• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bingham Flows in Periodic Domains of Infinite Length

    2018-03-13 09:27:50PatriziaDONATOSorinMARDAREBogdanVERNESCU

    Patrizia DONATOSorin MARDAREBogdan VERNESCU

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    The Bingham fluid model has been proposed by Bingham[2]in 1916 to model plasticflows.Bingham fluids behave at high stresses like a Newtonian fluid,however at low stresses they do not deform.In other words,the shear rate depends linearly on the shear stress only past a certain value of the shear stress,called yield stress;below the yield stress there is no shear.More precisely,the stress tensor σ is given by σ = ?pI+ τ,with

    where u is the velocity,g is the yield stress and the shear rate tensor D is defined by Dij=Thus theflow region of a Bingham fluid can have zones under stress but with no deformation,where the fluid behaves like a rigid body.Thus the actualflow region is unknown and in some sense the problem is a“free boundary”problem that leads to a variational inequality formulation(see[5,10]).

    The Bingham model has been successfully used for describing non-Newtonianflows like the flow of drilling mud,lava and paint,flow of avalanches and landslides(see[8,11]),bloodflow in arteries(see[16]),metal deformation for various metal processing techniques like wire drawing(see[6—7,12]),magneto-rheological or electro-rheologicalfluids(see[13—14,17]).More complicated models for such non-Newtonianflows account for shear-thinning or shear-thickening phenomena.For a mechanical and mathematical presentation of non-Newtonianfluids we refer to the recent comprehensive book[5].

    In this paper we extend,to the case of Binghamfluids,the results previously obtained by Chipot and Mardare[3]who studied the asymptotics of the Stokesflow in a cylindrical domain that becomes unbounded in one direction.

    In Section 2 we introduce the main notations and the variational inequality for theflow of a Bingham fluid in a pipe offinite length 2?,that admits(see[5,10])a solution(u?,p?),the velocity u?being unique.What we are interested in is the behavior of u?as ? goes to infinity.

    The main results are stated in Section 3.Theorem 3.1 states the convergence of the solution u?in a periodic domain of length 2?,to the solution u∞in the infinite periodic domain,in the strong H1-norm;here we also state that the error has a polynomial decay.We should note that the same type of error in the Stokes case(see[3])was shown to have an exponential decay.In addition,we also formulate Theorem 3.2 that states that any weak-L2/R limit point of the family(p?)?>0is a pressure p∞corresponding to the Bingham problem in the infinite pipe.We note that the polynomial decay is an important result in itself:For computational purposes in large arrays of cylindrical pipes(as in models of bloodflow in arteries and small vessels),one can assume a Poiseuille type offlow away from the bifurcations;thus one needs to be able to estimate the error made by approximating with the Poiseuilleflow away from the bifurcations.For the sake of simplicity,we consider homogeneous Dirichlet boundary conditions on the whole boundary of the periodic domain.However,the results remain valid if we consider non-homogeneous Dirichlet boundary conditions(see Remark 2.1 in Section 2 for more details).This allows to consider cases offlows with non-zero flux,which is important from the point of view offluid mechanics.In fact,what is important here is that we have Dirichlet boundary conditions on the lateral boundary of the domain,hence we can even consider other types of boundary conditions on the two ends of the pipe.

    Section 4 is dedicated to some useful lemmas.In particular,in Lemma 4.1,we prove an arithmetic inequality necessarily satisfied by the first term of a finite increasing sequence of positive real numbers,that satisfies a recursive inequality;this particular recursive inequality is related to the Bingham constitutive equation and the result is essential in the proof of Theorem 3.1.As a consequence of this lemma,we derive Corollary 4.1 that is used to obtain the uniqueness of the velocity for the limit problem.We should note here that this corollary can have a direct proof,independent of Lemma 4.1;however,for convenience,we choose here not to show the direct proof.

    In Section 5 wefirst prove in Theorem 5.1 a Cauchy-type condition for the sequence of solutions u?,that uses in an essential way the result from Lemma 4.1.Next we provide the proofs for the main theorems stated in Section 3.The existence and uniqueness of the solution u∞to the Bingham problem in the infinite periodic domain is a new result,which is not obvious,and is contained in the proof of Theorems 3.1;in particular the function u∞is constructed piecewise and the problem it satisfies is then identified.

    2 The Setting

    Let N ≥ 2 and denote by(e1,···,eN)the canonical basis of RN.For x ∈ RN,we denote x=(x1,x′)with x1∈ R and x′∈ RN?1.If x,y ∈ Rk,then x ·y denotes the usual scalar product in Rk.For a measurable subset A of Rk,we denote by|A|its k-dimensional Lebesgue measure.

    Throughout this paper,we use the following notations:

    (1)Q is a bounded domain contained in(0,1)×RN?1with a Lipschitz continuous boundary,

    (2)?∞=

    (3) ??= ?∞∩{|x1|< ?},for any nonnegative real number ?.

    Figure 1 The domain ??.

    Throughout this paper,we denote by D(v)the symmetric part of the velocity gradient?v,given by

    for every vectorfield v=(v1,···,vN).

    Let us introduce the following problem

    where

    and where

    andμand g are positive constants,representing the dynamic viscosity and respectively the yield stress.

    Remark 2.1For simplifying the presentation of the paper,we have only considered homogeneous Dirichlet boundary conditions on ???.However,it is easily seen from the proofs in Section 5 that the main results remain valid if one has non-homogeneous Dirichlet boundary conditions.Indeed,what is important in the proof of Theorem 5.1(see Section 5)is that

    and

    This remain valid if the boundary condition in(2.2)is replaced by u?=h on ???,where h belongs toand satisfies divh=0 in ?∞,and

    In particular,if h=0 on??∞,we end up with the following situation which is interesting from the point of view offluid mechanics:u?vanishes on the lateral boundary ???{|x1|= ?},but not necessarily on the two ends???∩{x1= ??}and ???∩{x1= ?},and there exists a constant F(theflux),not necessarily zero,such that

    (see Remark 2.2).

    Problem(2.2)models the flow of a Bingham fluid in the bounded domain ??.We are interested in its asymptotic behavior as ? goes to infinity.

    Before giving the variational formulation of(2.2)let us introduce some functional spaces,which will be used throughout the paper.

    For any open set O of RN,we set

    We suppose that the body forces satisfy

    Following[10],for every ?> 0 we associate to problem(2.2)the variational inequality below:

    where “·” denotes the usual scalar product of matrices,given by

    It is known that this problem admits a unique solution u?.

    In the sequel we write the variational formulation(2.6)under the following equivalent form,obtained by replacing v by u??v:

    Remark 2.2Let v=(v1,···,vN) ∈(??)for some ?> 0.Then,applying the Green formula on the set ??∩?(t,?)× RN?1)for any t∈ (??,?),we have

    3 Statement of the Main Results

    The main result of this paper can be stated as follows.

    Theorem 3.1For any?> 0,letu?be the solution of problem(2.7).Assume that for some constantsc0≥ 0andb∈ Rthe functionfsatisfies

    Then

    the limitu∞being the unique solution of the following problem:

    Moreover,for everyα ∈?0,),there exist two constantsc ≥ 0depending only onαandL0> 0independent of?(but depending onμ,g,Q,α,bandc0),such that

    Theorem 3.1 will be proved in Section 5 and needs some preliminary tools,given in the next section.

    Remark 3.1(1)The existence and uniqueness of the solution u∞to problem(3.3)in the infinite periodic domain ?∞is a new result which is not obvious.It is contained in the proof of Theorem 3.1 as a byproduct of the method used therein to prove the convergence of u?.

    (2)By comparing with the case of the Stokes system treated in[3],we see that in Theorem 3.1 we obtain a much lower rate of convergence for the solution to the Bingham problem in the periodic domain ??:We recall that in[3]it was proved that the solution u?to the Stokes problem in ??converges exponentially to its limit u∞,which is the solution to a Stokes problem in the infinite domain ?∞,i.e.,

    for some positive constant α.

    We can trace the origin of this difference in the proof of Theorem 5.1,more precisely in the non-homogeneity of inequality(5.10).As expected,this non-homogeneity is induced by the supplementary nonlinear term appearing in the variational inequality(2.7)associated to the Bingham equation:Note that in(2.7)the case g=0 corresponds to the variational equation associated to the Stokes problem.

    (3)As an immediate consequence of the uniqueness of the solution to problem(3.3),we can prove that if f is 1-periodic in the x1-direction,then the velocity u∞has the same property.Hence,as for the Stokes problem(see[3]),the periodicity of the data implies the periodicity of the velocity corresponding to the problem in the infinite pipe.

    We turn now our attention to the pressure associated to problem(2.7).

    It is known that there exists p?∈ L2(??)such that the pair(u?,p?)is a solution of the following variational problem:

    Remark 3.2Unlike the pressure in the Stokes problem,the pressure p?corresponding to the Bingham problem(3.5)is not unique up to an additive constant.For ins tance,if f=0,then any pair(u?,p?)with u?=0 and p?∈ L∞(??)such thatis a solution to problem(3.5).

    Nevertheless,we can show the following result.

    Theorem 3.2For any?> 0,let(u?,p?)be a solution of problem(3.5).Under the assumptions of Theorem3.1,for anya > 0,there exists a constantCindependent of?suchthat

    Moreover,if{?n}is a sequence which tends to+∞and such that

    for somethen the pair(u∞,p∞)satisfies the following variational limit prob-lem:

    Remark 3.3The convergence in(3.7)means that for any a > 0,by considering p?nand p∞as elements of L2(?a)/R,we can find representativesin L2(?a).

    4 A Main Tool

    In this section we prove an arithmetic inequality,which plays an important role in the proof of Theorem 3.1 and seems to be interesting by itself.We also prove a useful consequence(see Corollary 4.1).

    This gives

    Let us now choose m11.Then if m ≥ m1from(4.4)—(4.5)we derive

    which is equivalent to

    Starting from k=0,by iteration we deduce that

    Let us consider now the sequence{bm}m∈Ndefined by

    which contradicts(4.3)and ends the proof.

    The following corollary will be used when studying the uniqueness of the limit problem.

    Corollary 4.1Let{αk}k∈Nbe a nonnegative,non-decreasing sequence satisfying

    for some constantsC,C0,λ ≥ 0.Then

    ProofLet k0∈N befixed and set ak=αk0+k.

    For every m∈N such that m≥ k0,thanks to(4.7)(i)we have

    which shows that(4.1)(i)is satisfied for{a0,···,am2},with h=2,Clearly(4.7)(ii)implies(4.1)(ii),so that from Lemma 4.1 we have

    where m0=m0(C,2λC0,2λ,2)=m0(C,C0,λ)is the one given by Lemma 4.1.

    Hence,ak0=0,which implies(4.8),since k0is arbitrary in N.

    5 Proof of the Main Results

    This section is devoted to the proof of our main results,Theorems 3.1—3.2.For Theorem 3.1,the most difficult part consists in proving the existence of a limit for u?in H1???0)for anyfixed ?0.We follow the ideas of[4]and[3]which need some important modifications due to the non-linearity of the problem.

    Wefirst prove a Cauchy condition for u?in the following theorem,which also provides some accurate estimates.

    Theorem 5.1For any?> 0,letu?be the solution of problem(2.7).

    Under the assumptions of Theorem3.1,there exists a constantC1>0,depending only onc0,μandQ,such that

    Moreover,for anyα ∈?0,),there existsL0> 0independent of?ands(but depending onμ,g,Q,α,bandc0)such that the following Cauchy condition holds:

    wherec≥ 0is a constant depending only onα.

    ProofTaking u?as test function in the variational inequality(2.7),we have

    where c(Q)is the Poincar′e constant in ??,which can be chosen depending only on Q(and independent of ?).Estimate(5.1)follows then from assumption(3.1)on f.

    From now on,the real numbers s and ? are such that s > ?> 0.

    In order to prove the Cauchy condition(5.2),let usfirst note that for any s> ?> 0,the difference u?? ussatisfies the following variational inequality:

    Indeed,it suffices(for a fixed v ∈(??))to take v as test function in the variational inequality(2.7)satisfied by u?,then take ?v in the variational inequality satisfied by usand to sum up the two inequalities.Note that us=us+v in ?shence|D(us)|=|D(us+v)|in ?s

    Following[3]and[9],we build a good test function for the variational inequality(5.4).

    First we remark that div(u??us)=0,but u??us= ?us/=0 on ???∩{|x1|= ?}.In order to obtain a function in(??),we multiply u?? usby the cut-off function in the variable x1,ρ :R → R whose graph is depicted below,for ?1∈ N?,?1≤ ?? 1.

    Figure 2 The function ρ.

    Then we have

    and therefore,the divergence of ρ(u?? us)may not vanish on ??1+1 ??1.Thus,for any ?1∈ N?,we set

    and

    and notice that D?1is the union of the disjoint connected setswhich are both translated sets of the same set Q.

    Moreover,thanks to Remark 2.2 and the definition ofwe have the following equality:

    In the same manner,we obtain

    Using a classical result(see for instance[1,15]),this allows us to construct a function β∈such that

    More specifically,we construct the function β separately on each connected component of D?1,i.e.,onOr these domains are both translated sets of Q.Since the constant C appearing in(5.6)is stable with respect to translations,it depends only on the domain Q and it is therefore independent on ? and ?1.

    Extending β by 0 outside D?1we obtain that

    which is now a good test function for inequality(5.4).

    Therefore

    since

    and

    Observe that β vanishes outside D?1and that for any u,v ∈ H1(D?1),

    Consequently,

    We develop now ?(ρ(u?? us)).Then,noticing that ρ′vanishes outside D?1and using the Cauchy-Schwarz inequality in D?1,we derive

    where in the last inequality we used the Poincar′einequality,the estimate(5.6)and the inequality|D(v)|≤ |?v|in D?1for any v ∈ H1(D?1),which follows from definition(2.1)of D(v).

    From(5.7),using the Cauchy-Schwarz inequality in D?1,we obtain

    We compute once again ??ρ(u?? us))and apply(5.6)and the Poincar′e inequality in(5.9).

    This,used in(5.8)together with the remark that ρ =1 in ??1and ρ ≥ 0 in ??1+1,implies that there exists a constant C depending only on Q,g andμ,such that

    Let ?0∈ N?be fixed such that ?0≤ ??1.Then for any k ∈ N satisfying ?0+k ≤ ??1,we can take ?1= ?0+k in the previous inequality.

    We also remark that

    Let h∈N,h≥2 befixed.

    Wefirst show that if

    and ?0∈N?is such thatdenotes the integer part),then thefinite sequence

    satisfies the hypotheses of Lemma 4.1.

    Inequality(4.1)(ii)follows from(5.11).Moreover,we notice that thefinite sequence{ak}is non-negative and non-decreasing.Let us prove that the last inequality in(4.1)(i)is also verified.

    Indeed,this inequality is a consequence of inequality(5.1)and of the fact that ?0+mh≤ ?:

    Consequently,the desired inequality is satisfied with γ =2hb and a constant~C0depending only on C1,b and h.

    hence

    for any ? and s satisfying

    and any ?0∈N?such that ?0≤+1.

    Let us observe that for any ?≥ 2(m+1),there exists m ∈ N?,m ≥ m0such that

    In order to prove(5.2),let us choose s> ?≥ 2(m+1).Since s> ?,there exists an integer q∈N such that

    Then we have

    where in the second inequality we have used(5.12)and for the last computations we assumed that h≥4.

    Proof of Theorem 3.1It is divided into four steps.

    Step 1Proof of a Cauchy condition for u?.

    From Theorem 5.1 we deduce that for every ?0> 0,we have

    which implies using the Poincar′e inequality in ??0that{un}n∈N? is a Cauchy sequence in H1(??0).Then the sequence{un}converges to somein the Banach space H1(??0).

    This together with Theorem 5.1,implies that for every ?0> 0 there exists a function∈H1(??0)such that

    Step 2Construction of the limit function u∞and proof of estimate(3.4).

    In this step we prove that there exists a function u∞such that

    According to Step 1,we have in particular that for every n∈N?there exists a function

    we obtain

    Now,passing to the limit in(5.2)as s→ +∞,for a fixed ?,we deduce estimate(3.4).

    Step 3Identification of the problem satisfied by u∞.

    In this step we prove that the limit u∞constructed in the previous step is a solution of problem(3.3).

    In order to prove that u∞∈it remains to prove that it is divergence-free.This is a simple consequence of the fact that divu?=0 in ??0for any ?≥ ?0and of convergence(5.16).

    Let us now pass to the limit in the variational inequality(2.7).

    Let ?0> 0 be fixed and v ∈(??0).Then,for any ?≥ ?0the function v belongs to(??).Therefore using v as test function in(2.7)we have

    Using the fact that v vanishes outside of ??0,this implies the variational inequality in(3.3).

    Observe also that as a simple consequence of(5.16)we also have

    We now prove that

    Let ?0> 0 be fixed.Then,for every ?> ?0,by Remark 2.2 we have in particular,

    Passing to the limit as ?→ +∞,in view of convergence(5.16)and the trace theorem we have(5.18)since ?0is arbitrary.

    Finally,let us show that u∞satisfies the estimate for the gradient in(3.3).This follows from(5.1)of Theorem 5.1 and estimate(3.4)proved in Step 2,since for any ?≥,we have

    Taking c1=max{~c1,‖?u∞‖L2(?L0/2)},we get

    where c1depends on μ,g,Q,α,c0,b,but is independent of ?.

    Step 4Uniqueness of the solution to the limit problem.

    Let u∞and w∞be two solutions of problem(3.3).

    The same argument used in the proof of Theorem 5.1 to show(5.10),replacing u?and usby u∞and w∞r(nóng)espectively,gives

    for every ?1∈ N?,where D?1is given by(5.5).

    Set now α0=0 and αk=for k ∈ N?.Then,the sequence{αk}k∈Nsatisfies the hypotheses of Corollary 4.1,thanks to the estimate of the gradient in(3.3)satisfied by u∞and w∞and(5.19).

    This implies(4.8),that is

    which by the Poincar′e inequality gives u∞=w∞.The proof is now complete.

    Proof of Theorem 3.2Let a > 0 befixed andrepresentative of p?in L2(?a)/R satisfying=0.Then(see for instance[1,15])there exists v?∈(?a)such that

    where the constant Cadepends only on ?a.

    On the other hand,it is obvious that the pair(u?,~p?)also satisfies the variational inequality in(3.5),i.e.,

    Taking(?v?)(extended by 0 outside of ?a)as test function in the variational inequality above,we get by using the Cauchy-Schwarz inequality,the inequality|D(v?)|≤ |?v?|and(5.20),

    where the constant C is independent of ?(but depends on ?a,u∞|?aand f|?a),since thanks to(3.4),

    for ?≥ max{2a,L0},and thanks to(5.1),

    if a≤?<max{2a,L0}.

    Since L2(?a)is a Hilbert space,there exists a sequence{p?~n}and a function∈L2(?a)such that p?~n?weakly in L2(?a)/R.Letting a take all the values in N?and using a diagonal selection process for a sequence of successive subsequences,we can construct a sequence{p?n}and a function p∞∈(?∞)(for the construction of p∞we use a technique that is similar to the one in Step 2 of the proof of Theorem 3.1)such that

    The fact that the pair(u∞,p∞)satisfies the variational inequality(3.8)is then simply obtained by passing to the limit(as n goes to+∞)in the variational inequality(3.5)satisfied by the pair(u?n,p?n).

    AcknowledgementsThis work was initiated during the appointment of the third author as a Visiting Professor at the University of Rouen,in fall 2013 and spring 2014,supported by the University of Rouen and the F′ed′eration Normandie Math′ematiques,respectively;the support of these organizations is greatly appreciated.Support from Worcester Polytechnic Institute for the third author’s sabbatical leave is also acknowledged.

    [1]Amrouche,C.and Girault,V.,Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,Czechoslovak Math.J.,44,1994,109–140.

    [2]Bingham,E.C.,An investigation of the laws of plasticflow,US Bureau of Standards Bulletin,13,1916,309–353.

    [3]Chipot,M.and Mardare,S.,Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction,Journal de Math′ematiques Pures et Appliqu′ees,90(2),2008,133–159.

    [4]Chipot,M.and Yeressian,K.,Exponential rates of convergence by an iteration technique,C.R.Acad.Sci.Paris,Ser.I,346,2008,21–26.

    [5]Cioranescu,D.,Girault,V.and Rajagopal,K.R.,Mechanics and Mathematics of Fluids of the Differential Type,Advances in Mechanics and Mathematics,35,Springer-Verlag,Switzerland,2016.

    [6]Cristescu,N.,Plasticalflow through conical converging dies,using viscoplastic constitutive equations,Int.J.Mech.Sci.,17,1975,425–433.

    [7]Cristescu,N.,On the optimal die angle in fast wire drawing,J.Mech.Work.Technol.,3,1980,275–287.

    [8]Cristescu,N.,A model of stability of slopes,Slope Stability 2000,Geotechnical Special Publication,No.101,American Society of Civil Engineers,Denver,Colorado,2000,86–98.

    [9]Donato,P.,Mardare,S.and Vernescu,B.,From Stokes to Darcy in infinite cylinders:Do limits commute?Differential and Integral Equations,26(9–10),2013,949–974.

    [10]Duvaut,G.and Lions,J.-L.,Les in′equations en m′ecanique et en physique,Dunod,Paris,1972.

    [11]Hild,P.,Ionescu,I.R.,Lachand-Robert,T.and Ro?sca,I.,The blocking of an inhomogeneous Binghamfluid,Applications to landslides,ESAIM:M2AN36,6,2002,1013–1026.

    [12]Ionescu,I.and Vernescu,B.,A numerical method for a viscoplastic problem,An application to the wire drawing,Internat.J.Engrg.Sci.,26,1988,627–633.

    [13]Klingenberg,D.J.and Zukoski,C.F.,Studies on the steady-shear behavior of electrorheological suspensions,Langmuir,6(1),1990,15–24.

    [14]Lemaire,E.and Bossis,G.,Yield stress and wall effects in magnetic colloidal suspensions,Journal of Physics D:Applied Physics,24(8),1991,1473–1477.

    [15]Temam,R.,Navier-Stokes Equations,Theory and Numerical Analysis,North-Holland,Amsterdam,1984.

    [16]Tu,C.and Deville,M.,Pulsatileflow of non-Newtonian fluids through arterial stenoses,Journal of Biomechanics,29(7),1996,899–908.

    [17]Vernescu,B.,Multiple-scale Analysis of Electrorheological Fluids,International Journal of Modern Physics B,16(17–18),2002,2643–2648.

    久久中文字幕一级| 国产成年人精品一区二区| 日本黄色视频三级网站网址| 日本在线视频免费播放| 午夜福利高清视频| 色av中文字幕| 国产欧美日韩精品亚洲av| 亚洲 欧美一区二区三区| 桃红色精品国产亚洲av| 嫩草影视91久久| 国内精品久久久久精免费| 天天躁狠狠躁夜夜躁狠狠躁| 99久久无色码亚洲精品果冻| 国产人伦9x9x在线观看| 国产精品久久久久久人妻精品电影| 亚洲真实伦在线观看| 每晚都被弄得嗷嗷叫到高潮| 精品国产超薄肉色丝袜足j| 黄色 视频免费看| 日本免费一区二区三区高清不卡| 女同久久另类99精品国产91| 久久香蕉精品热| 欧美日韩黄片免| 亚洲精品中文字幕在线视频| 91字幕亚洲| 神马国产精品三级电影在线观看 | 长腿黑丝高跟| 国产一区二区在线av高清观看| 精品久久久久久久毛片微露脸| 免费看美女性在线毛片视频| 最近视频中文字幕2019在线8| 制服丝袜大香蕉在线| 久久久久久久精品吃奶| 69av精品久久久久久| 欧美在线一区亚洲| 男插女下体视频免费在线播放| 亚洲黑人精品在线| 国产精品精品国产色婷婷| 18禁美女被吸乳视频| 夜夜爽天天搞| 久久中文字幕人妻熟女| 18禁美女被吸乳视频| 国产高清有码在线观看视频 | 香蕉丝袜av| 老汉色av国产亚洲站长工具| 18禁国产床啪视频网站| 动漫黄色视频在线观看| 一级毛片高清免费大全| 欧美黄色淫秽网站| 中亚洲国语对白在线视频| 久久精品91无色码中文字幕| a在线观看视频网站| 国产精品亚洲av一区麻豆| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区免费| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 变态另类成人亚洲欧美熟女| 日本免费一区二区三区高清不卡| 少妇人妻一区二区三区视频| 欧美av亚洲av综合av国产av| 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久久久毛片| 大型黄色视频在线免费观看| 久久国产精品影院| 亚洲一区二区三区色噜噜| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 国产精品一及| 国产精品爽爽va在线观看网站| 一夜夜www| 国模一区二区三区四区视频 | 在线观看免费午夜福利视频| 国产精品亚洲av一区麻豆| 级片在线观看| 国产激情欧美一区二区| 看片在线看免费视频| 亚洲va日本ⅴa欧美va伊人久久| 少妇熟女aⅴ在线视频| 欧美日韩黄片免| 午夜免费成人在线视频| 亚洲国产精品sss在线观看| 香蕉av资源在线| 亚洲av电影在线进入| 欧美色视频一区免费| 欧美性猛交黑人性爽| 久久中文字幕一级| 好男人电影高清在线观看| 亚洲五月婷婷丁香| 久久久久久大精品| 精品国内亚洲2022精品成人| 日韩大尺度精品在线看网址| 无限看片的www在线观看| 欧美不卡视频在线免费观看 | 国产蜜桃级精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 这个男人来自地球电影免费观看| 国产麻豆成人av免费视频| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 国产精品国产高清国产av| 麻豆久久精品国产亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 99精品欧美一区二区三区四区| 久久久久久大精品| 日韩欧美三级三区| 久久中文看片网| 草草在线视频免费看| 久久久久久大精品| 十八禁人妻一区二区| 精品无人区乱码1区二区| aaaaa片日本免费| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区不卡视频| 在线观看www视频免费| 丁香欧美五月| 色综合站精品国产| 叶爱在线成人免费视频播放| 欧美色视频一区免费| www.精华液| 中文资源天堂在线| 亚洲成人久久性| 国产精品久久久久久精品电影| 久久中文字幕人妻熟女| 国产熟女午夜一区二区三区| 欧美国产日韩亚洲一区| 国产伦在线观看视频一区| 老司机靠b影院| 国产蜜桃级精品一区二区三区| 久久久水蜜桃国产精品网| 视频区欧美日本亚洲| 五月玫瑰六月丁香| 哪里可以看免费的av片| 国产精品精品国产色婷婷| 成人午夜高清在线视频| 欧美色视频一区免费| 中出人妻视频一区二区| 99国产精品99久久久久| 久久精品91蜜桃| 日韩欧美精品v在线| 美女黄网站色视频| 久久中文字幕一级| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 午夜两性在线视频| 日本五十路高清| 亚洲,欧美精品.| 欧美成人性av电影在线观看| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 亚洲一区中文字幕在线| 午夜免费成人在线视频| 国产精品九九99| 亚洲性夜色夜夜综合| 俺也久久电影网| 亚洲成a人片在线一区二区| 制服人妻中文乱码| 丁香六月欧美| 国产精品一区二区精品视频观看| 欧美一区二区精品小视频在线| 久久99热这里只有精品18| 极品教师在线免费播放| 丝袜人妻中文字幕| 两人在一起打扑克的视频| 男人舔女人下体高潮全视频| avwww免费| 极品教师在线免费播放| 18禁裸乳无遮挡免费网站照片| 两人在一起打扑克的视频| 欧美一级a爱片免费观看看 | 制服丝袜大香蕉在线| av福利片在线| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻aⅴ院| 三级国产精品欧美在线观看 | 黄色视频不卡| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 免费在线观看完整版高清| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片| 欧美性猛交黑人性爽| 精品久久久久久成人av| 97碰自拍视频| 久久久久国内视频| 熟妇人妻久久中文字幕3abv| 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 身体一侧抽搐| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 国产精品久久久久久精品电影| 黄色片一级片一级黄色片| 在线十欧美十亚洲十日本专区| 岛国视频午夜一区免费看| e午夜精品久久久久久久| 久久国产精品影院| 18禁美女被吸乳视频| 国产成人av激情在线播放| 村上凉子中文字幕在线| 成年人黄色毛片网站| 久久久精品大字幕| 亚洲精品久久国产高清桃花| 亚洲18禁久久av| 两性夫妻黄色片| 亚洲五月婷婷丁香| 国产成人啪精品午夜网站| 成人永久免费在线观看视频| 最好的美女福利视频网| 舔av片在线| 亚洲人成电影免费在线| 午夜久久久久精精品| 亚洲色图av天堂| 日韩精品免费视频一区二区三区| 国产精品自产拍在线观看55亚洲| 老熟妇仑乱视频hdxx| 国产私拍福利视频在线观看| av超薄肉色丝袜交足视频| xxxwww97欧美| 人妻丰满熟妇av一区二区三区| 免费无遮挡裸体视频| 久久婷婷成人综合色麻豆| 欧美av亚洲av综合av国产av| 久久久久久久久久黄片| cao死你这个sao货| 欧美色欧美亚洲另类二区| 看免费av毛片| 亚洲专区国产一区二区| 国产精品久久久久久精品电影| 1024视频免费在线观看| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| av有码第一页| 成人av在线播放网站| 中文字幕av在线有码专区| 99国产极品粉嫩在线观看| 极品教师在线免费播放| 怎么达到女性高潮| 免费av毛片视频| 99久久精品国产亚洲精品| 欧美成人午夜精品| 国产精品 国内视频| 亚洲国产欧美网| 岛国视频午夜一区免费看| 成人三级做爰电影| 久久久国产欧美日韩av| 热99re8久久精品国产| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看 | 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| 天天添夜夜摸| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 两性夫妻黄色片| 成年版毛片免费区| 亚洲av熟女| 成人精品一区二区免费| 亚洲精品美女久久av网站| 在线播放国产精品三级| 国产不卡一卡二| 美女 人体艺术 gogo| 日本黄色视频三级网站网址| 在线观看午夜福利视频| 特级一级黄色大片| 亚洲av电影在线进入| 国产成人av激情在线播放| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 日本一二三区视频观看| 精品少妇一区二区三区视频日本电影| 亚洲七黄色美女视频| 色综合婷婷激情| 亚洲av美国av| xxx96com| 免费在线观看完整版高清| 99热这里只有精品一区 | 少妇被粗大的猛进出69影院| 欧美另类亚洲清纯唯美| 欧美在线黄色| 精品日产1卡2卡| av天堂在线播放| 国产真实乱freesex| 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| www.精华液| 精华霜和精华液先用哪个| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| 国产成人av教育| 两个人的视频大全免费| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人久久性| 男插女下体视频免费在线播放| 国产乱人伦免费视频| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 丁香欧美五月| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播| 最近在线观看免费完整版| 国产亚洲精品久久久久久毛片| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产一区二区精华液| 亚洲自拍偷在线| 午夜激情福利司机影院| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 99久久无色码亚洲精品果冻| 777久久人妻少妇嫩草av网站| 一个人免费在线观看电影 | 日韩成人在线观看一区二区三区| 热99re8久久精品国产| 成人av一区二区三区在线看| 亚洲成人久久爱视频| 黄色 视频免费看| 青草久久国产| 国产一区二区三区视频了| 黄片大片在线免费观看| 在线a可以看的网站| 母亲3免费完整高清在线观看| 久久久久国产精品人妻aⅴ院| 搡老妇女老女人老熟妇| 不卡av一区二区三区| 舔av片在线| 久久久久久久久中文| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看 | 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 天天一区二区日本电影三级| 最近最新中文字幕大全免费视频| 白带黄色成豆腐渣| 国产精品 国内视频| 午夜激情av网站| 岛国在线免费视频观看| 99国产精品一区二区三区| 俄罗斯特黄特色一大片| 最新美女视频免费是黄的| 在线视频色国产色| 久久久久久免费高清国产稀缺| 久久国产乱子伦精品免费另类| 一级片免费观看大全| 精品久久久久久久久久免费视频| 精品电影一区二区在线| 亚洲av日韩精品久久久久久密| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 日本五十路高清| 欧美日韩一级在线毛片| 亚洲 欧美 日韩 在线 免费| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 在线视频色国产色| 1024视频免费在线观看| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看 | 国产精品亚洲美女久久久| 欧美在线黄色| 中文字幕精品亚洲无线码一区| 搞女人的毛片| 深夜精品福利| 在线看三级毛片| 久久香蕉精品热| 欧美日韩乱码在线| 欧美久久黑人一区二区| 国产三级中文精品| 夜夜爽天天搞| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 舔av片在线| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看 | 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 露出奶头的视频| 欧美色欧美亚洲另类二区| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 国产黄色小视频在线观看| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 一级作爱视频免费观看| 成人国产综合亚洲| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 亚洲人成网站高清观看| 88av欧美| 日韩欧美在线乱码| 一个人免费在线观看电影 | 草草在线视频免费看| 成人18禁高潮啪啪吃奶动态图| 天堂动漫精品| 亚洲国产日韩欧美精品在线观看 | 一个人免费在线观看的高清视频| 亚洲最大成人中文| 18美女黄网站色大片免费观看| 亚洲电影在线观看av| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 最近最新中文字幕大全免费视频| 中文亚洲av片在线观看爽| 国产熟女午夜一区二区三区| 国产精品影院久久| 精品久久久久久成人av| 天堂动漫精品| 女人爽到高潮嗷嗷叫在线视频| 搡老妇女老女人老熟妇| 女同久久另类99精品国产91| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 久久99热这里只有精品18| 精品一区二区三区av网在线观看| 中文字幕熟女人妻在线| 成人国产综合亚洲| tocl精华| 村上凉子中文字幕在线| 精品久久久久久久久久久久久| 亚洲国产欧洲综合997久久,| 香蕉久久夜色| 亚洲国产欧美一区二区综合| 成人av一区二区三区在线看| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| 天天添夜夜摸| av免费在线观看网站| 国产视频一区二区在线看| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 午夜福利成人在线免费观看| 日韩欧美三级三区| 亚洲成av人片在线播放无| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲欧美98| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 我要搜黄色片| 在线a可以看的网站| 成人av在线播放网站| 天天躁狠狠躁夜夜躁狠狠躁| 观看免费一级毛片| 亚洲性夜色夜夜综合| 国产黄片美女视频| 操出白浆在线播放| 色噜噜av男人的天堂激情| 九色国产91popny在线| 久久久久久大精品| 欧美精品亚洲一区二区| 免费在线观看黄色视频的| 国产成人系列免费观看| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 久久久久免费精品人妻一区二区| 在线观看午夜福利视频| 男人舔奶头视频| 精品久久久久久成人av| 黄色视频不卡| 色老头精品视频在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲乱码一区二区免费版| 久久久久精品国产欧美久久久| 国产一区二区激情短视频| 不卡av一区二区三区| 国产精华一区二区三区| 久久人人精品亚洲av| 日本在线视频免费播放| 欧美性猛交黑人性爽| 老熟妇乱子伦视频在线观看| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 淫妇啪啪啪对白视频| 久久中文字幕一级| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 久久九九热精品免费| 亚洲专区中文字幕在线| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 精品欧美一区二区三区在线| 草草在线视频免费看| 精品第一国产精品| 国产黄a三级三级三级人| 99国产精品99久久久久| or卡值多少钱| 国产熟女xx| 51午夜福利影视在线观看| 国产精品亚洲美女久久久| 少妇裸体淫交视频免费看高清 | 97人妻精品一区二区三区麻豆| 亚洲免费av在线视频| 免费看a级黄色片| 狂野欧美激情性xxxx| 色噜噜av男人的天堂激情| 美女扒开内裤让男人捅视频| 亚洲精品久久成人aⅴ小说| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区| 99热这里只有是精品50| 99在线人妻在线中文字幕| 精品高清国产在线一区| or卡值多少钱| 在线国产一区二区在线| 最近视频中文字幕2019在线8| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 欧美zozozo另类| 精品不卡国产一区二区三区| 久久性视频一级片| 日本黄色视频三级网站网址| 别揉我奶头~嗯~啊~动态视频| 18禁观看日本| 亚洲免费av在线视频| 久久久国产欧美日韩av| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 99热这里只有是精品50| 女生性感内裤真人,穿戴方法视频| 韩国av一区二区三区四区| 国产亚洲精品久久久久5区| 成人高潮视频无遮挡免费网站| 夜夜爽天天搞| 亚洲精品在线美女| 麻豆国产av国片精品| 久久精品人妻少妇| www国产在线视频色| 美女大奶头视频| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 午夜激情福利司机影院| 嫩草影视91久久| 久久香蕉激情| 两个人的视频大全免费| 97超级碰碰碰精品色视频在线观看| 久久精品91蜜桃| 性欧美人与动物交配| 国产高清视频在线观看网站| 欧美日韩瑟瑟在线播放| 久99久视频精品免费| 精品国产美女av久久久久小说| 久久精品亚洲精品国产色婷小说| 麻豆成人午夜福利视频| 婷婷六月久久综合丁香| 一本综合久久免费| 一级作爱视频免费观看| 丰满的人妻完整版| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 丰满的人妻完整版| 老司机深夜福利视频在线观看| 国产真实乱freesex| 色综合亚洲欧美另类图片| 无限看片的www在线观看| 国产真实乱freesex| 他把我摸到了高潮在线观看| 亚洲自偷自拍图片 自拍| av福利片在线| 18禁国产床啪视频网站| 欧美日韩瑟瑟在线播放| 亚洲人成伊人成综合网2020| 国产高清视频在线观看网站| 婷婷精品国产亚洲av| 最新在线观看一区二区三区| 变态另类丝袜制服| 国产视频一区二区在线看| 欧美一级毛片孕妇| or卡值多少钱| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 免费看美女性在线毛片视频| 国产爱豆传媒在线观看 | 亚洲精品美女久久久久99蜜臀|