• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Problems in the Calculus of Variations in Increasingly Elongated Domains

    2018-03-13 09:27:44HervLEDRETAmiraMOKRANE

    Hervé LE DRET Amira MOKRANE

    (Dedicated to Philippe G.Ciarlet on the occasion of his 80th birthday)

    1 Introduction

    In this article,we revisit the“?→+∞”problem in the context of the calculus of variations.This class of problems was introduced by Chipot and Rougirel[8]in 2000,see also[9]and the monographs by Chipot[4,6],and has since then given rise to many works by several authors dealing with various elliptic and parabolic problems up to until recently.

    A prototypical ?→ +∞ problem is the following.Let ω =]?1,1[,?> 0 be a real number and ??? R2the rectangle]??,?[×ω.We denote by x1the first variable in]??,?[and x2the second variable in ω.Any function f ∈ L2(ω)in the second variable gives rise to a function in two variables still denoted f by setting f(x1,x2)=f(x2).We thus consider the two boundary value problems:Find u?,a function in(x1,x2),such that

    and find u∞,a function in x2,such that

    Now the function u∞can also be considered as a function in two variables that is independent of x1.In this case,it can be shown that,for any ?0> 0,one has

    hence the name of the problem.In other words,when the data does not depend on the elongated dimension,the solution of the above boundary value problem converges in some sense atfinite distance to the solution of the correspondingboundary value problem posed in the non-elongated dimension when the elongation tends to infinity.

    The majority of works on the ?→ +∞ problem makes use of the boundary value problem itself,i.e.,the PDE plus boundary condition.Exceptions to this rule are the recent papers[5,7],in which the authors considered instead a sequence of problems in the calculus of variations posed on elongated domains(see also[6]).This is the approach we adopt here as well.

    Our main motivation for this is that certain models,such as nonlinear hyperelasticity,are naturally posed as problems in the calculus of variations for which no Euler-Lagrange equation,i.e.,non underlying PDE even in a weak form,is available(see[2]).Moreover,questions surrounding the Saint Venant principle in elasticity(see[16—17]),are typically set in elongated domains,albeit in one direction only.Consequently,it makes sense to attempt dealing with some ?→ +∞ problems by using only energy minimization properties and no Euler-Lagrange equation whatsoever.

    We are however quite far from achieving the goal of treating nonlinear elasticity,since the approach that we develop below relies a lot on convexity,whereas convexity is not an appropriate hypothesis for nonlinear elasticity.We are nonetheless able to encompass a wide range of nonlinear energies,including the p-Laplacian with some technical restrictions on the number of elongated dimensions with respect to the exponent p.Our hypotheses are weaker and our results are sometimes stronger than those of[7].The techniques are somewhat different too,with an emphasis here on weak convergence and weak lower semicontinuity techniques,and reliance on such classical techniques as the De Giorgi slicing method which are not dependent on convexity.As a general rule,we try to make as little use of convexity as we can at any given point.

    Let us describe our results a little more precisely.We consider bounded open subsets ??of Rnwhich are Cartesian products of the form ?ω′× ω′′,with ω′? Rrand ω′′? Rn?r,with 1 ≤ r ≤ n ? 1.We let x=(x′,x′′)with x′∈ Rrbeing the elongated variable and x′′∈ Rn?rthe non-elongated variable.Likewise,for a scalar-valued function v:??→ R,we decompose the gradient ?v=(?′v,?′′v)with obvious notation.

    We consider an energy density F:Rn→ R and a function f on ω′′,and introduce the minimization problem offinding

    We assume that F has p-growth,p-coerciveness and is convex.In particular,there is no assumption of strict convexity or uniform strict convexity made on F.

    We then introduce F′′:Rn?r→ R by letting F′′(ξ′′)=F(0,ξ′′),again with obvious notation.Of course,F′′is convex,has p-growth and p-coerciveness and the minimization problem offinding

    admits solutions.It turns out that,under additional hypotheses,this problem is the“?→ +∞”limit of the family of minimization problems under consideration.

    These hypotheses include appropriate growth and coerciveness hypotheses on the function G:Rn→ R,G(ξ)=F(ξ)? F′′(ξ′′),of the form

    for some 0<λ≤Λ and 0≤k<p.Depending on the case,there is no more additional hypothesis(for k=0),or a hypothesis of strict convexity of F′′,or a hypothesis of uniform strict convexity of F′′(for k > 0).

    The results are a“?→+∞”convergence in the weak sense for k=0 when r<p,sharpened to strong sense when F′′is furthermore assumed to be strictly convex,and a strong“?→ +∞”convergence for k>0 when r≤.In the case of the p-Laplacian,p > 2,we thus obtain strong“?→+∞”convergence when r<,see also[18].

    In addition,in the case k=0,if we assume that F′′is uniformly strictly convex,we obtain strong convergence at an exponential rate without any restriction on r.This includes the known behavior of the 2-Laplacian in the“?→ +∞”context.

    We conclude the article with a few comments and perspectives on the vectorial case,in connection with nonlinear elasticity in particular.

    2 Statement of the Problem

    We consider two bounded open sets ω′? Rrwith 0 ∈ ω′and ω′is starshaped with respect to 0,and ω′′? Rn?rwith n > r ≥ 1.Let ?> 0 and set

    Points x in ??will be denoted by x=(x′,x′′)with x′=(x1,x2,···,xr)∈and x′′=(xr+1,···,xn) ∈ ω′′.Likewise,vectors ξ in Rnwill be decomposed as ξ=(ξ′,ξ′′),with ξ′∈ Rrand ξ′′∈ Rn?r.

    Note that because of the starshaped assumption,we have ??? ??′as soon as ?≤ ?′and we are thus dealing with a “growing”family of open sets.We make an additional regularity hypothesis on ω′,which is as follows.Define first the gauge function of ω′as

    Since ω′is starshaped and bounded,this is well defined,={x′;g(x′)< ?},and there exists 0 < R1< R2such that R1|x′|≤ g(x′)≤ R2|x′|for all x′∈ Rr.

    Now we assume that ω′is such that g is a Lipschitz function with Lipschitz constant K.By Rademacher’s theorem,this implies that g is almost everywhere differentiable,with|?′g(x′)|≤K a.e.Moreover,it is known that g then belongs to(Rr)and that its almost everywhere derivatives equal its distributional derivatives.This is true for example if ω′is convex.This regularity hypothesis is for convenience only:We use g to build cut-offfunctions inside the domains,and not up to the boundary.It should be quite clear that our results can be rewritten in order to accommodate arbitrary open sets ω′.

    We are interested in a sequence of problems in the calculus of variations P?of the form

    with u?∈and

    where f′′∈ Lp′(ω′′),+=1,is a given function.Observe that the term corresponding to the force term for this problem only depends on the “non-elongated” variable x′′so that it is reasonable to expect that u?behaves as a function mostly in x′′in the limit ?→ +∞,in a sense made precise below.We could also consider more general semilinear force terms of the form h(x′′,v)satisfying appropriate growth and convexity assumptions,but we stick here with a linear term for simplicity.

    We assume that the energy density F:Rn→R is convex.We let

    so that

    and F′′is convex.These functions are assumed to satisfy the following coerciveness and growth hypotheses

    for some 0< λ ≤ Λ,p> 1 and 0≤ k < p.1Note that k=p yields the same hypothesis as k=0.Here,for ξ∈ Rd,|ξ|denotes the canonical Euclidean norm of ξ in Rd.

    Clearly,condition(2.6)implies the similar condition for F′′.

    Energy densities of the form above include that associated with the p-Laplacian for p≥2.Indeed,in this case,F(ξ)=and we can take k=2 for p > 2,or k=0 for p=2.Another simple energy density that is covered by our analysis is F(ξ)=or more generally energies of the form F(ξ)=F′(ξ′)+F′′(ξ′′),with appropriate hypotheses on F′and F′′.Here,assuming without loss of generality that F′(0)=0,we have G(ξ′,ξ′′)=F′(ξ′)and we can take k=0.

    In addition to the above growth and coerciveness hypotheses,which obviously imply that problem P?has at least one solution u?,we assume that F′′is uniformly strictly convex for k > 0,in the sense that there exists a constant β > 0 such that for all ξ′′,ζ′′∈ Rn?rand all θ,μ ∈ [0,1]with θ+ μ =1,we have

    (see for instance[1,12,14]).The p-Laplacian for p > 2,k=2,satisfies this hypothesis(the 2-Laplacian satisfies the alternate hypothesis(5.1)that will be used later on in Section 5).Note that when k=0,the hypothesis becomes redundant,and there is actually no requirement of even strict convexity,let alone uniform strict convexity,of F′′in this case.

    We now introduce our candidate limit problem P∞as that offinding u∞∈(ω′′)such that

    with

    It is also clear that problem P∞has at least one solution u∞.

    Here and in the sequel,we use the following notational device

    that we apply indifferently to functions defined either on ??or on ω′′.For brevity,we refer to?′as the “horizontal” part of the gradient and to ?′′as the “vertical” part of the gradient.

    We want to study the asymptotic behavior of u?when ?→ +∞ and compare it with a minimizer u∞of the n?r dimensional vertical problem P∞.Actually,our goal is to show that the former converges to the latter in a sense that will be explained later on.

    3 Preliminary Estimates

    Wefirst give several estimates that we will use in the proofs of our convergence results.Thefirst estimate follows immediately from Poincaré’s inequality.

    Lemma 3.1There exists a constantc1=c1(ω′′)independent of?such that for allv ∈W1,p(??)whose trace vanish on× ?ω′′,we have

    Let us now give a first,coarse estimate of u?.

    Lemma 3.2There exists a constantc2independent of?,such thatZ

    ProofLet us take v=0 as a test-function in problem(2.2).It follows that

    where A=F(0)Lr(ω′)Ln?r(ω′′)does not depend on ?(Lddenotes the d-dimensional Lebesgue measure).By H? lder’s inequality and the coerciveness assumption(2.6),it follows that

    where C and D are constants that do not depend on ?.Let us set X=.Estimate(3.3)now reads

    so that there exists c2depending only on C and D such that X≤which completes the proof.

    We now recall an elementary estimate similar to what can be found in[13]for instance.

    Lemma 3.3Leth(t)be a nonnegative bounded function defined on an interval[τ0,τ1],τ0≥ 0.Suppose that forτ0≤ t< s ≤ τ1,we have

    whereC,D,ν1,ν2,θare nonnegative constants with0 ≤ θ< 1.Then,for allτ0≤ t< s ≤ τ1,we have

    wherecis a constant that only depends onν1,ν2andθ.

    ProofIf we have two sequences of nonnegative numbers aiand bisuch that ai≤ θai+1+bi+1,it follows by induction thatWe apply this remark to the sequences ai=h(ti)and bi+1=C(ti+1?ti)?ν1+D(ti+1?ti)?ν2,where ti=t+(1?σi)(s?t),0 < σ < 1 to be chosen later on,is an increasing sequence in[τ0,τ1]such that t0=t.This yields the estimate

    We now choose σ < 1 in such a way that<1,and conclude by letting i→+∞,remembering that h(ti)is bounded.

    Next,we estimate the horizontal part of the gradient of u?in Lp(??0)in terms of ?,?0,u?and a minimizer u∞of the vertical problem P∞.

    Theorem 3.1There exists a constantc3independent of all the other quantities,such that for all0<t< s≤ ?and all minimizersu∞of the vertical problem,we have

    whereδ=1if0≤ k≤,δ=0otherwise.

    ProofWe first define a family of cut-off functions as follows.For all 0< t< s≤ ?,we set

    By the definition of the gauge function,we see that ρs,t≡0 onand 0 ≤ ρs,t≤ 1.By our regularity assumption on ω′,ρs,tis Lipschitz and such that

    so that we can estimate

    We pick a number 0<α<1 and then set

    and

    Clearly,v1belongs toand is thus a suitable test-function for problem P?,hence

    Integrating estimate(3.9)over,we obtain

    We add estimates(3.8)and(3.10)together and note that all the terms involving f′′cancel out since v1+v2=u?+u∞.Therefore

    We observe that v1=u?and v2=u∞on ???s,so that estimate(3.11)boils down to

    The left-hand side of(3.12)can be rewritten as

    Let I1and I2be thefirst and second integrals in the right-hand side of(3.12).To estimate I1,we just use the convexity of F′′,since the vertical gradients of v1and v2are convex combinations of the vertical gradients of u?and u∞,

    To estimate I2,we note that v1=(1?α)u?+αu∞and v2= αu?+(1?α)u∞on ?t,thus owing to the convexity of F and the uniform convexity(2.9)of F′′,

    for some γ > 0.Putting estimates(3.12),(3.14),(3.15)and equation(3.13)together,we obtain

    which,upon using the coerciveness hypothesis(2.7),yields

    where a>0 is a small generic constant that only depends on the other constants involved.

    We now focus on estimating the right-hand side of(3.16).We have

    Based on(3.17)and the definition of ρs,t,we have the following estimates for any exponent q:

    We will use exponents q=p and q=k for thefirst line and q=p?k for the second line.Due to the growth hypothesis(2.7),we have

    where A is a large generic constant that only depends on the other constants involved.For k≥1,three of the four product terms that appear need to be estimated.For this purpose,we will use Young’s inequality in the following form

    for a,b≥0(recall that p>k).We thus obtain

    where A is another generic constant.We integrate this inequality over ?s?tand use Poincaré’s inequality in the vertical variables to obtain

    with A yet another generic constant.

    We now consider two different cases.First,for 0≤ k ≤,let us set

    Inequalities(3.16)and(3.21)may be rewritten as

    The result follows in this case by letting t1→t and s1→s since the constant c only depends on ν1,ν2and θ,and h is continuous(recall that δ=1).

    with the same function h,but with another value for θ,which we do not write here.We conclude as before with Lemma 3.3 and thefirst constant C=0 for instance.

    The following is an immediate consequence of the previous estimate.

    Corollary 3.1We have,for all?≥ ?0,

    whereδ=1if0≤ k≤δ=0otherwise.

    ProofIndeed,we take s= ?,t= ?0and notice that ?? ??0? ??.

    Let us remark that if k=0 and there is actually no strict convexity assumption made on F′′,i.e.,F′′may well be not strictly convex,the previous result boils down to

    However,when k>0,we make crucial use of the uniform strict convexity to derive the estimate.

    Let us close this section with an estimate similar to that obtained in Lemma 3.2.Recall that u?is a minimizer on ??,whereas the following estimate is on ??0.See[5]for a very similar argument.

    Lemma 3.4There exist constantsandc4,independent of?,such that for all≤ ?0≤ ?,

    ProofLet 1 ≤ t≤ ?? 1 and set ρt= ρt+1,t.We take vt,?=(1? ρt)u?as a test-function in problem(2.2).This test-function is equal to u?“far away” and is 0 in ?t.We obtain

    Therefore we see that

    Furthermore

    with ε > 0 to be chosen afterwards.

    Let us set

    Putting all the above estimates together,it follows that

    Let us now set t= ?0.We have h(?0+ ?? ?0」)≤ h(?)≤by Lemma 3.2.Hence

    Now,for ?0≥the function in the right-hand side is decreasing,hence maximum for?= ?0.Therefore

    for ?≥ ?0≥ ?Moreover,for ?0≥ 1,

    which completes the proof with

    We now turn to the convergence results.As a consequence of Lemma 3.4,we have the theorem,without any restriction on r with respect to p and k,as follows.

    Theorem 3.2There exists a subsequence?→ +∞and a functionu?∈suchthat,for all?0,

    Moreover,u?=0on??∞.

    Note that the weak convergence above implies that u?? u?weakly inWe will sometimes omit the restriction notation in the sequel when unnecessary.

    ProofBy estimates(3.1)and(3.26),for all n ∈ N?,u?is bounded in W1,p(?n).Using the diagonal procedure,we thus construct a sequence ?nsuch that for all m,in W1,p(?m),with um=0 on× ?ω′′.Now,since ?m? ?m′as soon as m≤m′,it followsso that we have constructed a single limit function u?in the desired class.Furthermore,for all ?0,if we choose an integer m ≥ ?0,we see that convergence(3.30)holds true.

    In the sequel,we will always consider a weakly convergent subsequence u?in the sense of Theorem 3.2.

    4 Identification of the Limit When ?→ +∞

    In this section,we do not make any further use of assumption(2.9)of uniform strict convexity of F′′,other than the fact that we used it to establish Theorem 3.1.2Keep in mind that this hypothesis is void for k=0 anyway.The results will only hold for values of r small enough depending on p.We let ?∞=Rr× ω′′.

    Let usfirst show that the asymptotic behavior of u?is independent of the elongated dimension if r is small enough.

    Theorem 4.1Assume thatr<pifk=0,or thatr<if0< k< p.Then we have?′u?=0andu?may be identified with a function in thex′′variable only,still denotedu?,which belongs to(ω′′).

    ProofBy estimates(3.2)and(3.25)and the triangle inequality,it follows that

    when ?→ + ∞ w ith ?0fixed.Indeed,when 0 < k ≤,we actually have≤ p and since?→ + ∞,thefirst term in the right-hand side of estimate(4.1)is bounded from above by the second term.

    In order to get a feeling of what Theorem 4.1 says,let us look at a few examples.For the Laplacian,we have p=2 and we can take k=0,which restricts this result to r=1(see Section 5 for a more general result with additional hypotheses,that applies in this case).For the p-Laplacian,p>2,we can take k=2 and the result is restricted to r<.This restriction for the p-Laplacian can already be found in[18].Note that r=1 and r=2 are allowed for any value of p.This is not optimal in this particular case,since it is known that?→+∞ convergence holds without restriction on the dimension with respect to p(see[10]).

    Let us now identify the limit function.Wefirst need another estimate.

    Lemma 4.1There exists a constantc5such that for allt≤s,

    ProofWe may assume that t>0,since the case t=0 is already covered by Lemma 3.4.We use here De Giorgi’s classical slicing trick.Let n be an integer large enough so that 0≤t?1n<s+1n≤?.For each integer m,1≤m≤n,we consider the cut-offfunction

    and that Sm,n∩ Sm′,n= ? when m/=m′.

    Let us consider the test-function v?,m,n=(1?χm,n)u?+χm,nu?.The minimization problem yields the estimate

    Taking into account the specific form of the cut-off function,this implies that

    Let us estimate each term in the right-hand side separately.First of all,we have

    with A=Lr(ω′).Secondly,we see that

    We now come to the slicing argument stricto sensu.By the growth estimate(2.6),we have

    The only term that causes a difficulty is the last term coming from ?χm,n.We now plug estimates(4.4)—(4.6)into the right-hand side of estimate(4.3),sum for m=1 to n and divide the result by n.Observing that the sum of integrals over the slices Sm,ngives rise to integrals over the union of all slices,which is included in ?s+1,this yields

    We first let ?→ +∞.Due to the Rellich-Kondraˇsov theorem,follows from the coerciveness estimate that

    We finally let n → +∞ to obtain the result with

    We now are in a position to prove the main result of this section.

    Theorem 4.2The functionu?is a minimizer of problemP∞.

    for some constant C independent of ? and t.The left-hand side of estimate(4.7)is weakly lower-semicontinuous,hence,letting ?→ +∞,we obtain

    and the result follows from letting t→ +∞,since F(?u?)=F′′(?′′u?)and F(?z)=F′′(?′′z).

    We now use a classical trick to obtain strong convergence when F′′is strictly convex.Of course,when k>0,this is already the case by assumption(2.9).Strict convexity is only a new assumption if k=0.In this case,the solution u∞of the limit problem is unique and this uniqueness implies the weak convergence of the whole family u?.

    Theorem 4.3Assume thatF′′is strictly convex.Thenu?=u∞andu?→ u∞strongly inW1,p(??0)for all?0.

    We recall the following two lemmas that can be found e.g.in[3].

    Lemma 4.2LetF:RM→Rbe strictly convex.Letμ∈]0,1[andaj,a∈RMsuch that

    Thenaj→a.

    The second lemma is a slight variation on Fatou’s Lemma.

    Lemma 4.3LetFj,F,Hj,H∈L1(?)withFj≥Hj≥0for allj,Fj→FandHj→Ha.e.,andR?Fjdx→R?F dx.Then

    Proof of Theorem 4.3We already know that?′u?→ 0= ?′u?strongly in Lp(?t)by estimate(4.1).We thus just have to prove the strong convergence of?′′u?.

    We use a similarslicing as before,with the test-functions1≤m≤n.Skipping the details,this slicing implies that

    On the other hand,for almost all x′,the function ux′,?:x′′→ u?(x′,x′′)is an admissible test-function for the limit problem,so that

    We integrate this inequality with respect to x′∈ tω′and obtain

    We now let ?→ +∞,which yields

    By hypothesis(2.7),G ≥ 0,which implies that F′′(ξ′′) ≤ F(ξ′,ξ′′)for any ξ′.It follows that

    when ?→ +∞,since F′′(?′′u?)=F(?u?).

    Let us pickμ∈]0,1[and set

    By weak lower semicontinuity,it is clear that

    Therefore

    so that g?→ 0 a.e.(up to a subsequence).We then use Lemma 4.2 to deduce that?′′u?→ ?′′u?a.e.up to that same subsequence.

    We now let

    and invoke Lemma 4.3 and(4.8)to obtain the result for ?0=t.To conclude for all ?0,we use the diagonal process.

    5 Convergence Rates

    In the previous section,we obtained convergence results without taking advantage of the term involving k in the left-hand side of estimate(3.25).This makes them valid in particular for k=0 without strict or uniform strict convexity.It should however be clear that for k>0,the term in question can be used to obtain a much shorter convergence proof with convergence rate,which we do not detail here.More precisely,we have the result below.

    Theorem 5.1Under the previous hypotheses with0<k<pandr<,we have

    The proof is a direct consequence of Corollary 3.1 and Lemma 3.2.

    In any case,the estimates do not seem to allow a convergence proof without any restriction on r with respect to p in all generality,whereas it is known in some cases,for instance in the case of the Laplacian,that convergence holds true for all values of r.

    In order to partially overcome these shortcomings,we assume now that k=0 and that F′′is uniformly strictly convex in the sense that

    for some β>0.Note that this is equivalent to allowing k=p in hypotheses(2.7)and(2.9).In some sense,is then infinite and it is to be expected that there should be no restriction on the allowed dimensions r,plus faster than polynomial convergence.This is what we now proceed to show.

    Under assumption(5.1),it is fairly clear that we still have an estimate similar to that of Theorem 3.1,namely,

    Let us thus prove that not only does convergence hold without restrictions on the elongated dimension r,but that it also occurs at an exponential rate.The extra control makes things actually much easier.

    Theorem 5.2Under hypotheses(2.6)–(2.7)withk=0and(5.1),then for allr ≤ nand all?0,there exist constantsCandα > 0independent of?such that we have

    ProofWe take s=t+1 in estimate(5.2),which yields

    Setting

    we have just shown that

    or in other words

    We iterate inequality(5.3)using the sequence tn=n+ ?0,n=0,···, ?? ?0」.Obviously

    for all such n,and in particular for the last one,

    with lnθ< 0.Now,for all r we can pick α such that lnθ< pα < 0 and e?lnθ?r≤ e?pα?for ?large enough,which completes the proof since?′u∞=0.

    Theorem 5.2 applies to energies of the form F(ξ)=F′(ξ′)+F′′(ξ′′),for instance.We recover in particular the known result for the case of the 2-Laplacian.See also the monograph[6]for exponential estimates in this context.

    6 Extension to the Vectorial Case

    We have written everything so far in the context of a scalar problem,i.e.,the functions u?are scalar-valued.All previous developments only made use of the minimization problem,under various convexity assumptions.Now clearly,absolutely nothing is changed if we consider instead vector-valued problems in the calculus of variations,with functions u?taking their values in some RN,if the energies are supposed to satisfy the same growth,coercivity and convexity assumptions as before,and the same convergence results hold true.

    Unfortunately,in the vectorial case of the calculus of variations,the relevant condition that guarantees lower-semicontinuity of the energy functional is not convexity,but much weaker conditions such as quasiconvexity,or in the case of energies that can take the value+∞,as is the case in nonlinear elasticity,polyconvexity,see[11].Indeed,convexity is not suitable in nonlinear elasticity for well-known modeling reasons.This explains why we have striven to use as little convexity as possible(in some sense)at any given point in the sequence of arguments.This comment should however be mitigated by the fact that some instances of our uses of convexity will also work with rank-1-convexity,which is a reasonable assumption in the vectorial case.There are also notions of strict uniform quasiconvexity that may apply,see[12].

    The fact that the Euler-Lagrange equation is not available in nonlinear elasticity is also an incentive to try and only use the minimization problem.Now,it is at this point unclear to us how to attack the elongation problem in such nonconvex vectorial cases,since we still heavily rely on(strict uniform)convexity at crucial points of the proofs.Moreover,the Dirichlet boundary condition considered here is not necessarily the most interesting one in the context of nonlinear elasticity,in particular if we have the Saint Venant principle in mind.

    Even the potential limit problem is not so clear.In another dimension reduction context,when considering a body whose thickness goes to zero,and with different boundary conditions,it can be seen that quasiconvexity is not conserved through an “algebraic” formula of the kind found here,and that a relaxation step is necessary(see for instance[15]).Physically,this due to the possibility of crumpling such a thin body.A similar phenomenon may quite possibly happen here,but maybe not in the same fashion.

    To the best of our knowledge,the nonconvex vectorial case remains open.

    [1]Attouch,H.and Aze,D.,Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method,Annales de l’Institut Henri Poincaré(C)Non Linear Analysis,10,1993,289–312.

    [2]Ball,J.M.,Convexity conditions and existence theorems in nonlinear elasticity,Arch.Rational Mech.Anal.,63,1977,337–403.

    [3]Ball,J.M.and Marsden,J.E.,Quasiconvexity at the boundary,positivity of the second variation and elastic stability,Arch.Rat.Mech.Anal.,86,1984,251–277.

    [4]Chipot,M.,? Goes to Plus Infinity,Birkh?user,Basel,Boston,Berlin,2002.

    [5]Chipot,M.,On the asymptotic behaviour of some problems of the calculus of variations,J.Elliptic Parabol.Equ.,1,2015,307–323,DOI:10.1007/BF03377383.

    [6]Chipot,M.,Asymptotic Issues for Some Partial Differential Equations,Imperial College Press,London,2016.

    [7]Chipot,M.,Mojsic,A.and Roy,P.,On some variational problems set on domains tending to infinity,Discrete Contin.Dyn.Syst.,36(7),2016,3603–3621.

    [8]Chipot,M.and Rougirel,A.,Sur le comportement asymptotique de la solution de probl`emes elliptiques dans des domaines cylindriques tendant vers l’infini,C.R.Acad.Sci.Paris Sér.I Math.,331(6),2000,435–440.

    [9]Chipot,M.and Rougirel,A.,On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions,Discrete Contin.Dyn.Syst.Ser.B,1(3),2001,319–338.

    [10]Chipot,M.and Xie,Y.,Some issues on the p-Laplace equation in cylindrical domains,Tr.Mat.Inst.Steklova,261,2008,Differ.Uravn.i Din.Sist.,293–300;translation inProc.Steklov Inst.Math.,261(1),2008,287–294.

    [11]Dacorogna,B.,Direct Methods in the Calculus of Variations,2nd ed.,Springer-Verlag,New York,2000.

    [12]Evans,L.C.,Quasiconvexity and partial regularity in the calculus of variations,Arch.Rational Mech.Anal.,95,1986,227–252.

    [13]Giaquinta,M.,Introduction to regularity theory for nonlinear elliptic systems,Lectures in Mathematics ETH Zürich,Birkh?user,Basel,1993.

    [14]Juditsky,A.and Nesterov,Y.,Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization,Stoch.Syst.,4(1),2014,44–80.

    [15]Le Dret,H.and Raoult,A.,The nonlinear membrane model as variational limit of nonlinear threedimensional elasticity,J.Maths.Pures Appl.,74,1995,549–578.

    [16]Mielke,A.,Normal hyperbolicity of center manifolds and Saint-Venant’s principle,Arch.Rational Mech.Anal.,110,1990,353–372,DOI:10.1007/BF00393272.

    [17]Toupin,R.A.,Saint-Venant’s principle,Arch.Rational Mech.Anal.,18,1965,83–96.

    [18]Xie,Y.,On Asymptotic Problems in Cylinders and Other Mathematical Issues,Ph.D.thesis,Univ.Zürich,2006.

    精品少妇久久久久久888优播| av欧美777| 亚洲精品自拍成人| 人妻一区二区av| 久久九九热精品免费| 成人手机av| cao死你这个sao货| 欧美日韩乱码在线| 一区二区三区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 757午夜福利合集在线观看| 亚洲成av片中文字幕在线观看| 免费观看精品视频网站| 黑人巨大精品欧美一区二区mp4| 人妻久久中文字幕网| 亚洲精品国产区一区二| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久国产电影| 久久亚洲真实| 中文亚洲av片在线观看爽 | 十八禁高潮呻吟视频| 成人精品一区二区免费| 国产av一区二区精品久久| 精品国产乱子伦一区二区三区| 两个人免费观看高清视频| 国产精品一区二区在线观看99| 国产精品久久视频播放| 免费看a级黄色片| 狂野欧美激情性xxxx| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 欧美另类亚洲清纯唯美| 久久人妻福利社区极品人妻图片| 王馨瑶露胸无遮挡在线观看| 国产极品粉嫩免费观看在线| 欧美黑人精品巨大| 色综合婷婷激情| 女警被强在线播放| 午夜福利免费观看在线| 亚洲专区字幕在线| 亚洲视频免费观看视频| 91大片在线观看| 男女免费视频国产| 天天躁狠狠躁夜夜躁狠狠躁| 精品国内亚洲2022精品成人 | 亚洲国产毛片av蜜桃av| 亚洲在线自拍视频| 国产精品美女特级片免费视频播放器 | 亚洲五月婷婷丁香| 国产精品免费大片| 精品免费久久久久久久清纯 | 国产黄色免费在线视频| 91成年电影在线观看| 男女床上黄色一级片免费看| 中文亚洲av片在线观看爽 | 国产野战对白在线观看| 欧美大码av| 国产欧美日韩一区二区精品| 亚洲九九香蕉| 亚洲美女黄片视频| 国产男女内射视频| 狠狠婷婷综合久久久久久88av| 精品高清国产在线一区| 国产成人欧美在线观看 | 成年版毛片免费区| 视频区图区小说| 久久久久久久久久久久大奶| av有码第一页| 久久精品aⅴ一区二区三区四区| 中文字幕制服av| 黄色毛片三级朝国网站| 国内久久婷婷六月综合欲色啪| 国产精品 国内视频| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 久99久视频精品免费| 国产一卡二卡三卡精品| 建设人人有责人人尽责人人享有的| 国产av又大| 19禁男女啪啪无遮挡网站| 午夜91福利影院| 欧美另类亚洲清纯唯美| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 欧美人与性动交α欧美精品济南到| 亚洲专区中文字幕在线| 成人国语在线视频| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 亚洲午夜理论影院| 在线永久观看黄色视频| 91在线观看av| 日韩欧美免费精品| 国产精品99久久99久久久不卡| 免费观看人在逋| 19禁男女啪啪无遮挡网站| 国产精品久久久人人做人人爽| 久久久久久免费高清国产稀缺| 亚洲欧美激情在线| 亚洲免费av在线视频| 在线看a的网站| 1024香蕉在线观看| 麻豆乱淫一区二区| 欧美人与性动交α欧美软件| 超色免费av| 久久久久精品国产欧美久久久| 成人黄色视频免费在线看| 国产免费现黄频在线看| 另类亚洲欧美激情| av在线播放免费不卡| 窝窝影院91人妻| 精品一区二区三区av网在线观看| 欧美黄色片欧美黄色片| 在线观看66精品国产| 亚洲 欧美一区二区三区| 9色porny在线观看| 操出白浆在线播放| 免费人成视频x8x8入口观看| 在线天堂中文资源库| 搡老熟女国产l中国老女人| 国产单亲对白刺激| 捣出白浆h1v1| 国产91精品成人一区二区三区| 一本综合久久免费| 高潮久久久久久久久久久不卡| 亚洲第一av免费看| 99久久99久久久精品蜜桃| 欧美乱码精品一区二区三区| 欧美一级毛片孕妇| 国产成人免费无遮挡视频| 99热只有精品国产| 美女视频免费永久观看网站| 日本黄色视频三级网站网址 | 极品教师在线免费播放| 国产深夜福利视频在线观看| 国产亚洲精品久久久久久毛片 | 久久国产精品影院| 午夜日韩欧美国产| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 成人三级做爰电影| 久久久久久亚洲精品国产蜜桃av| 91av网站免费观看| 久久久国产精品麻豆| 午夜福利,免费看| 国产高清视频在线播放一区| 国产99白浆流出| 亚洲欧美日韩另类电影网站| 曰老女人黄片| 动漫黄色视频在线观看| 亚洲av成人一区二区三| 两个人看的免费小视频| 久久久久国内视频| 午夜福利一区二区在线看| 久久精品国产综合久久久| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡人人看| 三上悠亚av全集在线观看| 色婷婷久久久亚洲欧美| 亚洲中文字幕日韩| 国产黄色免费在线视频| 母亲3免费完整高清在线观看| 在线视频色国产色| 丝瓜视频免费看黄片| 久久久久国产一级毛片高清牌| 色精品久久人妻99蜜桃| 老熟女久久久| 国产一区在线观看成人免费| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 嫩草影视91久久| 老汉色∧v一级毛片| 精品福利观看| 曰老女人黄片| 国产精品免费一区二区三区在线 | 亚洲第一av免费看| 看黄色毛片网站| 欧美大码av| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 99国产精品免费福利视频| 午夜福利免费观看在线| 亚洲精品国产精品久久久不卡| 一区二区日韩欧美中文字幕| 精品高清国产在线一区| 欧美日韩乱码在线| 亚洲七黄色美女视频| 久久亚洲精品不卡| 黑人巨大精品欧美一区二区mp4| 国产在线精品亚洲第一网站| 久久国产精品影院| 大香蕉久久网| 国产精品久久久人人做人人爽| 在线观看www视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 纯流量卡能插随身wifi吗| 久久热在线av| 国产aⅴ精品一区二区三区波| 日韩熟女老妇一区二区性免费视频| 国产精品电影一区二区三区 | 午夜激情av网站| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 757午夜福利合集在线观看| 精品国内亚洲2022精品成人 | 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 最近最新免费中文字幕在线| 黄色视频不卡| 成年人午夜在线观看视频| 国产成+人综合+亚洲专区| 国产亚洲精品第一综合不卡| 成人av一区二区三区在线看| 欧美黑人精品巨大| 啦啦啦 在线观看视频| 久久人妻熟女aⅴ| 69av精品久久久久久| a级毛片在线看网站| 建设人人有责人人尽责人人享有的| 欧美乱色亚洲激情| 国产精品电影一区二区三区 | 12—13女人毛片做爰片一| 18禁黄网站禁片午夜丰满| av超薄肉色丝袜交足视频| 精品视频人人做人人爽| 国产亚洲精品一区二区www | 国产精品.久久久| 亚洲全国av大片| 女人高潮潮喷娇喘18禁视频| 国产成人系列免费观看| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区蜜桃| 国产乱人伦免费视频| 香蕉久久夜色| 亚洲第一av免费看| 夫妻午夜视频| 美女高潮到喷水免费观看| 久久精品亚洲av国产电影网| 免费在线观看亚洲国产| 丰满的人妻完整版| 757午夜福利合集在线观看| 怎么达到女性高潮| 国产精品综合久久久久久久免费 | 91成人精品电影| 国产片内射在线| 91在线观看av| 精品第一国产精品| 黑丝袜美女国产一区| 丝袜美腿诱惑在线| a在线观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 狂野欧美激情性xxxx| 校园春色视频在线观看| 久久久久精品国产欧美久久久| 制服诱惑二区| 中国美女看黄片| 亚洲美女黄片视频| 午夜激情av网站| 亚洲欧美日韩另类电影网站| 91九色精品人成在线观看| 亚洲九九香蕉| 午夜福利视频在线观看免费| 亚洲国产看品久久| av国产精品久久久久影院| 高清视频免费观看一区二区| 黑人操中国人逼视频| 啪啪无遮挡十八禁网站| 亚洲熟女精品中文字幕| 男女之事视频高清在线观看| 新久久久久国产一级毛片| 999久久久精品免费观看国产| 国产精品成人在线| 久久精品aⅴ一区二区三区四区| 国产蜜桃级精品一区二区三区 | 成年版毛片免费区| 超碰成人久久| 手机成人av网站| 中文字幕av电影在线播放| 一边摸一边抽搐一进一出视频| 国产精品永久免费网站| 国产精品一区二区免费欧美| 中文字幕最新亚洲高清| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| av国产精品久久久久影院| www日本在线高清视频| 午夜视频精品福利| 999精品在线视频| 色在线成人网| 亚洲精品一二三| 精品国产一区二区三区四区第35| 亚洲成人国产一区在线观看| 久久久久久久久久久久大奶| 黄片大片在线免费观看| av片东京热男人的天堂| 国内久久婷婷六月综合欲色啪| 亚洲av成人一区二区三| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 天堂√8在线中文| 麻豆乱淫一区二区| 嫩草影视91久久| 国产成人精品无人区| 国产免费av片在线观看野外av| 欧美午夜高清在线| 欧美激情久久久久久爽电影 | 99re在线观看精品视频| 亚洲情色 制服丝袜| 麻豆成人av在线观看| 99国产精品99久久久久| 亚洲精品自拍成人| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 高清视频免费观看一区二区| 国产成人一区二区三区免费视频网站| 啦啦啦 在线观看视频| 麻豆av在线久日| 欧美黑人精品巨大| 99在线人妻在线中文字幕 | 一级毛片精品| 久久久久国产精品人妻aⅴ院 | 亚洲精品一二三| 中文欧美无线码| 深夜精品福利| 婷婷精品国产亚洲av在线 | 国产免费现黄频在线看| 99国产精品免费福利视频| 久久久国产精品麻豆| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 露出奶头的视频| 王馨瑶露胸无遮挡在线观看| 亚洲专区字幕在线| 欧美国产精品一级二级三级| 一级片免费观看大全| 国产精品影院久久| 黄色丝袜av网址大全| 搡老乐熟女国产| 国产精品乱码一区二三区的特点 | 美女国产高潮福利片在线看| 欧美激情极品国产一区二区三区| 欧美黄色片欧美黄色片| a级毛片黄视频| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 18禁黄网站禁片午夜丰满| 日韩有码中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产精品二区激情视频| 欧美激情久久久久久爽电影 | 欧美在线一区亚洲| 久久这里只有精品19| 香蕉久久夜色| 欧洲精品卡2卡3卡4卡5卡区| 淫妇啪啪啪对白视频| 久久中文看片网| 午夜视频精品福利| 国产精品99久久99久久久不卡| 动漫黄色视频在线观看| 久久精品人人爽人人爽视色| 少妇裸体淫交视频免费看高清 | 变态另类成人亚洲欧美熟女 | 最新的欧美精品一区二区| 免费观看a级毛片全部| 91麻豆精品激情在线观看国产 | 国产精品美女特级片免费视频播放器 | 久久婷婷成人综合色麻豆| 午夜成年电影在线免费观看| 电影成人av| 激情在线观看视频在线高清 | 老司机深夜福利视频在线观看| 久久久久久久午夜电影 | 天堂动漫精品| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区视频在线观看| 亚洲一区二区三区欧美精品| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 欧美中文综合在线视频| 韩国精品一区二区三区| 极品教师在线免费播放| 久久精品91无色码中文字幕| 午夜福利影视在线免费观看| 人人妻,人人澡人人爽秒播| 91精品国产国语对白视频| 久久亚洲精品不卡| 十分钟在线观看高清视频www| xxx96com| 亚洲自偷自拍图片 自拍| 日韩三级视频一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 侵犯人妻中文字幕一二三四区| 91成人精品电影| 国产免费男女视频| 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 99久久精品国产亚洲精品| 麻豆成人av在线观看| 狠狠婷婷综合久久久久久88av| 亚洲第一欧美日韩一区二区三区| 国产深夜福利视频在线观看| 婷婷成人精品国产| 久久午夜亚洲精品久久| 高清av免费在线| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 亚洲欧美一区二区三区黑人| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 国产欧美日韩精品亚洲av| 中文字幕人妻熟女乱码| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 精品福利永久在线观看| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线 | 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 久久久国产一区二区| 欧美 日韩 精品 国产| 国产极品粉嫩免费观看在线| 看片在线看免费视频| 男人舔女人的私密视频| 老司机福利观看| 久久ye,这里只有精品| 黄色视频,在线免费观看| 久久九九热精品免费| 亚洲国产欧美网| 天堂动漫精品| 在线观看午夜福利视频| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 1024香蕉在线观看| 国产精品一区二区免费欧美| 成在线人永久免费视频| 叶爱在线成人免费视频播放| 国产区一区二久久| 黄色怎么调成土黄色| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽人人夜夜| 桃红色精品国产亚洲av| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 天堂av国产一区二区熟女人妻| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| 一级黄色大片毛片| 黄色成人免费大全| 精品人妻1区二区| 国产精品一区二区三区四区久久| 精品国产美女av久久久久小说| 动漫黄色视频在线观看| 成人鲁丝片一二三区免费| 在线观看午夜福利视频| av片东京热男人的天堂| 香蕉丝袜av| 欧美日韩福利视频一区二区| 99热这里只有精品一区| 3wmmmm亚洲av在线观看| 久久伊人香网站| 亚洲欧美一区二区三区黑人| 日韩成人在线观看一区二区三区| 又黄又粗又硬又大视频| 真人做人爱边吃奶动态| 欧美极品一区二区三区四区| 成人欧美大片| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩东京热| 国产精品1区2区在线观看.| 成年女人看的毛片在线观看| 嫩草影视91久久| 麻豆成人av在线观看| 999久久久精品免费观看国产| 亚洲人成网站在线播放欧美日韩| 无遮挡黄片免费观看| av在线天堂中文字幕| АⅤ资源中文在线天堂| 两个人的视频大全免费| 啦啦啦观看免费观看视频高清| 久久久国产成人免费| 久久精品综合一区二区三区| 丰满乱子伦码专区| 日本精品一区二区三区蜜桃| 观看美女的网站| 免费在线观看亚洲国产| 精品久久久久久久久久久久久| av黄色大香蕉| 国产成人aa在线观看| 观看美女的网站| 精品国产美女av久久久久小说| 在线a可以看的网站| 亚洲成人免费电影在线观看| 免费电影在线观看免费观看| 深夜精品福利| 人人妻人人澡欧美一区二区| 嫩草影视91久久| 日本熟妇午夜| 国产三级在线视频| 免费在线观看亚洲国产| 久久香蕉精品热| 日韩成人在线观看一区二区三区| 亚洲成人久久性| 国产成人av激情在线播放| 窝窝影院91人妻| 黄色片一级片一级黄色片| 97超级碰碰碰精品色视频在线观看| 性色avwww在线观看| 在线免费观看不下载黄p国产 | 精华霜和精华液先用哪个| 999久久久精品免费观看国产| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 免费在线观看亚洲国产| 在线观看av片永久免费下载| 日韩欧美精品免费久久 | 精品国产三级普通话版| 麻豆成人午夜福利视频| 欧美日韩福利视频一区二区| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 少妇熟女aⅴ在线视频| 精品久久久久久久人妻蜜臀av| 一本精品99久久精品77| 欧美一区二区精品小视频在线| 中文字幕人成人乱码亚洲影| av专区在线播放| 国产免费男女视频| 老司机深夜福利视频在线观看| 9191精品国产免费久久| 欧美一级毛片孕妇| 日本成人三级电影网站| 国产欧美日韩精品亚洲av| 在线看三级毛片| 亚洲av五月六月丁香网| 亚洲av美国av| 欧美色欧美亚洲另类二区| 免费看光身美女| 亚洲美女视频黄频| 国产淫片久久久久久久久 | 午夜日韩欧美国产| 此物有八面人人有两片| 一a级毛片在线观看| 欧美在线一区亚洲| 国产综合懂色| 日韩大尺度精品在线看网址| 中文字幕av成人在线电影| 日本a在线网址| 国产高清三级在线| 在线观看av片永久免费下载| 69人妻影院| 国产精华一区二区三区| xxxwww97欧美| 婷婷精品国产亚洲av在线| 国产美女午夜福利| ponron亚洲| 99精品久久久久人妻精品| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 九九在线视频观看精品| 麻豆国产97在线/欧美| xxxwww97欧美| 夜夜看夜夜爽夜夜摸| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 黄片小视频在线播放| 国产中年淑女户外野战色| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀| 岛国在线免费视频观看| 99热这里只有是精品50| 美女免费视频网站| 国产成+人综合+亚洲专区| av国产免费在线观看| 精品久久久久久久末码| 观看免费一级毛片| 午夜福利在线在线| 久久久久久久精品吃奶| 高潮久久久久久久久久久不卡| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件 | 欧美bdsm另类| 禁无遮挡网站| a级一级毛片免费在线观看| 一区二区三区国产精品乱码| 啦啦啦免费观看视频1| 亚洲最大成人手机在线| 亚洲在线观看片| 亚洲精品日韩av片在线观看 | 一区福利在线观看| 欧美一区二区国产精品久久精品| 久9热在线精品视频| 激情在线观看视频在线高清| 国产欧美日韩精品亚洲av| 精品日产1卡2卡| 每晚都被弄得嗷嗷叫到高潮| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 动漫黄色视频在线观看| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| 97碰自拍视频|