王瑜欣,汪 洋*,易 力,陸承平
(1. 河南科技大學(xué)動(dòng)物科技學(xué)院,洛陽 471003; 2. 洛陽師范學(xué)院生命科學(xué)學(xué)院,洛陽 471022;3. 南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院農(nóng)業(yè)部動(dòng)物細(xì)菌學(xué)重點(diǎn)實(shí)驗(yàn)室,南京 210095)
密度感應(yīng)系統(tǒng)(quorum sensing,QS)指的是菌體隨著群體數(shù)量增大,細(xì)菌個(gè)體之間會(huì)通過分泌一些小分子物質(zhì)來進(jìn)行細(xì)菌間交流,從而控制細(xì)菌基因表達(dá)的相關(guān)機(jī)制。J. Engebrecht等在研究費(fèi)氏弧菌密度依賴性生物發(fā)光時(shí)第一次發(fā)現(xiàn)了QS,研究發(fā)現(xiàn)誘導(dǎo)生物發(fā)光是由細(xì)菌產(chǎn)生的小信號(hào)化合物的濃度依賴性作用介導(dǎo)的,稱為自誘導(dǎo)分子(autoinducer,AI)[1-2]。隨后在30多種革蘭陰性細(xì)菌中,均發(fā)現(xiàn)存在類似的系統(tǒng),其對(duì)多種細(xì)胞密度依賴性過程進(jìn)行控制。QS在各類細(xì)菌中的代表系統(tǒng)包括以下幾種:革蘭陰性菌(G-)的LuxR-LuxI信號(hào)系統(tǒng);革蘭陽性菌(G+)的自誘導(dǎo)信號(hào)分子(autoinducing peptide, AIP)信號(hào)系統(tǒng);G+和G-共同存在的LuxS/AI-2系統(tǒng)等[3]。QS系統(tǒng)目前呈現(xiàn)復(fù)雜性和多樣性兩種明顯的特點(diǎn)。復(fù)雜性來源于信號(hào)分子的多功能性、多種信號(hào)分子具有相同的功能性、QS系統(tǒng)組成的復(fù)雜性以及多種QS系統(tǒng)之間交流的復(fù)雜性。多樣性體現(xiàn)在分布多樣性、信號(hào)分子多樣性、信號(hào)分子產(chǎn)生機(jī)制多樣性、信號(hào)分子運(yùn)輸多樣性和信號(hào)分子響應(yīng)多樣性。大量研究表明QS可以調(diào)節(jié)多種生理功能,其中就包含菌體發(fā)光、抗生素合成、質(zhì)粒轉(zhuǎn)移、生物被膜(biofilm, BF)形成等[4]。豬鏈球菌(Streptococcussuis,SS)作為普遍存在的人獸共患病原菌,對(duì)養(yǎng)豬業(yè)造成嚴(yán)重危害,尤其是在東亞及東南亞國(guó)家,比如泰國(guó)、越南、中國(guó)等[5-7]。豬鏈球菌病作為一種全球性傳染病,已經(jīng)被報(bào)道在30個(gè)國(guó)家/地區(qū)蔓延,不少于1 600人被感染,其中有些已死亡,嚴(yán)重威脅著人類健康和養(yǎng)豬產(chǎn)業(yè)的發(fā)展[8]。SS的QS系統(tǒng)是其產(chǎn)生毒力和耐藥性的主要因素之一,目前研究最熱的就是豬鏈球菌LuxS/AI-2型QS系統(tǒng)。
QS每種系統(tǒng)都存在相應(yīng)的小分子物質(zhì),這些物質(zhì)統(tǒng)稱為細(xì)菌信息素(bacterial pheromones),即自身誘導(dǎo)分子AI,這些生物小分子的濃度與細(xì)菌密度呈正相關(guān)[9-11]。目前,發(fā)現(xiàn)的QS信號(hào)分子可分為:G-的QS系統(tǒng)的信號(hào)分子酰基高絲氨酸內(nèi)酯類自誘導(dǎo)分子(acyl-homosefine lactone,AHL),這類信號(hào)分子的頭部均為高絲氨酸內(nèi)酯環(huán),存在差異的部分一般為?;鶄?cè)鏈尾巴,推測(cè)是取代基和側(cè)鏈長(zhǎng)短不同造成的,這就導(dǎo)致細(xì)菌在利用信號(hào)分子時(shí)存在特異性,而且AHL能夠穿過細(xì)菌生物被膜,并在細(xì)菌外形成聚集;G+的AIP,該信號(hào)分子在不同的細(xì)菌中的結(jié)構(gòu)有所不同,大部分AIP分子的氨基酸殘基界于5~17之間[12]。AIP不能單獨(dú)通過細(xì)胞壁,一般需要ABC轉(zhuǎn)運(yùn)系統(tǒng)(ATP-binding-cassette)或其他膜通道蛋白協(xié)助轉(zhuǎn)運(yùn)至膜外發(fā)揮作用[13]。菌體的二元信號(hào)系統(tǒng)通過識(shí)別菌體外的AIP分子,并經(jīng)過一個(gè)復(fù)雜的信號(hào)轉(zhuǎn)導(dǎo)過程,最終調(diào)控靶基因的轉(zhuǎn)錄表達(dá);G+和G-共有的AI-2信號(hào)分子介導(dǎo)的QS的細(xì)菌間信息交流方式,由于AI-2的合成需要LuxS蛋白酶的參與,因此該過程依賴于luxS基因[14-19]。除上述幾種信號(hào)分子以外,研究發(fā)現(xiàn)喹啉酮類化合物、脂肪酸和部分酯類化合物也可作為密度感應(yīng)系統(tǒng)的信號(hào)分子[20]。
B. L. Bassler等[21]在研究哈維氏弧菌的發(fā)光原理時(shí)發(fā)現(xiàn)S-核糖基高半胱氨酸酶由luxS基因編碼產(chǎn)生。該酶分解形成同型半胱氨酸和4,5-二羥基-2,3-戊二酮(4,5-dihydroxy-2, 3-pentanedione, DPD),DPD通過自環(huán)化形成AI-2,結(jié)構(gòu)為呋喃酮酰硼酸二酯,這類信號(hào)分子的共同點(diǎn)就是它們的前體均是DPD[22-23]。AI-2在活性甲基循環(huán)(activated methylcycle,AMC)中具有平衡代謝的作用,起初,普遍認(rèn)為AI分子只能夠在同種細(xì)菌間發(fā)揮作用,但是在研究哈氏弧菌的QS時(shí)發(fā)現(xiàn)了不同于傳統(tǒng)的細(xì)菌QS調(diào)節(jié)通路[24-27]。隨著細(xì)菌密度的增高,AI-2介導(dǎo)的QS激活,LuxO磷酸化終止,不再抑制LuxCDABE操縱子,并且LuxO與LuxR共同作用使LuxCDABE操縱子轉(zhuǎn)錄,從而使細(xì)菌發(fā)光,這就稱為L(zhǎng)uxS/AI-2型QS。目前已明確存在luxS基因類似物的菌種超過55種,但明確AI-2分子結(jié)構(gòu)的只有很少一部分。
韓先干等[28]和M. Cao等[29]對(duì)SS基因組分析表明,SS中存在的luxS基因,可以產(chǎn)生AI-2信號(hào)分子,將SS2的luxS基因序列與哈維氏弧菌的luxS基因序列進(jìn)行對(duì)比,結(jié)果顯示一致性為36%,相似性為56%。將其與其他種類鏈球菌的luxS基因進(jìn)行比較,則具有80%以上的相似性,表明細(xì)菌中的luxS基因?qū)儆诟叨缺J匦曰颉?/p>
LuxS屬于一種小型金屬酶,所含氨基酸的數(shù)目在170個(gè)左右。LuxS蛋白為一個(gè)二級(jí)結(jié)構(gòu),該結(jié)構(gòu)由四個(gè)反平行的β折疊和四個(gè)反平行的α螺旋組成[30-33]。在觀察這些基因的結(jié)構(gòu)時(shí),發(fā)現(xiàn)該折疊晶體高度保守,可能在α-β家族的折疊是一個(gè)新的類型。研究分析LuxS蛋白時(shí)發(fā)現(xiàn)其保守的基序?yàn)镠is-Xaa-Xaa-Glu-His。通過電子雜交分析哈維氏弧菌的LuxS蛋白,發(fā)現(xiàn)該菌的基序?yàn)長(zhǎng)ys-Ile-Pro-Glu-Leu-Asn-Glu-Tyr[34]。
本課題組獲得了豬鏈球菌LuxS蛋白晶體(圖1),解析了其三維精細(xì)結(jié)構(gòu)(PDB索引號(hào)為4XCH),研究發(fā)現(xiàn)每個(gè)晶體不對(duì)稱單元里有4個(gè)LuxS單體蛋白。單體LuxS蛋白同樣是由四個(gè)反平行的β折疊和四個(gè)反平行的α螺旋組成,順序是H1-S1-S2-H2-S3-S4-H3-H4。等離子耦合質(zhì)感質(zhì)譜可知Zn2+離子是豬鏈球菌LuxS蛋白活性中心的主要成分,試驗(yàn)結(jié)果和S. N. Ruzheinikov的報(bào)道[35]一致,但是R. Rajan等[33]研究發(fā)現(xiàn)枯草芽胞桿菌的LuxS蛋白中存在Fe2+,提示不同細(xì)菌LuxS蛋白活性中心附件的金屬離子可能有差異,并推測(cè)這可能與它的催化效率有關(guān)。生物信息學(xué)分析發(fā)現(xiàn)位于底物結(jié)合位點(diǎn)附近80和87位氨基酸發(fā)生了可能的進(jìn)化突變,通過定點(diǎn)突變發(fā)現(xiàn)2個(gè)氨基酸的突變對(duì)其底物結(jié)合和酶的催化能力有較大影響,并影響豬鏈球菌AI-2的產(chǎn)生和BF的形成能力。體內(nèi)體外試驗(yàn)證明,這兩個(gè)氨基酸的缺乏或變異能夠抑制AI-2分子的產(chǎn)生和BF的形成[36-37]。
球體表示Zn2+;LuxS單體蛋白用不同顏色表示Zn2+ ions are represented by spheres;LuxS monomeric proteins are showed by different colors圖1 SS2 HA9801株LuxS蛋白晶體結(jié)構(gòu)圖Fig.1 LuxS protein crystal structure of SS2 HA9801
在細(xì)菌基因表達(dá)的主要功能中,LuxS循環(huán)途徑是一個(gè)重要組成部分。在功能上,主要是負(fù)責(zé)水解S-腺苷同型半胱氨酸,然后回收代謝水解產(chǎn)物S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)。SAM途徑是細(xì)菌甲基再循環(huán)的主要方式,也是細(xì)菌多胺形成和維生素合成的關(guān)鍵[38]。luxS基因的突變或缺失將會(huì)導(dǎo)致SAM功能缺失和AI-2合成的受阻,這個(gè)現(xiàn)象表明,如果luxS突變導(dǎo)致相關(guān)表型出現(xiàn)差異,那么QS活動(dòng)就會(huì)受到影響。另外,誘變luxS基因也會(huì)導(dǎo)致SAM其他代謝產(chǎn)物在細(xì)胞外濃度的變化[39]。利用重組LuxS蛋白檢測(cè),已經(jīng)證明,在常規(guī)luxS缺陷性活菌株的培養(yǎng)物上清液中,S-核糖基高半胱氨酸(具有LuxS功能的SAM中間體)的細(xì)胞外濃度顯著增加[40]?;谝陨涎芯拷Y(jié)果,許多存在于luxS突變株細(xì)胞內(nèi)和細(xì)胞外的SAM通路中間體濃度都在改變是有可能的。luxS突變細(xì)菌對(duì)SAM代謝產(chǎn)物的回收產(chǎn)生顯著影響。
LuxS/AI-2系統(tǒng)是細(xì)菌全局調(diào)控網(wǎng)絡(luò)的一部分,對(duì)細(xì)菌種群密度變化波動(dòng)作出反應(yīng),調(diào)控不同基因的表達(dá),從而調(diào)節(jié)細(xì)菌的生長(zhǎng)和毒力等多種生命活動(dòng),使其適應(yīng)不同的環(huán)境[41-44]。在復(fù)雜的調(diào)控網(wǎng)絡(luò)中,AI-2除了有正調(diào)控作用以外還有負(fù)調(diào)控作用。目前,AI-2分子的產(chǎn)生在細(xì)菌中已經(jīng)得到了廣泛的發(fā)現(xiàn),但其完整的感應(yīng)通路及調(diào)控方式尚不完全明確。尋找細(xì)菌AI-2分子的受體蛋白及研究其介導(dǎo)的下游調(diào)控網(wǎng)絡(luò)是當(dāng)前研究的熱點(diǎn)方向,但是目前在豬鏈球菌上還無實(shí)質(zhì)性進(jìn)展。本課題組構(gòu)建了豬鏈球菌Tn917轉(zhuǎn)座子隨機(jī)突變庫,力求篩選鑒定出AI-2的受體基因,并通過基因芯片和蛋白組學(xué)獲知AI-2及其受體基因介導(dǎo)的下游調(diào)控網(wǎng)絡(luò),目前也取得了一定的進(jìn)展。
5′-甲硫腺苷/S-腺苷高半胱氨酸核苷酶(5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase,Pfs) 在細(xì)菌代謝調(diào)控方面具有重要作用,與LuxS酶共同促進(jìn)AI-2分子在細(xì)菌體內(nèi)的合成。在SS2對(duì)數(shù)生長(zhǎng)后期,AI-2的活性達(dá)到最高,同時(shí),也是pfs基因轉(zhuǎn)錄水平達(dá)到最高的時(shí)期,相比之下,luxS基因轉(zhuǎn)錄水平達(dá)到最高的時(shí)期處于SS2的穩(wěn)定期[45]。通過Agilent基因芯片,比較SS2的野生菌株和ΔluxS株基因在轉(zhuǎn)錄表達(dá)水平的差異,結(jié)果發(fā)現(xiàn)缺失株的312個(gè)基因與野生株出現(xiàn)差異表達(dá),其中上調(diào)基因?yàn)?44個(gè),下調(diào)基因有168個(gè)。通過在SS2 ΔluxS培養(yǎng)基中體外添加DPD,結(jié)果發(fā)現(xiàn)DPD能夠引起71個(gè)基因的差異表達(dá),其中29個(gè)基因被認(rèn)為是受LuxS/AI-2密度感應(yīng)系統(tǒng)調(diào)控的靶基因,這些基因與細(xì)菌毒力及鐵的攝取有關(guān)[27]。本課題組構(gòu)建了luxS+過表達(dá)菌株,通過Real-time PCR證實(shí)SS在各個(gè)時(shí)期luxS基因表達(dá)量都有提高,而pfs基因水平維持不變,過表達(dá)菌株并不能增加AI-2分子的產(chǎn)生水平[46]。分析原因可能是AI-2的產(chǎn)生是由luxS基因和pfs基因共同作用產(chǎn)生,只增加LuxS蛋白并不會(huì)提高AI-2的產(chǎn)生水平。
LuxS/AI-2系統(tǒng)影響細(xì)菌生物學(xué)特性是復(fù)雜而有序的,作為重要的細(xì)菌全局調(diào)控網(wǎng)絡(luò)之一,通過對(duì)細(xì)菌數(shù)量變化浮動(dòng)作出應(yīng)答,調(diào)控相應(yīng)基因的表達(dá),從而影響各種生命活動(dòng)。通常調(diào)控一種基因往往會(huì)影響多種表型的變化,這說明某一種基因的改變,會(huì)影響多個(gè)相關(guān)基因的表達(dá)?,F(xiàn)已發(fā)現(xiàn)細(xì)菌的許多生理功能都受LuxS/AI-2系統(tǒng)的調(diào)節(jié),包括細(xì)菌發(fā)光、抗生素敏感性、運(yùn)動(dòng)、質(zhì)粒的轉(zhuǎn)移、毒力、基因的表達(dá)、生物被膜形成等[47-49]。關(guān)于LuxS/AI-2對(duì)SS生物學(xué)特性的調(diào)控目前研究主要包括以下幾個(gè)方面。
觀察比較細(xì)菌突變株與野生株的生長(zhǎng)曲線和形態(tài)變化,可以更直觀地了解突變株的生理變化。通過比較SS2野生菌株和ΔluxS株的生長(zhǎng)曲線,發(fā)現(xiàn)缺失株的生長(zhǎng)速度低于野生菌株,其對(duì)數(shù)期相對(duì)滯后,數(shù)量增加的速度也低于野生菌株,野生株提前90 min到達(dá)靜止期[50]。在普通顯微鏡下SS2野生菌株的形態(tài)為標(biāo)準(zhǔn)的SS形態(tài),ΔluxS株菌體在顯微鏡下呈現(xiàn)聚集狀態(tài),形成的鏈長(zhǎng)也明顯短于野生菌株,在電鏡下觀察兩種菌株的形態(tài),發(fā)現(xiàn)缺失株的莢膜厚度變薄,且對(duì)H2O2的耐受性增強(qiáng)[27]。
細(xì)菌BF是一種由細(xì)菌分泌并包裹在細(xì)菌群體外的一種區(qū)別于細(xì)菌莢膜的膜樣物,BF在細(xì)菌致病方面有著很大的作用,也是使細(xì)菌出現(xiàn)耐藥性的重要原因之一[51]。本課題組研究發(fā)現(xiàn)給SS2培養(yǎng)基中添加0~2 μmol·L-1的AI-2分子,會(huì)顯著提高細(xì)菌形成BF的能力,但當(dāng)外源性AI-2添加的量為2~15 μmol·L-1時(shí),SS2形成BF的能力受到抑制。當(dāng)以添加2 μmol·L-1AI-2分子作為基礎(chǔ)研究最佳作用時(shí)間時(shí),發(fā)現(xiàn)在24 h添加該信號(hào)分子可顯著增加BF的形成,在48 h添加無影響[52]。對(duì)ΔluxS株進(jìn)行測(cè)試發(fā)現(xiàn)在24、48 h均能夠顯著增加BF形成,過表達(dá)試驗(yàn)發(fā)現(xiàn)SS2的BF形成能力增強(qiáng),且這種能力隨著培養(yǎng)時(shí)間的延長(zhǎng)有所加強(qiáng)[46]。
致病菌感染宿主的第一步通常為黏附、定植,致病菌黏附力的大小決定了其致病性的強(qiáng)弱[53]。通過研究SS2ΔluxS株與野生菌株黏附力的差異,將有利于研究LuxS/AI-2系統(tǒng)的相關(guān)調(diào)控機(jī)制。通過觀察比較SS2野生菌株和ΔluxS株對(duì)人上皮樣喉癌細(xì)胞株Hep-2和人臍靜脈內(nèi)皮細(xì)胞HUVEC的黏附能力,發(fā)現(xiàn)ΔluxS株相比于野生菌株,對(duì)兩種細(xì)胞的黏附能力均下降。本課題組分別在SS2野生株和ΔluxS株培養(yǎng)液中加入外源的AI-2,結(jié)果發(fā)現(xiàn),低濃度添加AI-2會(huì)增強(qiáng)細(xì)菌對(duì)細(xì)胞的黏附,高濃度則會(huì)降低這種黏附能力,4 和6 μmol·L-1是其最佳AI-2添加量[51]。
細(xì)菌毒力指的是病原細(xì)菌致病能力的強(qiáng)弱程度[54]。致病菌都含有大量產(chǎn)生毒力因子的相關(guān)基因,關(guān)于LuxS在細(xì)菌毒力方面的作用已有研究,并顯示該基因在調(diào)控細(xì)菌毒力方面起重要作用[55]。本課題組通過實(shí)時(shí)PCR定量發(fā)現(xiàn),luxS基因的缺失能夠?qū)е露玖颉劝彼崦摎涿富?gdh)、莢膜多糖基因(cps)、溶菌酶釋放蛋白基因(mrp)、甘油醛-3-磷酸脫氫酶基因(gapdh)、豬溶血素基因(sly)、纖黏連蛋白基因(fbps)和細(xì)胞外蛋白因子基因(ef)分別下降0.66、0.61、0.45、0.48、0.29、0.57和0.38。斑馬魚感染試驗(yàn)發(fā)現(xiàn)ΔluxS株毒力下降了10倍,互補(bǔ)株能夠恢復(fù)部分毒力[37],豬體的感染試驗(yàn)也獲得了類似的結(jié)果,缺失株在豬肺、腦、關(guān)節(jié)等各器官中細(xì)菌數(shù)量均明顯低于野生株[27]。
紅細(xì)胞溶血會(huì)造成機(jī)體出現(xiàn)貧血、敗血癥等癥狀,檢測(cè)細(xì)菌溶血活性是檢驗(yàn)其致病力大小的重要指標(biāo)[56]。通過檢測(cè)SS2 HA9801野生株、ΔluxS株和C-ΔluxS互補(bǔ)株的溶血活性,發(fā)現(xiàn)三者能夠裂解50%紅細(xì)胞的最大稀釋倍數(shù)分別為1∶16、1∶2和1∶16,說明luxS基因能夠影響細(xì)菌的溶血能力[55]。
LuxS/AI-2 在細(xì)菌交流、BF形成、代謝和毒力方面的重要作用,提示了一種新型抗菌策略,即設(shè)計(jì)干擾致病菌LuxS/AI-2 系統(tǒng)的新藥物,以達(dá)到控制病菌的目的[57-60]。目前已嘗試的方法包括阻斷AI-2產(chǎn)生,本課題組通過噬菌體展示技術(shù)篩選到一個(gè)能特異性阻斷AI-2產(chǎn)生的多肽,破壞由QS調(diào)控的豬鏈球菌毒力因子的表達(dá),顯著降低豬鏈球菌在機(jī)體內(nèi)的侵染能力[61-64]。另一個(gè)為抑制AI-2分子信號(hào)功能,即設(shè)計(jì)AI-2 分子類似物,與受體蛋白競(jìng)爭(zhēng)性結(jié)合來阻斷AI-2 介導(dǎo)的信號(hào)通路[65]。目前已經(jīng)有學(xué)者成功干擾了信號(hào)分子與受體蛋白的結(jié)合。這種干擾抑制了病原菌在動(dòng)物體內(nèi)的毒力,而人類沒有l(wèi)uxS基因,對(duì)人類沒有副作用。相對(duì)于傳統(tǒng)的抗生素而言,QS抑制劑不僅阻止細(xì)菌生長(zhǎng)或者將其殺死,而且不會(huì)導(dǎo)致細(xì)菌耐藥株的產(chǎn)生。因此,抗QS信息傳導(dǎo)的化合物在抑制細(xì)菌的感染方面具有巨大的研究?jī)r(jià)值。
LuxS/AI-2型 QS系統(tǒng)能夠通過調(diào)整自然環(huán)境下細(xì)菌間信息交流因子,調(diào)控菌群生物學(xué)特性。對(duì)于病原性細(xì)菌,認(rèn)識(shí)和掌握LuxS/AI-2型 QS系統(tǒng),進(jìn)而打開新的抗菌思路具有重要意義。因此深入研究獲得參與SS對(duì)AI-2攝取的基因,哪些是與AI-2具有結(jié)合活性呢?AI-2是通過調(diào)控SS的哪些靶蛋白來調(diào)控SS的生物學(xué)特性?AI-2結(jié)合受體蛋白后調(diào)控的下游靶蛋白有哪些,如何調(diào)控其QS信號(hào)通路的?詳細(xì)闡明細(xì)菌對(duì)AI-2的攝取及其介導(dǎo)的密度感應(yīng)系統(tǒng)的分子調(diào)控網(wǎng)絡(luò)機(jī)制,以期通過抑制病原菌信號(hào)傳導(dǎo)來達(dá)到控制細(xì)菌的目的。可以預(yù)見,對(duì)于致病菌的防控方面,QS是具有研究和應(yīng)用前景的新藥靶標(biāo)。
[1] ENGEBRECHT J, NEALSON K, SILVERMAN M. Bacterial bioluminescence: isolation and genetic analysis of functions fromVibriofischeri[J].Cell, 1983, 32(3): 773-781.
[2] ZHAO W N, LORENZ N, JUNG K, et al. Fimbrolide natural products disrupt bioluminescence ofVibrioby targeting autoinducer biosynthesis and luciferase activity[J].AngewChemIntEdEngl, 2016, 55(3): 1187-1191.
[3] 徐 翔.外源AHL對(duì)中慢生型天山根瘤菌群體感應(yīng)系統(tǒng)作用的初步研究及其對(duì)根瘤菌根際定殖能力的影響[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2008. XU X. Study on foreign AHL′s effect on the quorum sensing system ofM.tianshanesneand the function of root colonization[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[4] ZHENG H M, MAO Y L, ZHU Q C, et al. The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and -independent fashions inRhizobiumetli[J].JBacteriol, 2015, 197(9): 1573-1581.
[5] HATRONGJIT R, KERDSIN A, GOTTSCHALK M, et al. First human case report of sepsis due to infection withStreptococcussuisserotype 31 in Thailand[J].BMCInfectDis, 2015, 15: 392.
[6] WERTHEIM H F L, NGUYEN H N, TAYLOR W, et al.Streptococcussuis, an important cause of adult bacterial meningitis in northern Vietnam[J].PLoSOne, 2009, 4(6): e5973.
[7] WANG S J, GAO M, AN T, et al. Genetic diversity and virulence of novel sequence types ofStreptococcussuisfrom diseased and healthy pigs in China[J].FrontMicrobiol, 2015, 6: 173.
[8] CHATZOPOULOU M, VOULGARIDOU I, PAPALAS D, et al. Third case ofStreptococcussuisinfection in Greece[J].CaseRepInfectDis, 2015, 2015: 505834.
[9] WELSH M A, EIBERGEN N R, MOORE J D, et al. Small molecule disruption of quorum sensing cross-regulation inPseudomonasaeruginosacauses major and unexpected alterations to virulence phenotypes[J].JAmChemSoc, 2015, 137(4): 1510-1519.
[10] CHANG J C, JIMENEZ J C, FEDERLE M J. Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme[J].MolMicrobiol, 2015, 97(6): 1097-1113.
[11] WANG B Y, ZHAO A S, XIE Q, et al. Functional plasticity of the AgrC receptor histidine kinase required for staphylococcal virulence[J].CellChemBiol, 2017, 24(1): 76-86.
[12] MILLER M B, BASSLER B L. Quorum sensing in bacteria[J].AnnuRevMicrobiol, 2001, 55: 165-199.
[13] ZOLLMANN T, MOISET G, TUMULKA F, et al. Single liposome analysis of peptide translocation by the ABC transporter TAPL[J].ProcNatlAcadSciUSA, 2015, 112(7): 2046-2051.
[14] PLYUTA V A, LIPASOVA V A, KOKSHAROVA O A, et al.The effect of introduction of the heterologous gene encoding the N-acyl-homoserine lactonase (aiiA) on the properties ofBurkholderiacenocepacia370[J].Genetika, 2015, 51(8): 864-872.
[15] TRAPPETTI C, MCALLISTER L J, CHEN A, et al. Autoinducer 2 signaling via the phosphotransferase FruA drives galactose utilization byStreptococcuspneumoniae, resulting in hypervirulence[J].MBio, 2017, 8(1): e02269-16.
[16] MA R H, QIU S W, JIANG Q, et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation inStaphylococcusaureus[J].IntJMedMicrobiol, 2017, 307(4-5): 257-267.
[17] ZHU S Q, WU H H, ZENG M Y, et al. Regulation of spoilage-related activities ofShewanellaputrefaciensandShewanellabalticaby an autoinducer-2 analogue, (Z)-5-(Bromomethylene) furan-2(5H)-one[J].JFoodProcessPreserv, 2015, 39(6): 719-728.
[18] NOVOTNY L A, JURCISEK J A, WARD M O Jr, et al. Antibodies against the majority subunit of type IV pili disperse nontypeableHaemophilusinfluenzaebiofilms in a LuxS-dependent manner and confer therapeutic resolution of experimental otitis media[J].MolMicrobiol, 2015, 96(2): 276-292.
[19] LIM J, LEE K M, PARK C Y, et al. Quorum sensing is crucial toEscherichiacoliO157: H7biofilm formation under static or very slow laminar flow conditions[J].BioChipJ, 2016, 10(3): 241-249.
[20] 樓秀余.脂肪酸乙醇胺類衍生物分子的生物學(xué)功能[J].中國(guó)科技博覽, 2015(42): 274. LOU X Y. The biological function of fatty acid ethanolamine derivatives[J].ChinaScienceandTechnologyReview, 2015(42): 274. (in Chinese)
[21] BASSLER B L, WRIGHT M, SHOWALTER R E, et al. Intercellular signalling inVibrioharveyi: sequence and function of genes regulating expression of luminescence[J].MolMicrobiol, 1993, 9(4): 773-786.
[22] SINTIM H O, BENTLEY W E, ROY V, et al. Phosphorylated and branched dihydroxy-pentane-dione (DPD) analogs as quorum sensing inhibitors in bacteria: US, US8952192(B2)[P]. 2015-02-10.
[23] ARNOLD W K, SAVAGE C R, ANTONICELLO A D, et al. Apparent role forBorreliaburgdorferiLuxS during mammalian infection[J].InfectImmun, 2015, 83(4): 1347-1353.
[24] MITRA A, HERREN C D, PATEL I R, et al. Integration of AI-2 based cell-cell signaling with metabolic cues inEscherichiacoli[J].PLoSOne, 2016, 11(6): e0157532.
[25] QUAN D N, TSAO C Y, WU H C, et al. Quorum sensing desynchronization leads to bimodality and patterned behaviors[J].PLoSComputBiol, 2016, 12(4): e1004781.
[26] COLLINS K C, TSUCHIKAMA K, LOWERY C A, et al. Dissecting AI-2-mediated quorum sensing through C5-analogue synthesis and biochemical analysis[J].Tetrahedron, 2015, 72(25): 3593-3598.
[27] XU F, SONG X N, CAI P J, et al. Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography-tandem mass spectrometry[J].JEnvironSci, 2017, 52: 204-209.
[28] 韓先干.豬鏈球菌2型LuxS/AI-2型密度感應(yīng)系統(tǒng)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2008. HAN X G. Study on the quorum sensing of LuxS/AI-2 ofStreptococcussuisserotype 2[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[29] CAO M, FENG Y J, WANG C J, et al. Functional definition of LuxS, an autoinducer-2 (AI-2) synthase and its role in full virulence ofStreptococcussuisserotype 2[J].JMicrobiol, 2011, 49(6): 1000-1011.
[30] YUVARANI T, ANURADHA V, YOGANANTH N, et al. Molecular modelling and structure analysis of S-ribosyl homocysteinase fromAeromonashydrophila[J/OL].BiosciBiotechnolResAsia, 2014, 11: 363-368. [2017-09-29]. http://www.biotech-asia.org/vol11_nospl_edn1/molecular-modelling-and-structure-analysis-of-s-ribosyl-homocysteinase-from-aeromonas-hydrophila/
[31] 馬艷平, 張 杰, 陳豪泰, 等. 副豬嗜血桿菌S-核糖基高半胱氨酸酶基因序列分析與推導(dǎo)蛋白三維結(jié)構(gòu)的分子模擬[J]. 中國(guó)獸醫(yī)學(xué)報(bào), 2011, 31(1): 40-44. MA Y P, ZHANG J, CHEN H T, et al. Sequence analysis ofluxSgene ofHaemophilusparasuisand homology modeling of 3D structure of the deduced protein[J].ChineseJournalofVeterinaryScience, 2011, 31(1): 40-44. (in Chinese)
[32] BHATTACHARYYA M, VISHVESHWARA S. Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks[J].BMCStructBiol, 2009, 9(1): 8.
[33] RAJAN R, ZHU J E, HU X, et al. Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate[J].Biochemistry, 2005, 44(10): 3745-3753.
[34] HILGERS M T, LUDWIG M L. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site[J].ProcNatlAcadSciUSA, 2001, 98(20): 11169-11174.
[35] RUZHEINIKOV S N, DAS S K, SEDELNIKOVA S E, et al. The 1.2 ? structure of a novel quorum-sensing protein,BacillussubtilisLuxS[J].JMolBiol, 2001, 313(1): 111-122.
[36] WANG Y, ZHANG W, WU Z F, et al. Functional analysis ofluxSinStreptococcussuisreveals a key role in biofilm formation and virulence[J].VetMicrobiol, 2011, 152(1-2): 151-160.
[37] WANG Y, YI L, WANG S H, et al. Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation inStreptococcussuisLuxS[J].PLoSOne, 2015, 10(10): e0138826.
[38] DING W, LI Y Z, ZHAO J F, et al. The catalytic mechanism of the class C radicalS-adenosylmethionine methyltransferase NosN[J].AngewChemIntEdEngl, 2017, 56(14): 3857-3861.
[39] KUNJAPUR A M, HYUN J C, PRATHER K L J. Deregulation ofS-adenosylmethionine biosynthesis and regeneration improves methylation in theE.colide novo vanillin biosynthesis pathway[J].MicrobCellFact, 2016, 15: 61.
[40] PLUMMER P, ZHU J E, AKIBA M, et al. Identification of a key amino acid of LuxS involved in AI-2 production inCampylobacterjejuni[J].PLoSOne, 2011, 6(1): e15876.
[41] BANERJEE G, RAY A K. The talking language in some major gram-negative bacteria[J].ArchMicrobiol, 2016, 198(6): 489-499.
[42] WILLIAMS T C, AYRAPETYAN M, OLIVER J D. Molecular and physical factors that influence attachment ofVibriovulnificusto chitin[J].ApplEnvironMicrobiol, 2015, 81(18): 6158-6165.
[43] HAWVER L A, JUNG S A, NG W L. Specificity and complexity in bacterial quorum-sensing systems[J].FEMSMicrobiolRev, 2016, 40(5): 738-752.
[44] SALINI R, PANDIAN S K. Interference of quorum sensing in urinary pathogenSerratiamarcescensbyAnethumgraveolens[J].PathogDis, 2015, 73(6): ftv038.
[45] HAN X G, LU C P. Detection of autoinducer-2 and analysis of the profile ofluxSandpfstranscription inStreptococcussuisserotype 2[J].CurrMicrobiol, 2009, 58(2): 146-152.
[46] WANG Y, YI L, ZHANG Z C, et al. Overexpression ofluxScannot increase autoinducer-2 production, only affect the growth and biofilm formation inStreptococcussuis[J].SciWorldJ, 2013, 2013: 924276.
[47] MA Y P, KE H, HAO L.LuxS/AI-2 quorum sensing is involved in antimicrobial susceptibility inStreptococcusagalactiae[J].FishPathol, 2015, 50(1): 8-15.
[48] 楊登輝, 汪 洋, 王少輝, 等. 密度感應(yīng)系統(tǒng)luxS基因?qū)κ髠抽T菌生物學(xué)特性及毒力的影響[J]. 中國(guó)獸醫(yī)科學(xué), 2016, 46(5): 537-543. YANG D H, WANG Y, WANG S H, et al. Effects of quorum sensing systemluxSgene on the biological characteristics and virulence ofSalmonellatyphimurium[J].ChineseVeterinaryScience, 2016, 46(5): 537-543. (in Chinese)
[49] WANG X, LI X L, LING J Q.StreptococcusgordoniiLuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation withStreptococcusmutans[J].JBasicMicrobiol, 2017, 57(7): 605-616.
[50] 汪 洋. 豬鏈球菌生物被膜形成及致病機(jī)理研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2011. WANG Y. Study on the mechanism of biofilm formation and molecular pathogenesis ofStreptococcussuis[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[51] ALONSO B, CRUCES R, PéREZ A, et al. Comparison of the XTT and resazurin assays for quantification of the metabolic activity ofStaphylococcusaureusbiofilm[J].JMicrobiolMethods, 2017, 139: 135-137.
[52] WANG Y, YI L, ZHANG Z C, et al. Biofilm formation, host-cell adherence, and virulence genes regulation ofStreptococcussuisin response to autoinducer-2 signaling[J].CurrMicrobiol, 2014, 68(5): 575-580.
[53] REDMAN J A, WALKER S L, ELIMELECH M. Bacterial adhesion and transport in porous media: role of the secondary energy minimum[J].EnvironSciTechnol, 2004, 38(6): 1777-1785.
[54] SEGURA M, FITTIPALDI N, CALZAS C, et al. CriticalStreptococcussuisvirulence factors: are they all really critical?[J].TrendsMicrobiol, 2017, 25(7): 585-599.
[55] FITTS E C, ANDERSSON J A, KIRTLEY M L, et al. New insights into autoinducer-2 signaling as a virulence regulator in a mouse model of pneumonic plague[J].mSphere, 2016, 1(6): e00342-16.
[56] SUGIURA T, OKUMIYA T, KUBO T, et al. Evaluation of intravascular hemolysis with erythrocyte creatine in patients with aortic stenosis[J].IntHeartJ, 2016, 57(4): 430-433.
[57] ROLLAND J L, STIEN D, SANCHEZ-FERANDIN S, et al. Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology[J].JChemEcol, 2016, 42(12): 1201-1211.
[58] 劉 蕾, 桂 萌, 武瑞赟, 等. LuxS/AI-2型群體感應(yīng)系統(tǒng)調(diào)控細(xì)菌生物被膜形成研究進(jìn)展[J]. 食品科學(xué), 2016, 37(19): 254-262. LIU L, GUI M, WU R Y, et al. Progress in research on biofilm formation regulated by LuxS/AI-2 quorum sensing[J].FoodScience, 2016, 37(19): 254-262. (in Chinese)
[59] RYU E J, SIM J, SIM J, et al. D-galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens[J].JMicrobiol, 2016, 54(9): 632-637.
[60] RAO R M, PASHA S N, SOWDHAMINI R. Genome-wide survey and phylogeny of S-ribosylhomocysteinase (LuxS) enzyme in bacterial genomes[J].BMCGenomics, 2016, 17(1): 742.
[61] THOMPSON J A, OLIVEIRA R A, DJUKOVIC A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota[J].CellRep, 2015, 10(11): 1861-1871.
[62] JOSHI J R, BURDMAN S, LIPSKY A, et al. Plant phenolic acids affect the virulence ofPectobacteriumaroidearumandP.carotovorumssp.brasiliensevia quorum sensing regulation[J].MolPlantPathol, 2016, 17(4): 487-500.
[63] 燕彩玲, 李 博, 顧 悅, 等. 信號(hào)分子AI-2的檢測(cè)方法研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2016, 43(6): 1333-1338. YAN C L, LI B, GU Y, et al. Methods for the determination of autoinducer-2—a review[J].MicrobiologyChina, 2016, 43(6): 1333-1338. (in Chinese)
[64] 汪 洋, 易 力, 張 才, 等. 一種豬鏈球菌密度感應(yīng)系統(tǒng)阻斷多肽及其應(yīng)用: 中國(guó), CN102942617B[P]. 2014-05-14. WANG Y, YI L, ZHANG C, et al.Streptococcussuisquorum sensing system blocking peptide and application of streptococcus suis quorum sensing system blocking peptide: China, CN102942617B[P]. 2014-05-14. (in Chinese)
[65] 張 勇, 王 瑤, 陳士云. 群體感應(yīng)信號(hào)分子AI-2研究進(jìn)展[J]. 中國(guó)生物工程雜志, 2005, 25(9): 14-18. ZHANG Y, WANG Y, CHEN S Y. Advances on quorum sensing AI-2 signal molecular[J].ChinaBiotechnology, 2005, 25(9): 14-18. (in Chinese)