.The center of the circle representing the cylinder is at(c,c)in a frame of reference which has the lower left corner at(0,0);the cylinder has radius r and isfixed.

    2.1 Constitutive equations

    We consider a bi-dimensional geometry.For the 3d case(see[8]).

    ?For a Newtonian incompressiblefluid:σf= ?pfI+μfDu,

    ? For an hyperelastic material:σs= ρs?FΨFT,

    where Ψ is the Helmholtz potential which,in the case of a St-Venant-Kirchhoff material,is(see[9])

    which implies that?FtrE2=2FE.Therefore

    which in turn implies that

    Remark 2.1Some authors have a different definition for the Lam′e coefficient λρs0→ λ,→ μ which define σs.

    Proposition 2.1Letγ=trFFT.Then

    and the following holds

    with

    ProofFirst note that if B=FFTthen

    Now by the Cayley-Hamilton theorem in 2-dimensions,B2?γB+J2I=0.As

    let C=I?B?1=Dd??d?Td.Then

    Therefore

    2.2 Variational monolithic Eulerian formulation

    From now on we limit our analysis to the case,constant.

    One must find(u,p)with u|Γ=0,d and,?f,solution for allwith=0 of

    For an existence result,up to time T?(see[6,12,33]),provided a regularization term is added to the formulation to insure that?td has H1-regularity;T?is such that the solid does not touch the boundary and Σtdoes not buckle.

    3 Numerical Scheme

    For the stability of the numerical scheme,the problem is that even for small displacements the Lam′e termsvariational formulation(2.8).

    But notice that

    So it makes sense to define

    To prepare the time discretisation of(2.8)with a given time step δt,let

    Then(2.8)becomes

    Here linear elasticity is visible because the zero order term of b isFrom now on we do not use d because the Characteristics-Galerkin discretisation of Dtd=u will give an analogue of(3.3).

    3.1 Discretisation of total derivatives

    Let ? ? Rd,(d=2 here),t∈ (0,T)and x ∈ ?.Then let(τ)be the solution at time τ of

    If u is Lipschitz in space and continuous in time the solution exists.The Characteristics-Galerkin method relies on the concept of total derivative:

    Given a time step δt,let us approximate

    Remark 3.1Note also that,as Jρ is convected by u,that is Jρ|χtu,x(τ),τ=Jρ|x,t,so a consistent approximation is

    Thus discretising the total derivative of u or the one of ρ0u will give the same scheme.

    3.2 Updating thefluid and solid domain

    From the definition of Y,notice that the only way to be consistent is to define ?n+1using un+1,i.e.,implicitly,since the later is defined also on ?n+1:

    3.3 The time discretised scheme

    Let

    3.4 Iterative solution byfixed point

    The most natural method to solve the above is to freeze some coefficients so as to obtain a well posed linear problem and iterate:

    is coercive.Then(3.7)gives a solution bounded in H1(?)and converging subsequences can be extracted fromisfixed.Then convergence would occur if we could prove thatconverges.

    3.5 Spatial discretisation withfinite elements

    3.6 Implementation

    The various tests we made lead us to recommend the following.

    ?Move the vertices of the triangles supporting the solid with their own velocity:

    which,as explained above has to be implemented through an iterative process.

    ?Remesh thefluid part at each iteration with a Delaunay-Voronoi mesh generator from the boundary vertices of Σn+1.However in a Eulerian formulation there is only one mesh,even if the triangles are marked to be fluid or structure.Hence the fluid boundary must be identified computationally,its oriented edges and vertices;these are then input to thefluid mesh generator as if it was the boundary of an independentfluid domain.Finally two new meshes are merged into a uniquefluid-structure mesh.

    ?In doing so,the discrete topological properties of the structural part are preserved and we have the important property that the value d[i]of d at vertex qiin the computer implementation of d by an array of values at the nodes,satisfies

    In other words,dn?Yn+1is dn[i]after moving the vertices by(3.9).

    4 Energy Estimate

    4.1 Stability of the scheme discretised in time

    To conserve energy we need to change the scheme(3.8)slightly,from

    4.2 Energy estimate for the fully discrete scheme

    The proof for the spatially continuous case will work for the discrete case if

    Figure 2 Sketch to understand if Xn=Yn+1?Xn+1holds with the P1?P1 stabilised element.A triangle in the reference domain(chosen here to be its initial position at time zero)becomes triangleat tnandat time tn+1:=Xn()and=Xn+1(),respectively.Vertices are preserved by these transformations.

    As discussed in[19]it may be possible to program an isoparametric P2?P1element for which(4.8)but it is certainly far from easy.On the other hand,consider the stabilised P1?P1element:Thefluid pressure and the solid pressure are continuous and piecewise linear on the triangulation.The inf-sup condition for stability does not hold unless the incompressibility condition in thefluid,?·u=0,is changed to?αΔp+?·u=0.In[4],for instance,more details are given explaining why α should be proportional to h2,in 2D,h being the local size of the mesh edges.It amounts to adding α?pn+1·?^p next to the term with μfin the variational formulations.Then(4.8)holds(see Figure 2)and the proof of the spatially continuous case can be adapted leading to(4.7)with an additional viscous term ∈|?pn+1|2next to the term withμf.

    Remark 4.1Because of energy preservation scheme(4.1),implemented via afixed point algorithm as in(3.7),generates bounded sequences ρ,u,qi;it seems safe to assess that out of these bounded subsequences will converge to a solution of the problem discretised in space but continuous in time when δt→ 0.

    5 Numerical Tests

    In our tests we have used the P2?P1element with 2 iterations for the nonlinear system at each time step.In most cases 3 iterations are unnecessary but one iteration is not enough.At each iteration the linear system is solved with the library MUMPS—implemented in FreeFem++(see[18])—and the condition number does not seem to be an issue,which is natural since the main contribution to the matrix is the mass matrix.Although mathematically better the stabilised P1?P1element with α =10?4did not perform better.For instance,on FLUSTRUKFSI-2?below,theflag touches,correctly,the bottom boundary at 0.41 when a mesh with 9568 vertices is used and does not converge with a mesh of 2511 vertices.

    We have also tested the effect of adding the term of order δt2to the nonlinear system:It made no visible differences.

    5.1 The cylinder-flag test

    A compressible hyperelastic Mooney-Rivlin material,shaped as a rectangle of size[0,l]×[0,h],is attached behind a cylinder of radius r and beats in tune with the Karman vortices of the wake behind the cylinder;thefluid in the computational rectangular domain[0,L]×[0,H]enters from the left and is free to leave on the right.The center of the cylinder is at(c,c)(see Figure 1).In[13]the following numerical values are suggested.

    Geometryl=0.35,h=0.02,L=2.5,H=0.41,c=0.2 which puts the cylinder slightly below the symmetry line.

    Fluiddensity ρf=103horizontal velocity u(0,y)=is a parabolic profile with flux UH.Top and bottom boundaries are walls with no-slip conditions.

    SolidE=2μ(1+ σ),σ =0.4,λ =

    Initial velocities and displacements are zero.In all cases the same mesh is used initially with 2511 vertices.The time step is 0.005.

    5.1.1 Free fall of a thickflag

    The gravity is g=9.81 in ?t.When U=0,μ =1.5106and ρs=20ρf,the flag falls under its own weight;it comes to touch the lower boundary with zero velocity at time 0.4 and then moves up under its spring effect.This test is named FLUSTRUK-FSI-2?in[13]but we have used a different value for μ because the one reported in[13]does not give the value used for the gravity.

    Figure 3 FLUSTRUK-FSI-2?(see[13]).Zoom near theflag at t=0.4 just as it begins to move up after the fall under its own weight in aflow initially at rest.Mesh and Pressure lines are shown in thefluid and velocity vectors in the solid.

    Figure 3 shows a zoom around theflag at the time when it has stopped to descend and started to move upward.Pressure lines are drawn in theflow region together with the mesh and the velocity vectors in theflag and drawn at each vertex.Figure 4 shows the coordinates of the upper right tip of theflag versus time.It shows also that mass is conserved because the integral in the solid of Jh is plotted.Finally to check the stability of the algorithm for high values of ρswe performed the same test but with ρs=2106and μs=2.5106(with 1.5 instead of 2.5 the flag touches the bottom boundary).Then we compared with ρs=2 for the same value ofμs.Results are shown in Figure 5.Stability is established and a high value of ρsaffects the frequency of the oscillations.

    Figure 4 FLUSTRUK-FSI-2?test of[13].Position of the upper right corner of theflag versus time:x vs t on the left and y vs t on the right.In addition on the right the mass multiplied by 20 is plotted at each time step.

    Figure 5 FLUSTRUK-FSI-2?: μs=2.5106;comparison between a small value of ρs=2(top curve),and a high value ρs=2106(lower curve).

    5.1.2 Flow past a cylinder with a thickflag attached

    This test is known as FLUSTRUK-FSI-3 in[13].The geometry is the same as above but now U=2,μ =2106and ρs= ρf.After some time a Karman-Vortex alley develops and theflag beats accordingly.Results are shown in Figures 6—7;the first one displays a snapshot of the velocity vector norms and the second the y-coordinate versus time of the top right corner of theflag.

    These numerical results compare reasonably well with those of[13].The frequency is 5s?1compared to 5.04 and the maximum amplitude 0.031 compared to 0.032.However the results are still somewhat sensitive to the time step size,the number of iterations in the nonlinear solver and the mesh size.An extensive convergence analysis needs to be made to assert that the precision of these simulations is better than 10%.

    Figure 6 FLUSTRUK-FSI-3 Test.Color map based on the norm of thefluid and solid velocity vectors.

    Figure 7 FLUSTRUK-FSI-3 Test.Vertical position of the upper right tip of theflag versus time shown up to t=5.

    6 Conclusion

    A fully Eulerianfluid-structure formulation has been presented for compressible materials with large displacements,discretised by an implicitfirst order Euler Scheme and the P2?P1or stabilised P1?P1elements.An energy estimate has been obtained which guarantees the stability of the scheme so long as the motion of the vertices does notflip-over a triangle.The method has been implemented with FreeFem++(see[18]).It is reasonably robust when the vertices in the structure are moved by their velocities and thefluid is remeshed with an automatic Delaunay mesh generator.The method isfirst order in time and therefore somewhat too diffusive for delicate tests.It is being extended to 3D and to second order in time discretisation.

    7 Appendix

    7.1 The Freefem++Script

    We include this script for readers wishing to try the program.First download and install FreeFEM++and then run this program.

    AcknowledgementThe author thanks Fr′ed′eric Hecht for very valuable discussions and comments.

    [1]Antman,S.S.,Nonlinear Problems of Elasticity,(2nd ed.),Applied Mathematical Sciences,107,Springer-Verlag,New York,2005.

    [2]Bathe,K.J.,Finite Element Procedures,Prentice-Hall,Englewood Cliffs,NJ,1996.

    [3]Bathe,K.J.,Ramm,E.and Wilson,E.L.,Finite element formulations for large deformation dynamic analysis,Int.J.Numer.Methods Eng.,9(2),1975,353–386.

    [4]Boffi,D.,Brezzi,F.and Fortin,M.,Mixed Finite Element Methods and Applications,Computational Mathematics,Heidelberg,44,Springer-Verlag,Berlin,2013.

    [5]Boffi,D.,Cavallini,N.and Gastaldi,L.,The finite element immersed boundary method with distributed Lagrange multiplier,SIAM J.Numer.Anal.,53(6),2015,2584–2604.

    [6]Boulakia,M.,Existence of weak solutions for the motion of an elastic structure in an incompressible viscousfluid,C.R.Math.Acad.Sci.Paris,336(12),2003,985–990.

    [7]Bukaca,M.,Canic,S.,Glowinski,R.,et al.,Fluid-structure interaction in bloodflow capturing non-zero longitudinal structure displacement,Journal of Computational Physics,235,2013,515–541.

    [8]Chiang,C.-Y.,Pironneau,O.,Sheu,T.and Thiriet,M.,Numerical study of a 3D Eulerian monolithic formulation forfluid-structure-interaction,Fluids,2017.

    [9]Ciarlet,P.G.,Mathematical Elasticity,I.,Three-dimensional Elasticity,North Holland,Amsterdam,1988.

    [10]Cottet,G.H.,Maitre,E.and Milcent,T.,Eulerian formulation and level set models for incompressiblefluid-structure interaction,M2AN Math.Model.Numer.Anal.,42(3),2008,471–492.

    [11]Coupez,T.,Silva,L.and Hachem,E.,Implicit Boundary and Adaptive Anisotropic Meshes,New challenges in Grid Generation and Adaptivity for Scientific Computing,S.Peretto and L.Formaggia(eds.),5,Springer-Verlag,Cham,2015.

    [12]Coutand,D.and Shkoller,S.,Motion of an elastic solid inside an incompressible viscousfluid,Arch.Ration.Mech.Anal.,176(1),2005,25–102.

    [13]Dunne,T.,Adaptive finite element approximation offluid-structure interaction based on an Eulerian variational formulation,ECCOMAS CFD,2006,Wesseling,P.,O?nate,E.and P′eriaux,J.(eds.),Elsevier,TU Delft,The Netherlands,2006.

    [14]Dunne,T.,An Eulerian approach tofluid-structure interaction and goal-oriented mesh adaptation,Int.J.Numer.Meth.Fluids,51,2006,1017–1039.

    [15]Dunne,Th.and Rannacher,R.Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation,Fluid-Structure Interaction:Modelling,Simulation,Optimization,Bungartz,H-J.and Schaefer,M.(eds.),Lecture Notes in Computational Science and Engineering,53,Springer-Verlag,Berlin,2006,110–146.

    [16]Fernandez,M.A.,Mullaert,J.and Vidrascu,M.,Explicit Robin-Neumann schemes for the coupling of incompressiblefluids with thin-walled structures,Comp.Methods in Applied Mech.and Engg.,267,2013,566–593.

    [17]Formaggia,L.,Quarteroni,A.and Veneziani,A.,Alessandro Multiscale Models of the Vascular System,Cardiovasuclar Mathematics,Springer-Verlag,Italia,Milan,2009,395–446.

    [18]Hecht,F.,New development in FreeFem++,J.Numer.Math.,20,2012,251–265,http://www.FreeFem.org.

    [19]Hecht,F.and Pironneau,O.,An energy stable monolithic Eulerian fluid-structurefinite element method,International Journal for Numerical Methods in Fluids,85(7),2017,430–446.

    [20]Change Heil,Matthias to Heil,M.,Solvers for large-displacementfluid structure interaction problems:Segregated versus monolithic approaches,Comput.Mech.,43,2008,91–101.

    [21]Hron,J.and Turek,S.,A monolithic fem solver for an ALE formulation offluid-structure interaction with configuration for numerical benchmarking,European Conference on Computational Fluid Dynamics ECCOMAS CFD,2006,Wesseling,P.,Onate,E.and Periaux,J.(eds.),TU Delft,The Netherlands,2006.

    [22]L′eger,S.,M′ethodelagrangienne actualis′ee pour desprobl`emes hyper′elastiquesen tr`es grandes d′eformations,Th`ese de Doctorat,Universit′e Laval,2014(in France).

    [23]Le Tallec,P.and Hauret,P.,Energy conservation in Fluid-Structure Interactions,Numerical Methods for Scientific Computing,Variational Problems And Applications,Neittanmaki,P.,Kuznetsov,Y.and Pironneau,O.(eds.),CIMNE,Barcelona,2003.

    [24]Le Tallec,P.and Mouro,J.,Fluid structure interaction with large structural displacements,Comp.Meth.Appl.Mech.Eng.,190(24–25),2001,3039–3068.

    [25]Liu,J.,A second-order changing-connectivity ALE scheme and its application to FSI with large convection offluids and near-contact of structures,Journal of Computational Physics,304,2016,380–423.

    [26]Liu,I-Shih,Cipolatti,R.and Rincon,M.A.,Incremental Linear Approximation for Finite Elasticity,Proc.ICNAAM,Wiley,2006.

    [27]Marsden,J.and Hughes,T.J.R.,Mathematical Foundations of Elasticity,Dover Publications,New York,1994.

    [28]Nobile,F.and Vergara,C.,An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions,SIAM J.Sci.Comp.,30(2),2008,731–763.

    [29]Peskin,C.S.,The immersed boundary method,Acta Numerica,11,2002,479–517.

    [30]Pironneau,O.,Numerical Study of a Monolithic Fluid-Structure Formulation,Variational Analysis and Aerospace Engineering,116,Springer-Verlag,Cham,2016.

    [31]Rannacher,R.and Richter,T.,An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation,Lecture Notes in Computational Science and Engineering,73,Springer-Verlag,Heidelberg,2010.

    [32]Raymond,J.-P.and Vanninathan,M.,Afluid-structure model coupling the Navier-Stokes equations and the Lam′e system,J.Math.Pures Appl.,102,2014,546–596.

    [33]Richter,Th.and Wick,Th.,Finite elements forfluid-structure interaction in ALE and fully Eulerian coordinates,Comput.Methods Appl.Mech.Engrg.,199,2010,2633–2642.

    [34]Wang,Y.X.,The Accurate and Efficient Numerical Simulation of General Fluid Structure Interaction:A Unified Finite Element Method,Proc.Conf.on FSI problems,IMS-NUS,Singapore,2016.

    九九在线视频观看精品| 免费av不卡在线播放| 成人一区二区视频在线观看| 亚洲av成人精品一区久久| 国产av一区在线观看免费| 日韩欧美国产在线观看| 国产精品一区二区免费欧美| 国产色爽女视频免费观看| 久久精品国产亚洲av涩爱 | 精品福利观看| 国内揄拍国产精品人妻在线| 最近最新免费中文字幕在线| av黄色大香蕉| 网址你懂的国产日韩在线| 成人三级黄色视频| 超碰av人人做人人爽久久| 麻豆精品久久久久久蜜桃| av专区在线播放| 午夜福利在线观看免费完整高清在 | 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品综合一区在线观看| 日韩欧美国产一区二区入口| 精品午夜福利在线看| 我要看日韩黄色一级片| 欧美中文日本在线观看视频| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 免费人成视频x8x8入口观看| 午夜久久久久精精品| 波野结衣二区三区在线| 日日撸夜夜添| 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| 免费av毛片视频| 免费搜索国产男女视频| 精品99又大又爽又粗少妇毛片 | 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片 | 男人和女人高潮做爰伦理| 九色国产91popny在线| 老司机深夜福利视频在线观看| 日本与韩国留学比较| 国产一区二区三区在线臀色熟女| 久久久国产成人精品二区| 中文资源天堂在线| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 看免费成人av毛片| 日韩欧美一区二区三区在线观看| 一个人观看的视频www高清免费观看| 久久草成人影院| 国产精品99久久久久久久久| eeuss影院久久| 日本爱情动作片www.在线观看 | 成人高潮视频无遮挡免费网站| 国产 一区精品| 校园人妻丝袜中文字幕| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 天堂√8在线中文| 国产精品嫩草影院av在线观看 | 精品一区二区免费观看| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 婷婷色综合大香蕉| 99国产精品一区二区蜜桃av| 色播亚洲综合网| 大型黄色视频在线免费观看| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 一进一出抽搐gif免费好疼| 两性午夜刺激爽爽歪歪视频在线观看| 99精品在免费线老司机午夜| 欧美最黄视频在线播放免费| a级一级毛片免费在线观看| 亚洲无线观看免费| 日日摸夜夜添夜夜添av毛片 | 人人妻,人人澡人人爽秒播| 少妇丰满av| 女人十人毛片免费观看3o分钟| 精品日产1卡2卡| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 免费搜索国产男女视频| 大又大粗又爽又黄少妇毛片口| 色哟哟哟哟哟哟| 有码 亚洲区| 少妇人妻精品综合一区二区 | 久久久色成人| 中国美白少妇内射xxxbb| 亚洲乱码一区二区免费版| 乱人视频在线观看| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看| 国产私拍福利视频在线观看| 一进一出抽搐动态| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 免费av不卡在线播放| 久久中文看片网| 亚洲四区av| 精品国内亚洲2022精品成人| 无遮挡黄片免费观看| 免费大片18禁| 尤物成人国产欧美一区二区三区| 亚洲精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 麻豆成人av在线观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 悠悠久久av| 嫩草影院精品99| 一级av片app| 国产毛片a区久久久久| 精品人妻偷拍中文字幕| 日日撸夜夜添| 亚洲av一区综合| 久久久久九九精品影院| 色视频www国产| 99热这里只有是精品50| 老司机深夜福利视频在线观看| 午夜福利高清视频| 九九久久精品国产亚洲av麻豆| a级毛片a级免费在线| 久久久久九九精品影院| 精品日产1卡2卡| 午夜免费男女啪啪视频观看 | 日韩欧美国产一区二区入口| 深夜精品福利| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 悠悠久久av| 国产91精品成人一区二区三区| 成人特级av手机在线观看| 男女视频在线观看网站免费| 麻豆精品久久久久久蜜桃| 五月玫瑰六月丁香| 国产黄色小视频在线观看| 乱系列少妇在线播放| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 久久久久久大精品| 成年人黄色毛片网站| 欧美极品一区二区三区四区| netflix在线观看网站| 午夜福利在线观看免费完整高清在 | 一夜夜www| 一进一出抽搐动态| 久久精品国产亚洲av天美| 国产成人一区二区在线| 在线观看av片永久免费下载| 美女黄网站色视频| 色播亚洲综合网| 国产69精品久久久久777片| 精品久久久噜噜| 一个人看的www免费观看视频| 人人妻人人澡欧美一区二区| 国产成人福利小说| 国内精品宾馆在线| 国产高清三级在线| 九九在线视频观看精品| 亚洲美女视频黄频| 99九九线精品视频在线观看视频| 最近在线观看免费完整版| 99久久成人亚洲精品观看| 亚洲色图av天堂| 成人国产麻豆网| 欧美激情在线99| 国产亚洲欧美98| 国产精品电影一区二区三区| 在线观看免费视频日本深夜| 国产一区二区三区av在线 | 国产老妇女一区| 国产一区二区在线观看日韩| 中文字幕熟女人妻在线| 午夜精品久久久久久毛片777| 乱码一卡2卡4卡精品| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 91精品国产九色| 欧美人与善性xxx| 亚洲精品亚洲一区二区| 久久精品综合一区二区三区| 18禁黄网站禁片午夜丰满| 精品欧美国产一区二区三| 日日撸夜夜添| 男插女下体视频免费在线播放| 直男gayav资源| 精品一区二区三区视频在线观看免费| 亚州av有码| 亚洲av熟女| 99久国产av精品| 免费看光身美女| 欧美日韩精品成人综合77777| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 午夜免费男女啪啪视频观看 | 日本黄大片高清| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看 | 日韩一本色道免费dvd| 天堂√8在线中文| 精品人妻熟女av久视频| 久久久久久久亚洲中文字幕| 国产精品亚洲一级av第二区| 婷婷六月久久综合丁香| 亚洲七黄色美女视频| 色av中文字幕| 欧美日韩瑟瑟在线播放| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 看黄色毛片网站| 在线观看av片永久免费下载| 久久久久久国产a免费观看| 国产精品美女特级片免费视频播放器| 联通29元200g的流量卡| 国内精品美女久久久久久| 美女黄网站色视频| 免费观看的影片在线观看| 真实男女啪啪啪动态图| 久久香蕉精品热| 久久久久久久久久黄片| 亚洲精品久久国产高清桃花| 一卡2卡三卡四卡精品乱码亚洲| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av在线| 亚洲精品国产成人久久av| 国内精品久久久久久久电影| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 欧美一区二区国产精品久久精品| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 亚洲av美国av| 精品一区二区三区视频在线| 免费观看精品视频网站| 国产一级毛片七仙女欲春2| 欧美精品国产亚洲| 成年人黄色毛片网站| 久久人妻av系列| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 欧美日韩瑟瑟在线播放| 久久精品国产自在天天线| h日本视频在线播放| av国产免费在线观看| 一夜夜www| 亚洲欧美精品综合久久99| 不卡视频在线观看欧美| 18禁黄网站禁片免费观看直播| 69人妻影院| 久久99热6这里只有精品| 亚洲国产欧美人成| 欧美成人a在线观看| 成人二区视频| 欧美日本视频| 精品人妻1区二区| 久久久久久国产a免费观看| 真人一进一出gif抽搐免费| 国产在视频线在精品| 国产精品98久久久久久宅男小说| 少妇被粗大猛烈的视频| 免费观看人在逋| 精品日产1卡2卡| 一个人看的www免费观看视频| 少妇高潮的动态图| 在线播放无遮挡| ponron亚洲| 亚洲av成人av| 一边摸一边抽搐一进一小说| 欧美bdsm另类| 精品久久久久久久久亚洲 | 非洲黑人性xxxx精品又粗又长| 国产精品野战在线观看| 国产一级毛片七仙女欲春2| 国产91精品成人一区二区三区| 日本 欧美在线| 黄色丝袜av网址大全| 亚洲电影在线观看av| 天堂动漫精品| 国产精品一区www在线观看 | 亚洲熟妇中文字幕五十中出| 好男人在线观看高清免费视频| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 深夜精品福利| 无人区码免费观看不卡| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 人妻久久中文字幕网| 亚洲专区国产一区二区| 我要看日韩黄色一级片| 十八禁国产超污无遮挡网站| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 99热精品在线国产| 色在线成人网| av视频在线观看入口| 国产aⅴ精品一区二区三区波| 国产免费一级a男人的天堂| 国产一区二区激情短视频| 男人狂女人下面高潮的视频| 亚洲av五月六月丁香网| 免费不卡的大黄色大毛片视频在线观看 | 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 一级毛片久久久久久久久女| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 三级男女做爰猛烈吃奶摸视频| 日日夜夜操网爽| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 日韩中文字幕欧美一区二区| 狂野欧美激情性xxxx在线观看| 久久久国产成人精品二区| 又紧又爽又黄一区二区| 欧美精品国产亚洲| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 波多野结衣高清作品| 精品无人区乱码1区二区| 国内精品一区二区在线观看| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 少妇熟女aⅴ在线视频| 波多野结衣高清作品| 日本黄色片子视频| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 国产视频内射| 成年版毛片免费区| 五月玫瑰六月丁香| 97超级碰碰碰精品色视频在线观看| 色综合色国产| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 久久人妻av系列| 村上凉子中文字幕在线| 一区二区三区免费毛片| 真人做人爱边吃奶动态| 日本 av在线| 中文字幕精品亚洲无线码一区| 成年版毛片免费区| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 91久久精品电影网| 69人妻影院| 99久久精品一区二区三区| 成人国产麻豆网| 午夜激情福利司机影院| h日本视频在线播放| 综合色av麻豆| 直男gayav资源| 亚洲成人久久性| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 国产免费男女视频| av在线观看视频网站免费| 最近最新免费中文字幕在线| 少妇的逼水好多| 丰满的人妻完整版| 99精品久久久久人妻精品| 成年版毛片免费区| 狂野欧美激情性xxxx在线观看| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 午夜精品久久久久久毛片777| 白带黄色成豆腐渣| 亚洲无线在线观看| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 伦理电影大哥的女人| 狂野欧美激情性xxxx在线观看| 久久人妻av系列| 搡老岳熟女国产| 最近在线观看免费完整版| 国产精品乱码一区二三区的特点| АⅤ资源中文在线天堂| 色av中文字幕| 亚洲精品在线观看二区| 久久九九热精品免费| 日本熟妇午夜| 久久久久久国产a免费观看| 日本在线视频免费播放| 欧美日本亚洲视频在线播放| 毛片女人毛片| 免费无遮挡裸体视频| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆| 久99久视频精品免费| 免费无遮挡裸体视频| 久久久精品欧美日韩精品| 国产成人a区在线观看| 黄片wwwwww| 在线免费观看不下载黄p国产 | 亚洲欧美日韩卡通动漫| 人人妻人人看人人澡| 国产私拍福利视频在线观看| 91精品国产九色| 久久精品人妻少妇| 最后的刺客免费高清国语| 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 国产视频内射| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久av| 九九爱精品视频在线观看| 国产高清视频在线播放一区| 欧美成人a在线观看| 国产伦在线观看视频一区| 九色成人免费人妻av| 99久国产av精品| 国产毛片a区久久久久| 91久久精品国产一区二区三区| 免费观看的影片在线观看| 日日夜夜操网爽| 国产精品一及| 久久草成人影院| 久久欧美精品欧美久久欧美| 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 最近中文字幕高清免费大全6 | 日韩欧美国产一区二区入口| 在现免费观看毛片| 成人国产综合亚洲| 免费观看人在逋| 亚洲精华国产精华液的使用体验 | 伦理电影大哥的女人| 我要搜黄色片| 中文字幕av在线有码专区| 国产成人福利小说| 国产精品一区二区免费欧美| 九九久久精品国产亚洲av麻豆| 老司机午夜福利在线观看视频| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 国产免费男女视频| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 国产精品,欧美在线| 极品教师在线视频| av中文乱码字幕在线| 99精品久久久久人妻精品| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 看十八女毛片水多多多| а√天堂www在线а√下载| 中文资源天堂在线| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 免费高清视频大片| 国产高清三级在线| 国产精品,欧美在线| 99久久成人亚洲精品观看| avwww免费| 亚洲男人的天堂狠狠| 欧美bdsm另类| 91精品国产九色| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 很黄的视频免费| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 欧美日韩黄片免| 午夜免费激情av| 国产高清不卡午夜福利| 99国产精品一区二区蜜桃av| 看免费成人av毛片| а√天堂www在线а√下载| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久av| 联通29元200g的流量卡| 国产黄a三级三级三级人| 日本一本二区三区精品| 88av欧美| 国内精品久久久久精免费| 国产男人的电影天堂91| 亚洲在线观看片| 五月玫瑰六月丁香| 99热精品在线国产| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 免费在线观看日本一区| 国产黄a三级三级三级人| 国产激情偷乱视频一区二区| 精品久久久久久久久av| 日韩一区二区视频免费看| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 黄色视频,在线免费观看| 尾随美女入室| 国产伦人伦偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 国内精品一区二区在线观看| 久久亚洲真实| 精品不卡国产一区二区三区| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 免费观看的影片在线观看| 身体一侧抽搐| 简卡轻食公司| 日韩欧美国产一区二区入口| 成年免费大片在线观看| 中文字幕av成人在线电影| 国产中年淑女户外野战色| 国产精品福利在线免费观看| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 久久人妻av系列| 国产精品一区二区三区四区久久| 日韩一区二区视频免费看| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 男女视频在线观看网站免费| 中文亚洲av片在线观看爽| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 国内精品久久久久久久电影| 精品人妻视频免费看| 蜜桃久久精品国产亚洲av| 国产高清激情床上av| 九色国产91popny在线| 天堂√8在线中文| 18+在线观看网站| 搡老妇女老女人老熟妇| 国产精品一区二区三区四区免费观看 | 亚洲精品亚洲一区二区| 在线看三级毛片| 婷婷色综合大香蕉| 久久精品国产鲁丝片午夜精品 | 国产在视频线在精品| 国产精品一区二区三区四区久久| 日日摸夜夜添夜夜添小说| 国产精品女同一区二区软件 | 欧美激情在线99| 熟女电影av网| 熟女人妻精品中文字幕| 精品人妻1区二区| 老司机福利观看| 国产91精品成人一区二区三区| 欧美最黄视频在线播放免费| 国产精品自产拍在线观看55亚洲| 日本熟妇午夜| 午夜福利在线观看吧| 亚洲成人久久性| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美| 久久精品影院6| 中文资源天堂在线| 免费观看人在逋| 又紧又爽又黄一区二区| av女优亚洲男人天堂| 国产三级在线视频| 亚洲不卡免费看| 床上黄色一级片| 亚洲精华国产精华液的使用体验 | 国产爱豆传媒在线观看| 国产69精品久久久久777片| 国产精品av视频在线免费观看| 亚洲欧美日韩高清在线视频| 黄色视频,在线免费观看| 国产白丝娇喘喷水9色精品|