李鵬飛,孟金柱,郝慶玲,畢錫麟,王 鍇,朱芷葳,呂麗華*
(1. 山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,太谷 030801; 2.銅仁學(xué)院烏江學(xué)院,銅仁 554300;3. 山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
動(dòng)物卵泡發(fā)育是一個(gè)復(fù)雜的過程,在卵泡發(fā)育的不同階段,一些特定基因?qū)β雅莸哪技?、選擇和閉鎖起到了關(guān)鍵調(diào)控作用[1]。S.M.Romereim等[2]利用基因芯片技術(shù)對(duì)牛卵巢DF中GCs和膜細(xì)胞(Theca cells, TCs)以及黃體中的大黃體細(xì)胞(Large luteal cells, LLCs)和小黃體細(xì)胞(Small luteal cells, SLCs)進(jìn)行轉(zhuǎn)錄組分析,篩選出大量調(diào)控牛卵泡發(fā)育和黃體形成的基因;E.Terenina等[3]對(duì)豬健康和閉鎖卵泡GCs進(jìn)行表達(dá)譜分析,共獲得1 684個(gè)重要調(diào)控基因,其中高表達(dá)基因287個(gè),篩選出11個(gè)卵泡閉鎖的標(biāo)記基因。課題組前期也對(duì)PDF1和ODF1卵泡進(jìn)行了Illumina平臺(tái)測(cè)序,共獲得42個(gè)上調(diào)基因和41個(gè)下調(diào)基因可能與牛卵泡發(fā)育直接相關(guān)[4]。牛卵泡發(fā)育過程中,卵泡發(fā)育出現(xiàn)偏差(Deviation)被認(rèn)為是卵泡發(fā)育的重要生理階段和轉(zhuǎn)折點(diǎn),其中ODF1卵泡將發(fā)育為DF,具有排卵的潛力,而PDF2卵泡可能發(fā)育為SF,并最終走向閉鎖,本研究以牛卵巢PDF2和ODF1不同生理階段卵泡作為樣本篩選卵泡發(fā)育相關(guān)基因,隨機(jī)選擇差異表達(dá)基因qRT-PCR驗(yàn)證分析其在DF和SF中的表達(dá)譜,提高了卵泡發(fā)育基因篩選的準(zhǔn)確性,為深入研究基因調(diào)控牛卵泡發(fā)育奠定了基礎(chǔ)。
選擇9頭正常發(fā)情的青年母牛,G6G技術(shù)(雙排卵同期發(fā)情技術(shù)的改進(jìn)方案,即注射PGF后,18~24 h補(bǔ)加1次)同期發(fā)情,每天兩次B超檢測(cè),并實(shí)時(shí)記錄卵泡直徑變化。分別在卵泡發(fā)育波出現(xiàn)偏差前和偏差后,3頭牛分離ODF1卵泡,3頭牛分離PDF2卵泡,另3頭牛分離DF和SF。
1.2.1 總RNA的抽提 將分離的各卵泡分別置于預(yù)盛DPBS的平皿上,眼科剪一分為二后刮取GCs,移液槍轉(zhuǎn)移到EP管中,2 000 r·min-1離心15 min,棄上清,并加入10倍體積RNAiso Plus,抽提總RNA。
1.2.2 轉(zhuǎn)錄組測(cè)序文庫(kù)的構(gòu)建 轉(zhuǎn)錄組cDNA文庫(kù)的構(gòu)建方法詳見課題組前期研究[4-5],Illumina HiSeq 2000平臺(tái)進(jìn)行混合測(cè)序。
1.2.3 差異表達(dá)基因篩選 轉(zhuǎn)錄本差異表達(dá)基因的篩選參照S.Audic等[6]的研究方法,設(shè)定條件:RPKM值≥0.5,PDF2-RPKM 與ODF1-RPKM 雙向比值 ≥2,經(jīng)FDR校正(P<0.05),獲得差異表達(dá)基因。
1.2.4 差異表達(dá)基因GO分析 應(yīng)用DAVID 6.7在線分析軟件(https://david.ncifcrf.gov/)輸入差異表達(dá)基因列表,物種選擇牛在線分析差異表達(dá)基因的功能聚類(Pvalue<0.05)并作圖。
1.2.5 卵泡發(fā)育相關(guān)基因的篩選 差異表達(dá)基因經(jīng)GO功能富集分析后,結(jié)合Genecards(http://www.genecards.org/)基因功能在線查詢系統(tǒng)篩選,并獲得與牛卵泡發(fā)育直接相關(guān)的基因。
1.2.6 qRT-PCR驗(yàn)證分析 從篩選出的卵泡發(fā)育相關(guān)基因中,隨機(jī)選擇5個(gè)基因,利用qRT-PCR進(jìn)行轉(zhuǎn)錄組表達(dá)譜驗(yàn)證分析。qRT-PCR研究中,DF和SF顆粒細(xì)胞總RNA均為實(shí)驗(yàn)室前期獲得,經(jīng)反轉(zhuǎn)錄后,-20 ℃保存?zhèn)溆?。引物設(shè)計(jì)參考NCBI已提交的牛(Bostaurus)相關(guān)基因序列,RPLP0作為內(nèi)參基因,Primer 5.0軟件設(shè)計(jì),并送TaKaRa公司合成引物(表1)。
表1 熒光定量PCR引物序列
Table 1 Primers sequence of quantitative PCR
基因類型Genotype基因名稱Genesymbol引物序列(5'-3')Primersequence目的基因TargetgeneMAPK13F:GGAAGCAGCACATCTACAAGGA,R:TGGTAGGTGGTATCACGAGGCCYP19A1F:AGTCCTTCCTCGTGCTGAGTCCC,R:TCCTCCACTCGCCTTTCCTCCGREB1F:GTTCAATCGCGGATTCCAGC,R:ACCCCTGAATGCCAGACATGSERPINE2F:ACAAGGCCATCGTCTCCAAG,R:TTGTTCCTCGTGACGAAGGGGSTA5F:CAACAAGCTGAGCAAGGCTG,R:TTTCAGGCCCTTCAGCAGAG內(nèi)參基因ReferencegeneRPLP0F:CAACCCTGAAGTGCTTGACAT,R:AGGCAGATGGATCAGCCA
各基因相對(duì)表達(dá)量采用ΔΔCT法計(jì)算,表達(dá)量數(shù)值經(jīng)內(nèi)參基因RPLP0校正,結(jié)果采用“均值±標(biāo)準(zhǔn)差(Mean±SD)”表示,SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行顯著性分析。
Illumina平臺(tái)測(cè)序結(jié)果經(jīng)數(shù)據(jù)庫(kù)比對(duì),共獲得35 325個(gè)基因;設(shè)定參數(shù)RPKM值≥0.5的表達(dá)基因共15 413個(gè),其中表2列出了15個(gè)高表達(dá)基因,由表2可知,這些高表達(dá)基因中有參與轉(zhuǎn)錄調(diào)控的RN5-8S1,也有參與細(xì)胞發(fā)育和內(nèi)分泌激素調(diào)控的基因,如INHA、INHBA和FST,這些基因在PDF2和ODF1中的表達(dá)量變化差異較小。
RPKM值≥0.5的表達(dá)基因經(jīng)FDR(P<0.05)校正后,設(shè)定PDF2-RPKM/ODF1-RPKM≥2,共獲得383個(gè)下調(diào)的差異表達(dá)基因;設(shè)定ODF1-RPKM/PDF2-RPKM≥2,共獲得268個(gè)上調(diào)的差異表達(dá)基因。其中差異表達(dá)倍數(shù)最高的20個(gè)基因及其功能注釋見表3。
表2 轉(zhuǎn)錄組PDF2和ODF1中15個(gè)表達(dá)量最高的基因
Table 2 Top 15 highly expressed genes in PDF2 and ODF1 follicles
基因名稱GenesymbolPDF2-RPKMODF1-RPKMGlutathioneS-transferasealpha3(GSTA3)12815.5417611.445.8SribosomalRNA(RN5-8S1)12506.60856.09Serglycin(SRGN)9501.337315.53HypotheticalLOC100337434(LOC100337434)7955.303115.13Serpinpeptidaseinhibitor,cladeE,member2(SERPINE2)7124.7011075.44Inhibin,alpha(INHA)6858.789658.83HypotheticalproteinLOC100336997(LOC100336997)6536.212262.25Inhibin,betaA(INHBA)6115.109440.2418SribosomalRNA(RN18S1)5947.281040.31CytochromeCoxidasesubunitI-like(LOC100299681)4322.933707.56Follistatin(FST)3968.984998.09CytochromecoxidasesubunitI-like(LOC100301020)2830.212372.11CytochromecoxidasesubunitI-like(LOC100300995)2800.572440.52Vimentin(VIM)2350.982050.73Milkfatglobule-EGFfactor8protein(MFGE8)2174.092077.70
表3 轉(zhuǎn)錄組PDF2和ODF1中10個(gè)差異表達(dá)倍數(shù)最高的上調(diào)和下調(diào)基因及其功能
Table 3 Top 10 up-regulated and down-regulated genes with high differential expression fold in PDF2 and ODF1 and their functions
基因名稱GenesymbolPDF2-RPKMODF1-RPKMPDF2/ODF1ODF1/PDF2P值P-value基因功能GenefunctionLOC78780342.282.1519.65-2.56×10-3-PPP1R14A62.533.9915.67-調(diào)節(jié)磷酸化作用和平滑肌收縮OLA127.111.7415.59-水解ATP和GTPRN5-8S112506.60856.0914.61-1.74×10-2非編碼RNALOC1003373027.650.5913.04-6.82×10-3-QRFPR19.141.5512.32-4.77×10-4調(diào)節(jié)和苷酸環(huán)化酶活性和胞內(nèi)Ca2+水平RMRP167.0013.5712.31-線粒體RNA組分,參與核糖核蛋白修飾LOC6183604.960.549.22-1.98×10-5-VNN154.537.267.51-3.33×10-4參與造血細(xì)胞遷移ANGPT254.477.916.88-7.25×10-4調(diào)節(jié)內(nèi)皮細(xì)胞凋亡GAPDH1.4259.65-42.022.10×10-3參與葡萄糖代謝和新陳代謝BOLA-N8.76174.88-19.974.53×10-3MHCI類抗原TNFAIP63.3846.61-13.79調(diào)節(jié)細(xì)胞外基質(zhì)穩(wěn)定和細(xì)胞移行DDX460.678.83-13.224.83×10-3參與胚胎、精子發(fā)生和細(xì)胞生長(zhǎng)分化LOC50567611.50111.19-9.676.34×10-5CSDC21.3111.07-8.488.77×10-8負(fù)調(diào)控組蛋白合成LOC7854620.776.09-7.88CYP17A10.624.77-7.713.76×10-4參與雌激素、膽固醇和肽類合成LOC10012591611.2583.88-7.452.88×10-3ULBP31.017.46-7.405.46×10-3激活ERK、PI3K和Akt信號(hào)通路
利用DAVID 6.7在線分析軟件對(duì)651個(gè)差異表達(dá)倍數(shù)(Fold change)≥2的基因進(jìn)行GO富集性分析,共有484個(gè)基因與數(shù)據(jù)庫(kù)中牛基因功能聚類數(shù)據(jù)相匹配,分為3大類111組:其中BP占41.66%,MF占17.24%,CC占41.10%(圖1)。經(jīng)GO分析對(duì)基因歸類注釋后,便于篩選與牛卵泡發(fā)育相關(guān)的基因。如CHGA、SYTL4、NDUFAF2負(fù)調(diào)控胰島素的分泌,而胰島素對(duì)牛卵泡GCs增殖和雌激素分泌具有重要影響;參與細(xì)胞發(fā)育和周期調(diào)控的基因有45個(gè),通過蛋白磷酸化參與信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控基因有19個(gè)(圖1A);調(diào)控跨膜受體蛋白激酶活性的基因有EPHA4、NTRK1、TGFBR3、KIT和EPHA2,CAV1、CTSH、FN1和PCOLCE2 4個(gè)基因參與肽酶催化活性的調(diào)節(jié)(圖1B);參與蛋白復(fù)合體組分的基因有92個(gè),參與DNA包裝復(fù)合體組分的基因有8個(gè)(圖1C)。
經(jīng)GO功能聚類分析后,結(jié)合Genecards人基因功能注釋查詢,共獲得13個(gè)下調(diào)基因與牛卵泡發(fā)育直接相關(guān),分別為MAPK13、GSTA5、SAFB2、WNT2B、EGR1、CHGA、KANK1、SESN3、PRICKLE1、ARID4B、TGFBR3、HBEGF和MAP2K6;獲得17個(gè)與牛卵泡發(fā)育直接相關(guān)的上調(diào)基因,分別為CYP19A1、GREB1、SERPINE2、IGF2、NOTCH1、CYP17A1、SOCS3、LHCGR、SIX5、STK11、SYTL4、DACT1、CEBPB、COL3A1、NTRK1、DEPTOR和MYC,其表達(dá)差異倍數(shù)及功能注釋見表4。
從表4中隨機(jī)選擇MAPK13、CYP19A1、GREB1、SERPINE2和GSTA5共5個(gè)基因進(jìn)行qRT-PCR表達(dá)量驗(yàn)證分析,由圖2可知,CYP19A1、GREB1和SERPINE2在DF中的表達(dá)量極顯著高于SF(P<0.01);MAPK13在SF中的表達(dá)量極顯著高于DF(P<0.01),GSTA5在SF中的表達(dá)量顯著高于DF(P<0.05)。qRT-PCR分析結(jié)果表明,各基因表達(dá)趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果相符,表明PDF2和ODF1轉(zhuǎn)錄組測(cè)序結(jié)果可信度較高。
高通量測(cè)序技術(shù)是轉(zhuǎn)錄組分析強(qiáng)有力的工具,在動(dòng)物卵泡發(fā)育和成熟研究中已有大量報(bào)道[7-9]。通過全基因轉(zhuǎn)錄組分析,大量差異表達(dá)基因編碼的信號(hào)分子如GDF9、BAX、BAD,NDUFA13、IFI6和CAV1與綿羊的多產(chǎn)性能密切相關(guān)[10];對(duì)牛卵泡發(fā)育過程中黃體生成素波峰前及波峰后的卵泡GCs轉(zhuǎn)錄組分析表明,調(diào)控細(xì)胞進(jìn)程相關(guān)基因的高表達(dá)對(duì)母牛排卵具有重要意義[8],黃體生成素波峰后一組基因表達(dá)上調(diào),對(duì)GCs黃體化發(fā)揮關(guān)鍵作用[11]。上述研究也表明,在細(xì)胞發(fā)育過程中轉(zhuǎn)錄組高通量測(cè)序是篩選關(guān)鍵調(diào)控基因的有效途徑[12];同時(shí),Illumina測(cè)序技術(shù)誤差小,重復(fù)性也較好[13]。因此,本研究通過Illumina平臺(tái)對(duì)牛卵泡發(fā)育波中PDF2和ODF1卵泡進(jìn)行轉(zhuǎn)錄組測(cè)序,設(shè)定參數(shù)RPKM值≥0.5和表達(dá)差異倍數(shù)≥2,篩選差異表達(dá)基因,經(jīng)GO富集性分析,F(xiàn)DR校正(P<0.05)后,共獲得13個(gè)下調(diào)基因和17個(gè)上調(diào)基因與牛卵泡發(fā)育直接相關(guān),并通過qRT-PCR檢測(cè)對(duì)轉(zhuǎn)錄組測(cè)序結(jié)果進(jìn)行了驗(yàn)證分析。
圖1 差異表達(dá)基因GO分析Fig.1 GO analysis of differentially expressed genes
表4 牛卵泡發(fā)育相關(guān)基因
Table 4 The genes associated with bovine follicular development
基因名稱GenesymbolPDF2-RPKMODF1-RPKMPDF2/ODF1ODF1/PDF2基因功能GenefunctionMAPK131.550.612.54-參與細(xì)胞增殖、分化、轉(zhuǎn)錄調(diào)節(jié)和發(fā)育GSTA5149.4674.362.01-參與類固醇激素的合成SAFB24.421.064.17-調(diào)控細(xì)胞周期、細(xì)胞凋亡和分化WNT2B1.120.512.19-調(diào)節(jié)細(xì)胞生長(zhǎng)和分化EGR16.402.412.65-參與細(xì)胞分化和有絲分裂CHGA1.930.952.02-經(jīng)cAMP-PKA-SP1上調(diào)蛋白酶KANK112.825.922.16-跨膜受體蛋白酪氨酸激酶信號(hào)活性SESN33.671.732.11-參與激素應(yīng)答PRICKLE12.331.112.09-負(fù)調(diào)控細(xì)胞分化ARID4B7.722.403.21-參與雄性性征分化TGFBR312.052.075.83-參與生長(zhǎng)因子應(yīng)答HBEGF1.490.542.76-正調(diào)控信號(hào)轉(zhuǎn)導(dǎo)MAP2K63.411.093.12-經(jīng)蛋白質(zhì)磷酸化參與信號(hào)轉(zhuǎn)導(dǎo)CYP19A1581.481944.89-3.34參與雌激素、膽固醇和肽類合成GREB156.04147.95-2.64參與雌激素刺激的細(xì)胞增殖過程SERPINE24879.0511075.44-2.27絲氨酸蛋白酶抑制劑活性IGF21.966.08-3.10調(diào)節(jié)胰島素分泌,參與胎兒發(fā)育NOTCH11.5510.50-6.76參與細(xì)胞和組織的發(fā)育CYP17A10.624.77-7.71孕酮合成通路的關(guān)鍵酶SOCS31.663.42-2.06調(diào)節(jié)胎盤發(fā)育LHCGR4.9115.05-3.06誘導(dǎo)第二性征發(fā)育SIX51.445.33-3.69參與器官發(fā)生STK111.092.31-2.11PI3K/Akt信號(hào)通路蛋白SYTL41.092.35-2.16調(diào)節(jié)胰腺和腦垂體分泌DACT13.217.05-2.20調(diào)節(jié)Wnt信號(hào)通路CEBPB3.036.96-2.30調(diào)節(jié)細(xì)胞增殖分化COL3A13.8113.42-3.52轉(zhuǎn)化生長(zhǎng)因子β受體信號(hào)通路NTRK15.8816.67-2.84負(fù)調(diào)控細(xì)胞增殖DEPTOR1.863.80-2.05負(fù)調(diào)控細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)MYC10.2823.54-2.29調(diào)節(jié)細(xì)胞增殖分化
**. P<0.01;*.P<0.05.A. MAPK13;B.CYP19A1;C.GREB1;D.SERPINE2;E.GSTA5圖2 qRT-PCR表達(dá)量驗(yàn)證分析Fig.2 Real time PCR expression validation analysis
MAPK13的相關(guān)研究較少,近年來(lái),作為疾病特異性藥物靶蛋白開始被人們關(guān)注,在體內(nèi)表達(dá)具有嚴(yán)格的組織特異性,因此,對(duì)其功能的研究受到了限制[14-15]。這種受限制的表達(dá)模式表明該激酶可能以特定的生物學(xué)通路作為靶目標(biāo),如MAPK13調(diào)節(jié)胰島素分泌和胰島β細(xì)胞存活[16]。SAFB有SAFB1和SAFB2兩種形式,調(diào)控細(xì)胞發(fā)育、增殖和凋亡[17]。研究表明,小鼠缺失SAFB1會(huì)導(dǎo)致IGF-1水平降低進(jìn)而影響小鼠生長(zhǎng),通過降低雌二醇和黃體酮水平影響雌鼠生殖能力[18];反之,SAFB1過表達(dá)會(huì)使細(xì)胞周期S期變短,從而加速細(xì)胞凋亡[19]。EGR1是雌激素誘導(dǎo)的瞬時(shí)表達(dá)基因,以核磷蛋白或轉(zhuǎn)錄因子的形式調(diào)節(jié)細(xì)胞增殖或凋亡[20-21],同時(shí)EGR1調(diào)節(jié)信號(hào)對(duì)雌性生殖器官發(fā)育具有重要作用[22]。PRICKLE最初以平面細(xì)胞極性調(diào)控蛋白被識(shí)別[23],對(duì)小鼠的研究發(fā)現(xiàn),PRICKLE1主要在發(fā)育胚胎的神經(jīng)細(xì)胞中表達(dá)[24],基因敲除試驗(yàn)表明,PRICKLE1對(duì)外胚層和基底外側(cè)極性的維持和建立具有重要作用[25]。ARID4B屬于ARID家族,包含一個(gè)DNA連接活性區(qū)域螺旋-折疊-螺旋結(jié)構(gòu)以及Tudor區(qū)域(TD)和chromo區(qū)域(CD)[26],TD和CD區(qū)域作為分子適配區(qū)域連接甲基化組蛋白,促進(jìn)染色體重塑復(fù)合體的裝配[27]。TGFB生長(zhǎng)因子及其受體家族廣泛參與細(xì)胞進(jìn)程,包括增殖、遷移和分化,受體家族包括TGFBR1、TGFBR2和TGFBR3,對(duì)其功能研究多集中在心血管發(fā)育及其疾病調(diào)控方面[28]。
CYP19A1和CYP17A1是細(xì)胞色素P450 超家族蛋白之一,參與類固醇激素的生物合成并在卵泡發(fā)育過程中發(fā)揮重要作用,研究表明,CYP19A1受到多重通路調(diào)控,包括GCs中雌激素受體以及FSH受體激活的cAMP/蛋白激酶A通路,這些通路可能決定了牛卵泡的優(yōu)勢(shì)化[29]。SERPINE2在牛卵泡發(fā)育波出現(xiàn)偏差前和偏差后卵泡GCs中均大量表達(dá),提示SERPINE2對(duì)牛卵泡發(fā)育具有重要作用[4]。雌激素分泌和SERPINE2極顯著相關(guān),但雌激素處理體外培養(yǎng)的GCs不會(huì)改變SERPINE2的表達(dá),F(xiàn)SH和生長(zhǎng)因子可直接影響SERPINE2的分泌;SERPINE2屬于抗凋亡因子,可能參與了牛卵泡閉鎖的調(diào)控[30]。GREB1被證明是一種與染色質(zhì)結(jié)合的雌激素受體共激活體,對(duì)雌激素受體介導(dǎo)的轉(zhuǎn)錄至關(guān)重要,因?yàn)樗€(wěn)定了雌激素受體和其他輔助因子之間的相互作用;GREB1參與雌激素與其受體的結(jié)合,因此,GREB1也是一種潛在的臨床生物標(biāo)志物[31]。
經(jīng)轉(zhuǎn)錄組差異表達(dá)基因篩選,共獲得13個(gè)下調(diào)基因和17個(gè)上調(diào)基因與牛卵泡發(fā)育緊密相關(guān),qRT-PCR表達(dá)量驗(yàn)證分析表明轉(zhuǎn)錄組數(shù)據(jù)可信度較高。
[1] BEG M A, BERGFELT D R, KOT K, et al. Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance[J].BiolReprod, 2002, 66(1): 120-126.
[2] ROMEREIM S M, SUMMERS A F, POHLMEIER W E, et al. Transcriptomes of bovine ovarian follicular and luteal cells[J].DataBrief, 2017, 10: 335-339.
[3] TERENINA E, FABRE S, BONNET A, et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia[J].PhysiolGenomics, 2017, 49(2): 67-80.
[4] LI P F, MENG J Z, LIU W Z, et al. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave[J].IntJGenomics, 2016, 2016: 347248, doi: 10.1155/2016/3472748.
[5] 李鵬飛, 孟金柱, 謝建山, 等. 牛卵泡ODF1與ODF2轉(zhuǎn)錄組發(fā)育相關(guān)基因篩選及表達(dá)差異分析[J]. 畜牧獸醫(yī)學(xué)報(bào), 2015, 46(11): 1961-1966. LI P F, MENG J Z, XIE J S, et al. Screening and analyse study of genes associated with follicular development in bovine ODF1 and ODF2 transcript[J].ActaVeterinariaetZootechnicaSinica, 2015, 46(11): 1961-1966. (in Chinese)
[6] AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles[J].GenomeRes, 1997, 7(10): 986-995.
[7] XU Q, ZHAO W M, CHEN Y, et al. Transcriptome profiling of the goose (Ansercygnoides) ovaries identify laying and broodiness phenotypes[J].PLoSOne, 2013, 8(2): e55496.
[8] HATZIRODOS N, IRVING-RODGERS H F, HUMMITZSCH K, et al. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes[J].BMCGenomics, 2014, 15: 24, doi: 10.1186/1471-2164-15-24.
[9] GILBERT I, ROBERT C, DIELEMAN S, et al. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period[J].Reproduction, 2011, 141(2): 193-205.
[10] MIAO X Y, LUO Q M, QIN X Y. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity[J].MolCellEndocrinol, 2015, 402: 32-42.
[11] GILBERT I, ROBERT C, VIGNEAULT C, et al. Impact of the LH surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle[J].Reproduction, 2012, 143(6): 735-747.
[12] LEI M M, CAI L P, LI H, et al. Transcriptome sequencing analysis of porcine granulosa cells treated with an anti-inhibin antibody[J].ReprodBiol, 2017, 17(1): 79-88.
[13] CROUCHER N J, FOOKES M C, PERKINS T T, et al. A simple method for directional transcriptome sequencing using Illumina technology[J].NucleicAcidsRes, 2009, 37(22): e148, doi: 10.1093/nar/gkp811.
[14] O′CALLAGHAN C,FANNING L J,BARRY O P. p38δ MAPK: emerging roles of a neglected isoform[J].IntJCellBiol, 2014, 2014: 272689, doi: 10.1155/2014/272689.
[15] RISCO A, CUENDA A. New insights into the p38γ and p38δ MAPK pathways[J].JSignalTransduct, 2012, 2012: 520289, doi: 10.1155/2012/520289.
[16] SUMARA G, FORMENTINI I, COLLINS S, et al. Regulation of PKD by the MAPK p38δ in insulin secretion and glucose homeostasis[J].Cell, 2009, 136(2): 235-248.
[17] OESTERREICH S. Scaffold attachment factors SAFB1 and SAFB2: innocent bystanders or critical players in breast tumorigenesis?[J].JCellBiochem, 2003, 90(4): 653-661.
[18] IVANOVA M, DOBRZYCKA K M, JIANG S, et al. Scaffold attachment factor B1 functions in development, growth, and reproduction[J].MolCellBiol, 2005, 25(8): 2995-3006.
[19] TOWNSON S M,KANG K Y,LEE A V,et al.Structure-function analysis of the estrogen receptor α corepressor scaffold attachment factor-B1: identification of a potent transcriptional repression domain[J].JBiolChem, 2004, 279(25): 26074-26081.
[20] ADAMSON E D,MERCOLA D.Egr1 transcription factor: multiple roles in prostate tumor cell growth and survival[J].TumourBiol, 2002, 23(2): 93-102.
[21] SUKHATME V P, CAO X M, CHANG L C, et al. A zinc finger-encoding gene coregulated withc-fosduring growth and differentiation, and after cellular depolarization[J].Cell, 1988, 53(1): 37-43.
[22] RUSSELL D L, DOYLE K M H, GONZALES-ROBAYNA I, et al. Egr-1 induction in rat granulosa cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3', 5'-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1[J].MolEndocrinol, 2003, 17(4): 520-533.
[23] LIM B C, MATSUMOTO S, YAMAMOTO H, et al. Prickle1 promotes focal adhesion disassembly in cooperation with the CLASP-LL5β complex in migrating cells[J].JCellSci, 2016, 129(16): 3115-3129.
[24] OKUDA H, MIYATA S, MORI Y, et al. MousePrickle1 andPrickle2 are expressed in postmitotic neurons and promote neurite outgrowth[J].FEBSLett, 2007, 581(24): 4754-4760.
[25] TAO H, SUZUKI M, KIYONARI H, et al. Mouseprickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity[J].ProcNatlAcadSciUSA, 2009, 106(34): 14426-14431.
[26] WILSKER D, PROBST L, WAIN H M, et al. Nomenclature of the ARID family of DNA-binding proteins[J].Genomics, 2005, 86(2): 242-251.
[27] NISHIBUCHI G, NAKAYAMA J I. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly[J].JBiochem, 2014, 156(1): 11-20.
[28] DOETSCHMAN T, BARNETT J V, RUNYAN R B, et al. Transforming growth factorbetasignaling in adult cardiovascular diseases and repair[J].CellTissueRes, 2012, 347(1): 203-223.
[29] LUO W X, WILTBANK M C. Distinct regulation by steroids of messenger RNAs forFSHRandCYP19A1 in bovine granulosa cells[J].BiolReprod, 2006, 75(2): 217-225.
[30] CAO M J, NICOLA E, PORTELA V M, et al. Regulation of serine protease inhibitor-E2and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinizing bovine granulosa cellsinvitro[J].MatrixBiol, 2006, 25(6): 342-354.
[31] MOHAMMED H, D′SANTOS C, SERANDOUR A A, et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor[J].CellRep, 2013, 3(2): 342-349.